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Synchronization in xv6

1. Locks and (equivalents of) condition variables

e Locks (i.e., spinlocks) in xv6 are implemented using the xchg atomic instruction. The function
to acquire a lock (line 1574) disables all interrupts, and the function that releases the lock (line
1602) re-enables them.

e xv6 provides sleep (line 2803) and wakeup (line 2864) functions, that are equivalent to
the wait and signal functions of a condition variable. The sleep and wakeup functions must
be invoked with a spinlock that ensures that the sleep and wakeup procedures are completed
atomically. A process that wishes to block on a condition calls sleep (chan, lock),
where chan is any opaque handle, and 1ock is any lock being used by the code that calls
sleep/wakeup. The sleep function acquires a specific lock that protects the scheduler’s process
list (ptable. lock) and releases the lock provided to it, so that it can make changes to the
state of the process and invoke the scheduler (line 2825). Note that the function checks that
the lock provided to it is not this ptable.lock to avoid locking it twice. All calls to the
scheduler should be made with this ptable.lock held, so that the scheduler’s updating of
the process list can happen without race conditions.

e Once the sleep function calls the scheduler (line 2825), it is context switched out. The control
returns back to this line (of calling the scheduler) once the process has been woken up and con-
text switched in by the scheduler again, with the ptable. lock held. At that time, the sleep
function releases this special lock, reacquires the original lock, and returns back in the woken
up process. Note that the sleep function holds at least one of the two locks—the lock given to
it by the caller, or the ptable.lock—at any point of time, so that no other process can run
wakeup in the duration between this process deciding to sleep and actually sleeping, because
a process will need to lock one or both of these locks while calling wakeup. (Understand why
lines 2818 and 2819 can’t be flipped.)

e A process that makes the condition true will invoke wakeup (chan) while it holds the lock.
The wakeup call makes all waiting processes runnable, so it is indeed equivalent to the signal
broadcast function of pthreads API. Note that a call to wakeup does not actually context
switch to the woken up processes. Once wakeup makes the processes runnable, these processes
can actually run when the scheduler is invoked at a later time.

e xv6 does not export the sleep and wakeup functionality to userspace processes, but makes use of
it internally at several places within its code. For example, the implementation of pipes (sheet
65) clearly maps to the producer-consumer problem with bounded buffer, and the implementa-
tion uses locks and condition variables to synchronize between the pipe writer and pipe reader
processes.



2. Context switching and the process table lock

Let us revisit the CPU scheduler code on sheet 27, with the knowledge of locking in xv6.
Review the scheduler, sched, and swtch functions. Focus on the acquisition and release
of the lock that protects the process table data structure.

Recall that a process that wishes to relinquish the CPU calls the function sched. This function
triggers a context switch, and when the process is switched back in at a later time, it resumes
execution again in sched itself. Thus a call to sched freezes the execution of a process
temporarily. When does a process relinquish its CPU in this fashion? (i) When a timer interrupt
occurs and it is deemed that the process has run for too long, the trap function calls yield,
which in turn calls sched (line 2776). (ii) When a process terminates itself using exit, it
calls sched one last time to give up the CPU (line 2641). (iii) When a process has to block for
an event and sleep, it calls sched to give up the CPU (line 2825). The function sched simply
checks various conditions, and calls swt ch to switch to the scheduler thread.

Any function that calls sched must do so with the ptable.lock held. This lock is held all
during the context switch. During a context switch from P1 to P2, P1 locks ptable.lock,
calls sched, which switches to the scheduler thread, which again switches to process P2.
When process P2 returns from sched, it releases the lock. For example, you can see the lock
and release calls before and after the call to sched in yield and sleep. There is no call to
release the lock in exit because a terminated process is not expected to run again.

Note that the function forkret (line 2783) releases the lock for a process that is executed for
the first time, since a new process does not return in sched. The new process subsequently
goes to trapret, and returns from trap like the parent. The context structure on the kernel
stack of the new process is built this way by allocproc. The primary reason for a new
process to go to forkret before returning from trap is to release this lock.

Typically, a process that locks also does the corresponding unlock, except during a context
switch when a lock is acquired by one process and released by the other.

Note that all interrupts are disabled when any lock is held in xv6, so all interrupts are dis-
abled during a context switch. If the scheduler finds no process to run, it periodically releases
ptable. lock, re-enables interrupts, and checks for a runnable process again.

With a knowledge of how scheduling works, it may be worth revisiting the sleep and wakeup
functions (sheet 28), especially noting the subtleties around locks. The s1leep function (line
2803) must eventually call sched to give up the CPU, so it must acquire ptable.lock.
The function first checks that the lock held already is not ptable. lock to avoid deadlocks,
and releases the lock given to it after acquiring ptable.lock. Is it OK to release the lock
given to sleep before actually calling sched and going to sleep? Yes it is, because wakeup also
requires ptable. lock, so there is no way a wakeup call can run while ptable.lock is
held. Is it OK to release the lock given to sleep before acquiring ptable.lock? No, itis not,
as wakeup may be invoked in the interim when no lock is held.



e The wait and exit system calls (sheet 26) are another example of the usage of sleep and
wakeup functionality within the kernel. When a parent calls wait, the wait function (line
2653) acquires ptable. lock, and looks over all processes to find any of its zombie children.
If none is found, it calls sleep to block until a child dies. Note that the lock provided to sleep
in this case is also ptable. lock, so sleep must not attempt to re-lock it again. When a child
calls exit (line 2604), it acquires ptable. lock, and wakes up its parent. Note that the exit
function does not actually free up the memory of the process. Instead, the process simply marks
itself as a zombie, and relinquishes the CPU by calling sched. When the parent wakes up in
wait, it does the job of cleaning up its zombie child, and frees up the memory of the process.
The wait and exit system calls provide a good use case of the sleep and wakeup functions.



