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Memory Management in xv6

1. Basics
• xv6 uses 32-bit virtual addresses, resulting in a virtual address space of 4GB. xv6 uses paging

to manage its memory allocations. However, xv6 does not do demand paging, so there is no
concept of virtual memory. That is, all valid pages of a process are always allocated physical
pages.

• xv6 uses a page size of 4KB, and a two level page table structure dictated by the underlying x86
hardware. The CPU register CR3 contains a pointer to the outer page directory of the current
running process. The translation from virtual to physical addresses is performed by the x86
MMU as follows. The first 10 bits of a 32-bit virtual address are used to index into the page
table directory, which provides an address of the inner page table. The next 10 bits index into
the inner page table to locate the page table entry (PTE). The PTE contains a 20-bit physical
frame number and flags. Every page table in xv6 has mappings for user pages as well as kernel
pages. The part of the page table dealing with kernel pages is the same across all processes.
Sheet 8 contains various definitions pertaining to the page table and page table entries. You
can find macros to extract specific bits (e.g., index into page table) from a virtual address here,
which will be useful when understanding code. You can also find the various flags used to set
permissions in the page table entry defined here.

• Sheets 02 and 18 describe the memory layout of xv6. In the virtual address space of every
process, the user code+data, heap, stack and other things start from virtual address 0 and extend
up to KERNBASE. The kernel is mapped into the address space of every process beginning
at KERNBASE. The kernel code and data begin from KERNBASE, and can go up to KERN-
BASE+PHYSTOP. This virtual address space of [KERNBASE, KERNBASE+PHYSTOP] is
mapped to [0,PHYSTOP] in physical memory. In the current xv6 code, KERNBASE is set
to 2GB and PHYSTOP is set to 224MB. Because KERNBASE+PHYSTOP can go to a maxi-
mum of 4GB in 32-bit architectures, and KERNBASE is 2GB, the maximum possible value of
PHYSTOP is 2GB, so xv6 can use a maximum of 2GB physical memory. You can also find
here various macros like V2P that translates from a virtual address to a physical addres (by
simply subtracting KERNBASE from the virtual address).

• The kernel code doesn’t exactly begin at KERNBASE, but a bit later at KERNLINK, to leave
some space at the start of memory for I/O devices. Next comes the kernel code+read-only data
from the kernel binary. Apart from the memory set aside for kernel code and I/O devices, the
remaining memory is in the form of free pages managed by the kernel. When any user process
requests for memory to build up its user part of the address space, the kernel allocates memory
to the user process from this free space list. That is, most physical memory can be mapped
twice, once into the kernel part of the address space of a process, and once into the user part.
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• The memory layout described above is illustrated below.
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2. Initializing the memory subsystem
• The xv6 bootloader loads the kernel code in low physical memory (starting at 1MB, after leav-

ing the first 1MB for use by I/O devices), and starts executing the kernel at entry (line 1040).
Initially, there are no page tables or MMU, so virtual addresses must be the same as physical
addresses. So this kernel entry code resides in the lower part of the virtual address space, and
the CPU generates memory references in the low virtual address space only, which are passed
onto the memory hardware as-is and used as physical addresses also. Now, the kernel must turn
on MMU and start executing at high virtual addresses, in order to make space for user code at
low virtual addresses. We will first see how the kernel jumps to high virtual addresses.

• The entry code first turns on support for large pages (4MB), and sets up the first page table
entrypgdir (lines 1311-1315). The second entry in this page table is easier to follow: it
maps [KERNBASE, KERNBASE+4MB] to [0, 4MB], to enable the first 4MB of kernel code
in the high virtual address space to run after MMU is turned on. The first entry of this page table
table maps virtual addresses [0, 4MB] to physical addresses [0,4MB], to enable the entry code
that resides in the low virtual address space to run. Once a pointer to this page table is stored in
CR3, MMU is turned on. From this point onwards, virtual addresses in the range [KERNBASE,
KERNBASE+4MB] are correctly translated by MMU. Now, the entry code creates a stack, and
jumps to the main function in the kernel’s C code (line 1217). This function and the rest of the
kernel is linked to run at high virtual addresses, so from this point on, the CPU fetches kernel
instructions and data at high virtual addresses. All this C code in high virtual address space
can run because of the second entry in entrypgdir. So why was the first page table entry
required? To enable the few instructions between turning on MMU and jumping to high address
space to run correctly. If the entry page table only mapped high virtual addresses, the code that
jumps to high virtual addresses of main would itself not run (because it is still in low virtual
address space).

• Remember that once the MMU is turned on, all memory accesses must go through the MMU.
So, for any memory to be usable, the kernel must assign a virtual address for that memory and
a page table entry to translate that virtual address to a physical address must be present in the
page table/MMU. That is, for any physical memory address N to be usable by the kernel, there
must exist a page table entry that translates virtual address KERNBASE+N to physical address
N . When main starts, it is still using entrypgdir which only has page table mappings for
the first 4MB of kernel addresses, so only this 4MB is usable. If the kernel wants to use more
than this 4MB, it needs a larger page table to hold more entries. So, the main function of the
kernel first creates some free pages in this 4MB in the function kinit1 (line 3030), and uses
these freepages to allocate a bigger page table for itself. This function kinit1 in turn calls
the functions freerange (line 3051) and kfree (line 3065). Both these functions together
populate a list of free pages for the kernel to start using for various things, including allocating
a bigger, nicer page table for itself that addresses the full memory.

• The kernel uses the struct run (line 3014) data structure to track a free page. This structure
simply stores a pointer to the next free page, and is stored within the page itself. That is, the
list of free pages are maintained as a linked list, with the pointer to the next page being stored
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within the page itself. The kernel keeps a pointer to the first page of this free list in the structure
struct kmem (lines 3018-3022). Pages are added to this list upon initialization, or on freeing
them up. Note that the kernel code that allocates and frees pages always returns the virtual
address of the page in the kernel address space, and not the actual physical address. The V2P
macro is used when one needs the physical address of the page, say to put into the page table
entry.

• After creating a small list of free pages in the 4MB space, the kernel main function (sheet 12)
proceeds to build a bigger page table to map all its address space in the function kvmalloc
(line 1857). This function in turn calls setupkvm (line 1837) to setup the kernel page table,
and switches to it (by writing the address of the page table into the CR3 register). The address
space mappings that are setup by setupkvm can be found in the structure kmap (lines 1823-
1833). kmap contains the mappings from virtual to physical address for various virtual address
ranges: the small space at the start of memory for I/O devices, followed by kernel code+read-
only data (kernel binary), followed by other kernel data, all the way from KERNBASE to
KERNBASE+PHYSTOP. Note that the kernel code/data and other free physical memory is
already lying around at the specified physical addresses in RAM, but the kernel cannot access
it because all of that physical memory has not been mapped into any page tables yet and there
are no page table entries that translate to these physical addresses at the MMU.

• The function setupkvm works as follows. It first allocates an outer page directory. Then,
for each of the virtual to physical address mappings in kmap, it calls mappages. The func-
tion mappages (line 1779) is given a virtual address range and a physical address range it
should map this to. It then walks over the virtual address range in 4KB page-sized chunks, and
for each such logical page, it locates the PTE corresponding to this virtual address using the
walkpgdir function (line 1754). walkpgdir simply emulates the page table walking that
the MMU would do. It uses the first 10 bits to index into the page table directory to find the
inner page table. If the inner page table does not exist, it requests the kernel for a free page,
and initializes the inner page table. Note that the kernel has a small pool of free pages setup
by kinit1 in the first 4MB address space—these free pages are returned here and used to
construct the kernel’s page table. Once the inner page table is located (either existing already
or newly allocated), walkpgdir uses the next 10 bits to index into it and return the PTE. Once
walkpgdir returns the PTE, mappages writes the appropriate mapping in the PTE using the
physical address range given to it. (Sheet 08 has the various macros that are useful in getting
the index into page tables from the virtual address.)

• Note that walkpgdir simply returns the page table entry corresponding to a virtual address
in a page table. That is, it uses the first 10 bits of a virtual address as an index in the page
directory to find the inner page table, then uses the next 10 bits as an index in this inner page
table to find the actual PTE. What if the inner page table corresponding to the address does
not exist? The last argument to the function specifies if a page table should be allocated if one
doesn’t exist. That is, this function walkpgdir serves two purposes. It can simple be used
to look up a virtual address in an existing page table and return whatever PTE exists. It can
also be used to construct the page table entry if one doesn’t exist. In this case, since we are
initializing the page table, we use walkpgdir to allocate inner page tables. When it allocates
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an inner page table, the PTE returned by walkpgdir doesn’t hold any valid information as such.
The function mappages takes this empty PTE returned by walkpgdir and writes the correct
physical address into it.

• After the kernel page table kpgdir is setup this way (line 1859), the kernel switches to this
page table by storing its address in the CR3 register in switchkvm (line 1866). From this
point onwards, the kernel can freely address and use its entire address space from KERNBASE
to KERNBASE+PHYSTOP.

• Let’s return back to main in line 1220. The kernel now proceeds to do various initializations.
It also gathers many more free pages into its free page list using kinit2, given that it can
now address and access a larger piece of memory. At this point, the entire physical memory at
the disposal of the kernel. All usable physical memory [0, PHYSTOP] is mapped by kpgdir
into the virtual address space [KERNBASE, KERNBASE+PHYSTOP], so all memory can be
addressed by virtual addresses and translated by MMU. This memory consists of the kernel
code/data that is currently executing on the CPU, and a whole lot of free pages in the kernel’s
free page list. Now, the kernel is all set to start user processes, starting with the init process
(line 1239).
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3. Memory management of user processes
• The function userinit (line 2502) creates the first user process. We will examine the memory

management in this function. The kernel page table of this process is created using setupkvm
as always. For the user part of the memory, the function inituvm (line 1903) allocates one
physical page of memory, copies the init executable into that memory, and sets up a page table
entry for the first page of the user virtual address space. When the init process runs, it executes
the init executable (sheet 83), whose main function forks a shell and starts listening to the user.
Thus, in the case of init, setting up the user part of the memory was straightforward, as the
executable fit into one page.

• All other user processes are created by the fork system call. In fork (line 2554), once a child
process is allocated, its memory image is setup as a complete copy of the parent’s memory
image by a call to copyuvm (line 2053). This function first sets up the kernel part of the page
table. Then it walks through the entire address space of the parent in page-sized chunks, gets
the physical address of every page of the parent using a call to walkpgdir, allocates a new
physical page for the child using kalloc, copies the contents of the parent’s page into the
child’s page, adds an entry to the child’s page table using mappages, and returns the child’s
page table. At this point, the entire memory of the parent has been cloned for the child, and the
child’s new page table points to its newly allocated physical memory.

• Next, look at the implementation of the sbrk system call (line 3701). This system call can
be invoked by a process to grow/shrink the userspace part of the memory image. For example,
the heap implementation of malloc can use this system call to grow/shrink the heap when
needed. This system call invokes the function growproc (line 2531), which uses the func-
tions allocuvm or deallocuvm to grow or skrink the virtual memory image. The function
allocuvm (line 1953) walks the virtual address space between the old size and new size in
page-sized chunks. For each new logical page to be created, it allocates a new free page from
the kernel, and adds a mapping from the virtual address to the physical address by calling
mappages. The function deallocuvm (line 1982) looks at all the logical pages from the
(bigger) old size of the process to the (smaller) new size, locates the corresponding physical
pages, frees them up, and zeroes out the corresponding PTE as well.

• Next, let’s understand the exec system call. If the child wants to execute a different executable
from the parent, it calls exec right after fork. For example, the init process forks a child and
execs the shell in the child. The exec system call copies the binary of an executable from the
disk to memory and sets up the user part of the address space and its page tables. In fact, after
the initial kernel is loaded into memory from disk and the init process is setup, all subsequent
executables are read from disk into memory via the exec system call alone.

• Exec (line 6310) first reads the ELF header of the executable from the disk and checks that it
is well formed. (There is a lot of disk I/O related code here that you can ignore for now.) It
then initializes a page table, and sets up the kernel mappings in the new page table via a call to
setupkvm (line 6334). Then, it proceeds to build the user part of the memory image via calls
to allocuvm (line 6346) and loaduvm (line 6348) for each part of the binary executable (an
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ELF binary is composed of many segments). We have already seen that allocuvm (line 1953)
allocates physical pages from the kernel’s free pool via calls to kalloc, and sets up page table
entries, thereby expanding the virtual/physical address space of the process. loaduvm (line
1918) reads the memory executable from disk into the newly allotted memory page using the
disk I/O related readi function. After the end of the loop of calling these two functions for
each segment, the complete program executable has been loaded from disk into memory, and
page table entries have been setup to point to it. However, exec is still using the old page table,
and hasn’t switched to this new page table yet. We have only constructed a new memory image
and a page table pointing to it so far, but the process that called exec is still executing on the old
memory image.

• The new memory image so far has only the code/data present in the executable. Next, exec
goes on to build the rest of its new memory image. For example, it allocates two pages for the
userspace stack of the process. The second page is the actual stack and the first page serves as
a guard page. The guard page’s page table entry is modified to make it as inaccessible by user
processes, so any access beyond the stack into the guard page will cause a page fault. (Recall
that the stack grows upwards towards lower memory addresses, so it will overflow into the page
before it.) After the stack in the memory image is where the heap should be located. However,
xv6 doesn’t allocate any heap memory upfront. The user library code that handles malloc
will call sbrk to grow the memory image, and use this new space as the heap, as and when
memory is requested by user programs. The program size includes all the memory from address
zero until the end of the stack now, and the size will increase to include any memory allocated
by sbrk when the currently empty heap expands. The new memory image constructed by exec
is shown below.

• After allocating the user stack, the arguments to exec are pushed onto the user stack (lines
6363-6380). The arguments passed to the exec system call are already made available as ar-
guments to the exec function on sheet 63. We must now copy these arguments onto the newly
created userspace stack of the process. Why? Because when the main function of the new
executable starts, it expects to find arguments argc and argv on the user stack.
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• If you are curious, below is an explanation of this process of preparing the user stack (lines
6363-6380) in more detail. Recall the structure of the stack when any C function is called: the
top of the stack has the return address, followed by the arguments passed to the function below
it. We must now prepare this new userspace in this manner for the main function as well. The
top of the user stack has a fake return address (line 6374) because main doesn’t really return
anywhere. Next, the stack has the number of arguments (argc), followed by a pointer to the argv
array. Next on the stack are the actual contents of the argv array (which is of size argc). The
element i of the array argv contains a pointer to the i-th argument (which can be any random
string). Finally, after the array of pointers to arguments, the actual arguments themselves are
also present on the stack. We will now see how this structure is constructed. We start at the
bottom of the stack, and start pushing the actual arguments on the stack (lines 6363-6371). In
the process, we also remember where the argument was pushed, i.e., we store the pointers to
the arguments in the array ustack. Finally, we will write out the other things that go above
the arguments on the stack: the return PC, argc, pointer to argv, as well as the contents of argv
(stored pointers to the arguments). Note that all of these things have to be written into the
user stack of the new memory image, not on the current memory image where the process is
running. (How does a process access another memory image that is not its own? Note the use
of the function copyout which simply copies specific content at the specified virtual address
of the new memory image defined by the new page table.) This user stack structure is illustrated
below.

• It is important to note that exec does not replace/reallocate the kernel stack. The exec system
call only replaces the user part of the memory image, and does nothing to the kernel part. And if
you think about it, there is no way the process can replace the kernel stack, because the process
is executing in kernel mode on the kernel stack itself, and has important information like the
trap frame stored on it. However, it does make small changes to the trap frame on the kernel
stack, as described below.

• Recall that a process that makes the exec system call has moved into kernel mode to service
the software interrupt of the system call. Normally, when the process moves back to user mode
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again (by popping the trap frame on the kernel stack), it is expected to return to the instruction
after the system call. However, in the case of exec, the process doesn’t have to return to the
instruction after exec when it gets the CPU next, but instead must start executing the new
executable it just loaded from disk. So, the code in exec changes the return address in the trap
frame to point to the entry address of the binary (line 6392). It also sets the stack pointer in the
trap frame to point to the top of the newly created user stack. Finally, once all these operations
succeed, exec switches page tables to start using the new memory image (line 6394). That is,
it writes the address of the new page table into the CR3 register, so that it can start accessing the
new memory image when it goes back to userspace. Finally, it frees up all the memory pointed
at by the old page table, e.g., pages containing the old userspace code, data, stack, heap and so
on. At this point, the process that called exec can start executing on the new memory image
when it returns from trap. Note that exec waits until the end to do this switch of page tables,
because if anything went wrong in the system call, exec returns from trap into the old memory
image and prints out an error.
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