Lectures on Operating Systems (Mythili Vutukuru, II'T Bombay)
Practice Problems: Concurrency

. Answer yes/no, and provide a brief explanation.

(a) Is it necessary for threads in a process to have separate stacks?

(b) Isit necessary for threads in a process to have separate copies of the program executable?
Ans:

(a) Yes, so that they can have separate execution state, and run independently.

(b) No, threads share the program executable and data.

. Can one have concurrent execution of threads/processes without having parallelism? If yes, de-
scribe how. If not, explain why not.

Ans:

Yes, by time-sharing the CPU between threads on a single core.

. Consider a multithreaded webserver running on a machine with /N parallel CPU cores. The server
has M worker threads. Every incoming request is put in a request queue, and served by one of
the free worker threads. The server is fully saturated and has a certain throughput at saturation.
Under which circumstances will increasing M lead to an increase in the saturation throughput of
the server?

Ans: When M < N and the workload to the server is CPU-bound.

. Consider a process that uses a user level threading library to spawn 10 user level threads. The
library maps these 10 threads on to 2 kernel threads. The process is executing on a 8-core system.
What is the maximum number of threads of a process that can be executing in parallel?

Ans: 2

. Consider a user level threading library that multiplexes N > 1 user level threads over M > 1
kernel threads. The library manages the concurrent scheduling of the multiple user threads that
map to the same kernel thread internally, and the programmer using the library has no visibility
or control on this scheduling or on the mapping between user threads and kernel threads. The N

user level threads all access and update a shared data structure. When (or, under what conditions)
should the user level threads use mutexes to guarantee the consistency of the shared data structure?

(a) Onlyif M > 1.
(b) Onlyif N > M.
(c) Only if the M kernel threads can run in parallel on a multi-core machine.

(d) User level threads should always use mutexes to protect shared data.

Ans: (d) (because user level threads can execute concurrently even on a single core)

6.

10.

11.

12.

13.

14.

Which of the following statements is/are true regarding user-level threads and kernel threads?

(a) Every user level thread always maps to a separate schedulable entity at the kernel.

(b) Multiple user level threads can be multiplexed on the same kernel thread

(c) Pthreads library is used to create kernel threads that are scheduled independently.

(d) Pthreads library only creates user threads that cannot be scheduled independently at the ker-

nel scheduler.

Ans: (b), (¢)

. Consider a Linux application with two threads T1 and T2 that both share and access a common

variable z. Thread T1 uses a pt hread mutex lock to protect its access to x. Now, if thread T2
tries to write to « without locking, then the Linux kernel generates a trap. [T/F]

Ans: F

. In a single processor system, the kernel can simply disable interrupts to safely access kernel data

structures, and does not need to use any spin locks. [T/F]

Ans: T

. In the pthread condition variable API, a process calling wait on the condition variable must do

so with a mutex held. State one problem that would occur if the API were to allow calls to wait
without requiring a mutex to be held.

Ans: Wakeup happening between checking for condition and sleeping causing missed wakeup.
Consider N threads in a process that share a global variable in the program. If one thread makes a
change to the variable, is this change visible to other threads? (Yes/No)

Ans: Yes

Consider N threads in a process. If one thread passes certain arguments to a function in the
program, are these arguments visible to the other threads? (Yes/No)

Ans: No

Consider a user program thread that has locked a pthread mutex lock (that blocks when waiting

for lock to be released) in user space. In modern operating systems, can this thread be context
switched out or interrupted while holding the lock? (Yes/No)

Ans: Yes

Repeat the previous question when the thread holds a pthread spinlock in user space.
Ans: Yes

Consider a process that has switched to kernel mode and has acquired a spinlock to modify a
kernel data structure. In modern operating systems, will this process be interrupted by external
hardware before it releases the spinlock? (Yes/No)

Ans: No

15.

16.

17.

18.

19.

20.

Consider a process that has switched to kernel mode and has acquired a spinlock to modify a
kernel data structure. In modern operating systems, will this process initiate a disk read before it
releases the spinlock? (Yes/No)

Ans: No

When a user space process executes the wakeup/signal system call on a pthread condition variable,
does it always lead to an immediate context switch of the process that calls signal (immediately
after the signal instruction)? (Yes/No)

Ans: No

Consider a process in kernel mode that acquires a spinlock. For correct operation, it must dis-
able interrupts on its CPU core for the duration that the spinlock is held, in both single core and
multicore systems. [T/F]

Ans. T

Consider a process in kernel mode that acquires a spinlock in a multicore system. For correct
operation, we must ensure that no other kernel-mode process running in parallel on another core
will request the same spinlock. [T/F]

Ans. F

Multiple threads of a program must use locks when accessing shared variables even when execut-
ing on a single core system. [T/F]

Ans: T

Describe the output of the following multi-threaded program. You must list all possible outputs to
get credit. A program spawns three threads, where the argument to the thread is the loop counter
itself. The relevant code snippet is shown below. What possible outputs can get printed?

void* print_thread_message (voidx arg) {
int thread_num = x (intx)arg;
printf ("%d ", thread_num);
}
int main () {
pthread_t threads[N];
for (int i = 0; 1 < 3; 1i++)
pthread_create (&threads[i], NULL, print_thread_message, &i);

Ans: Since we are passing the address of the loop counter, the loop counter can change before the
thread start function accesses it. So any possible values in 0, 1, 2, 3 may be printed by the three
threads. However, the values printed by the different threads will be monotonically increasing,
eg.,012,112,122,222,since when a later thread runs, it will not see the lower loop counter
seen by the previous thread. Further, these print statements can be interleaved as well, so we will
see a jumbling of the above combinations printed.

21.

22.

23.

Recall that the atomic instruction compare-and-swap (CAS) works as follows:

CAS (&var, oldval, newval) writes newval into var and returns true if the old value of
var is oldval. If the old value of var is not oldval, CAS returns false and does not change
the value of the variable. Write code for the function to acquire a simple spinlock using the CAS
instruction.

Ans: while(!CAS(&lock, 0, 1));

The simple spinlock implementation studied in class does not guarantee any kind of fairness or
FIFO order amongst the threads contending for the spin lock. A ticket lock is a spinlock imple-
mentation that guarantees a FIFO order of lock acquisition amongst the threads contending for the
lock. Shown below is the code for the function to acquire a ticket lock. In this function, the vari-
ables next_ticket and now_serving are both global variables, shared across all threads, and
initialized to 0. The variable my_t icket is a variable that is local to a particular thread, and is
not shared across threads. The atomic instruction fetch_and_increment (&var) atomically
adds 1 to the value of the variable and returns the old value of the variable.

acquire () :
my_ticket = fetch_and_increment (&next_ticket)
while (now_serving != my_ticket); //busy wait

You are now required to write the code to release the spinlock, to be executed by the thread holding
the lock. Your implementation of the release function must guarantee that the next contending
thread (in FIFO order) will be able to acquire the lock correctly. You must not declare or use any
other variables.

release(): //your code here
Ans:
release(): //your code here

now_serving++;

Consider a multithreaded program, where threads need to aquire and hold multiple locks at a time.
To avoid deadlocks, all threads are mandated to use the function acquire_locks, instead of
acquiring locks independently. This function takes as arguments a variable sized array of pointers
to locks (i.e., addresses of the lock structure), and the number of lock pointers in the array, as
shown in the function prototype below. The function returns once all locks have been successfully
acquired.

void acquire_locks (struct lock =xlal], int n);
//i-th lock in array can be locked by calling lock(la[il])

Describe (in English, or in pseudocode) one way in which you would implement this function,

while ensuring that no deadlocks happen during lock acquisition. Your solution must not use any
other locks beyond those provided as input. Note that multiple threads can invoke this function

4

24,

concurrently, possibly with an overlapping set of locks, and the lock pointers can be stored in the
array in any arbitrary order. You may assume that the locks in the array are unique, and there are
no duplicates within the input array of locks.

Ans. Sort locks by address struct lock *, and acquire in sorted order.

Consider the atomic hardware instruction swap that is used to implement locks in computer sys-
tems. The instruction swap (var x, value v) atomically replaces contents of variable x
with value v, and returns the previous value of x.

(a) Consider a basic spinlock, represented by a variable 1ocked, that is set to 1 when the lock
is held, and O otherwise. Write the line of code that is used to acquire such a spinlock by a
thread, using the swap instruction in a busy-spin while loop.

Ans: while(swap(locked, 1) == 1);

(b) Now suppose we wish to implement a different kind of lock, which we will call the “Q”
spinlock. The Q spinlock maintains a linked list of contending threads. To acquire a lock,
a thread creates a gnode variable, consisting of a flag waiting, and a pointer to the next
gnode in the list. The thread then adds its gnode to the tail of the lock’s list, to indicate that it
is contending for the lock. Nodes added to the lock’s list have their wait ing flag set to true
initially. A contending thread continues to spin as long as this flag is true. When a thread
holding the lock wishes to release the lock, it sets the wait ing flag of the next qnode after
it to false, thereby ending the next node’s busy spinning, and handing it the lock.

Shown below is the pseudocode for acquiring the Q spinlock. The arguments to this function
are the gnode being added to the list, and the corresponding 1ock that is being acquired.
The gnode has a gnode.waiting flag and a gnode.next pointer to next node. The
lock has a 1ock.tail variable which points to the current tail of the lock’s list. To acquire
a lock, a qnode is added to the tail of the list in two steps: using the swap instruction to
move the tail pointer to the new gnode, and setting the next pointer of the previous tail node
to point to the new qnode. The thread then busily spins for the wait ing flag of this qnode
to become false. Fill in the four blanks below to correctly implement the functionality of the
lock acquire function described above. Write your answer in the space provided below. Note
that a simplified code for releasing the lock is provided for your reference.

acquire (lock, gnode) :
gqnode.next = NULL;
prev_tail = swap (,); //fill both blanks
if(prev_tail != NULL) {
//1list is not empty, someone else has lock
gnode.waiting = true;
prev_tail.next = ; //fill blank
while (); //fill blank for busy wait
}
release (lock, gnode) :
if (gnode.next != NULL) gnode.next.waiting = false;

Ans: swap (lock.tail, gnode)
prev_tail.next = gnode

while (gnode.waiting);

25. Consider a process where multiple threads share a common Last-In-First-Out data structure. The
data structure is a linked list of “’struct node” elements, and a pointer ’top” to the top element
of the list is shared among all threads. To push an element onto the list, a thread dynamically
allocates memory for the struct node on the heap, and pushes a pointer to this struct node in to the
data structure as follows.

void push (struct node =n) {
n—->next = top;

top = n;

}

A thread that wishes to pop an element from the data structure runs the following code.

struct node *pop(void) {

struct node *xresult = top;

if (result != NULL) top = result->next;
return result;

}

A programmer who wrote this code did not add any kind of locking when multiple threads concur-
rently access this data structure. As a result, when multiple threads try to push elements onto this
structure concurrently, race conditions can occur and the results are not always what one would
expect. Suppose two threads T1 and T2 try to push two nodes nl and n2 respectively onto the
data structure at the same time. If all went well, we would expect the top two elements of the data
structure would be nl and n2 in some order. However, this correct result is not guaranteed when a
race condition occurs.

Describe how a race condition can occur when two threads simultaneously push two elements
onto this data structure. Describe the exact interleaving of executions of T1 and T2 that causes the
race condition, and illustrate with figures how the data structure would look like at various phases
during the interleaved execution.

Ans: One possible race condition is as follows. nl’s next is set to top, then n2’s next is set to top.
So both n1 and n2 are pointing to the old top. Then top is set to nl by T1, and then top is set to n2
by T2. So, finally, top points to n2, and n2’s next points to old top. But now, nl is not accessible
by traversing the list from top, and nl remains on a side branch of the list.

26. Consider the following scenario. A town has a very popular restaurant. The restaurant can hold N
diners. The number of people in the town who wish to eat at the restaurant, and are waiting outside
its doors, is much larger than N. The restaurant runs its service in the following manner. Whenever
it is ready for service, it opens its front door and waits for diners to come in. Once N diners enter,
it closes its front door and proceeds to serve these diners. Once service finishes, the backdoor
is opened and the diners are let out through the backdoor. Once all diners have exited, another
batch of N diners is admitted again through the front door. This process continues indefinitey. The
restaurant does not mind if the same diner is part of multiple batches.

We model the diners and the restaurant as threads in a multithreaded program. The threads must
be synchronized as follows. A diner cannot enter until the restaurant has opened its front door to
let people in. The restaurant cannot start service until N diners have come in. The diners cannot
exit until the back door is open. The restaurant cannot close the backdoor and prepare for the next
batch until all the diners of the previous batch have left.

Below is given unsynchronized pseudocode for the diner and restaurant threads. Your task is
to complete the code such that the threads work as desired. Please write down the complete
synchronized code of each thread in your solution.

You are given the following variables (semaphores and initial values, integers) to use in your
solution. The names of the variables must give you a clue about their possible usage. You must
not use any other variable in your solution.

sem (init to 0): entering diners, exiting_diners, enter_done, exit_done
sem (init to 1): mutex_enter, mutex_exit
Integer counters (init to 0): count_enter, count_exit

All changes to the counters and other variables must be done by you in your solution. None of the
actions performed by the unsynchronized code below will modify any of the variables above.

(a) Unsynchronized code for the restaurant thread is given below. Add suitable synchronization
in your solution in between these actions of the restaurant.

openFrontDoor ()
closeFrontDoor ()
serveFood ()
openBackDoor ()
closeBackDoor ()

(b) Unsynchronized code for the diner thread is given below. Add suitable synchronization in
your solution around these actions of the diner.

enterRestaurant ()
eat ()
exitRestaurant ()

Ans: Correct code for restautant thread:

openFrontDoor ()
do N times: up(entering diners)
down (enter_done)

closeFrontDoor ()
serveFood ()

openBackDoor ()
do N times: up(exiting_diners)
down (exit_done)
closeBackDoor ()

Correct code for the diner thread:

down (entering_diners)
enterRestaurant ()

down (mutex_enter)
count_enter++
if (count_enter == N) {
up (enter_done)
count_enter = 0
}

up (mutex_enter)

eat ()

down (exiting_diners)
exitRestaurant ()

down (mutex_exit)
count_exit++
if (count_exit == N) {
up (exit_done)
count_exit = 0
}

up (mutex_exit)

An alternate to doing up N times in restaurant thread is: restaurant does up once, and every woken
up diner does up once until N diners are done. This alternate solution is shown below. Correct
code for restautant thread:

openFrontDoor ()
up (entering_diners)
down (enter_done)

closeFrontDoor ()
servelFood ()

openBackDoor ()
up (exiting_diners)
down (exit_done)
closeBackDoor ()

Correct code for the diner thread:

down (entering_diners)
enterRestaurant ()

down (mutex_enter)
count_enter++

if (count_enter < N)
up (entering_diners)
else if (count_enter == N) {
up (enter_done)
count_enter = 0
}

up (mutex_enter)
eat ()

down (exiting_diners)
exitRestaurant ()

down (mutex_exit)
count_exit++
if (count_exit < N)
up (exiting_diners)

else if (count_exit == N) {
up (exit_done)
count_exit = 0

}

up (mutex_exit)

27. Consider a scenario where a bus picks up waiting passengers from a bus stop periodically. The
bus has a capacity of K. The bus arrives at the bus stop, allows up to K waiting passengers (fewer
if less than K are waiting) to board, and then departs. Passengers have to wait for the bus to arrive
and then board it. Passengers who arrive at the bus stop after the bus has arrived should not be
allowed to board, and should wait for the next time the bus arrives. The bus and passengers are
represented by threads in a program. The passenger thread should call the function board() after
the passenger has boarded and the bus should invoke depart() when it has boarded the desired
number of passengers and is ready to depart.

The threads share the following variables, none of which are implicitly updated by functions like
board() or depart().

mutex = semaphore initialized to 1.

bus_arrived = semaphore initialized to O.
passenger_boarded = semaphore initialized to O.
waiting_count = integer initialized to O.

Below is given synchronized code for the passenger thread. You should not modify this in any
way.

down (mutex)
waiting_count++

up (mutex)

down (bus_arrived)
board()

up (passenger_boarded)

Write down the corresponding synchronized code for the bus thread that achieves the correct
behavior specified above. The bus should board the correct number of passengers, based on its
capacity and the number of those waiting. The bus should correctly board these passengers by
calling up/down on the semaphores suitably. The bus code should also update waiting_count as
required. Once boarding completes, the bus thread should call depart(). You can use any extra
local variables in the code of the bus thread, like integers, loop indices and so on. However, you
must not use any other extra synchronization primitives.

Ans:

down (mutex)
N = min(waiting_count, K)
for i= 1 to N
up (bus_arrived)
down (passenger_boarded)
waiting count = waiting_count - N
up (mutex)
depart ()

10

28. Consider the following synchronization puzzle with a bus and passengers, which can be thought
of as threads in a program. The bus arrives periodically to pick up waiting passengers at a bus
stop. The bus has the capacity to seat C passengers. When it arrives at the bus stop, it boards up
to C waiting passengers (fewer if less than C are waiting), and then departs. Passengers arriving at
the bus stop have to wait until the arrival of the bus, and then board. Passengers who arrive after
the bus has started boarding must wait for the next arrival of the bus to board. You must write code
to synchronize the bus and passenger threads using mutexes and condition variables.

You must use the following variables shared across all threads in the program: a lock mutex,
two condition variables cvP and cvB, two counters Pcount and Bcount, both initialized to O.
You can declare additional temporary variables if required. The code for the passenger thread is
given to you. You must complete the code for the bus thread. Your code must carefully update the
counters as well, and keep them consistent across multiple passengers and multiple arrivals of the
bus.

passenger_thread {

lock (m)

Pcount++

wailt (cvP, m)
board ()

Bcount++

signal (cvB)
unlock (m)

bus_thread {
// Write your code here

depart ()

11

Ans:

bus_thread {
lock (m)
N = min(C, Pcount)
do N times: signal (cvP)
Pcount —= N
Bcount = 0
while (Bcount < N) wait (cvB, m)
unlock (m)

depart ()

There are other minor variants of this solution that update the counters slightly differently.

An alternate solution is shown below, but it is not fully accurate. In the below code, the bus signals
each passenger one at a time, and waits to board him. When the lock is released during this wait,
other new passengers can join the queue which we do not want (because passengers that arrive
after the bus has started to board must not join the queue now). But otherwise, this solution is
partially correct as well.

bus_thread {

lock (m)

N = min(C, Pcount)

do N times: {
signal (cvP)
Pcount—--
wait (cvB, m)
Bcount++

}

unlock (m)

depart ()

12

29. Consider a roller coaster ride at an amusement park. The ride operator runs the ride only when
there are exactly N riders on it. Multiple riders arrive at the ride and queue up at the entrance of
the ride. The ride operator waits for N riders to accumulate, and may even take a nap as he waits.
Once N riders have arrived, the riders call out to the operator indicating they are ready to go on
the ride. The operator then opens the gate to the ride and signals exactly N riders to enter the ride.
He then waits until these N riders enter the ride, and then proceeds to start the ride.

We model the operator and riders as threads in a program. You must write pseudocode for the
operator and rider threads to enable the behavior described above. Shown below is the skeleton
code for the operator and rider threads. Complete the code to achieve the behavior described
above. You can assume that the functions to open, start, and enter ride are implemented elsewhere,
and these functions do what the names say they do. You must write the synchronization logic
around these functions in order to invoke these functions at the appropriate times. You must
use only locks and condition variables for synchronization in your solution. You may declare,
initialize, and use other variables (counters etc.) as required in your solution.

//operator code, fill in the missing details

open_ride ()

start_ride ()

//rider thread, fill in the missing details

enter_ride ()

13

Ans:

//variables:
//variables:
//condvar cv_rider,
//mutex

//operator
lock (mutex)
while (rider_count < N)

open_ride ()
do N times:
while (enter_count < N)

start_ride ()
unlock (mutex)

//rider

lock (mutex)
rider_count++
if (rider_count
wait (cv_rider,

== N)

mutex)
enter_ride ()
enter_count++

if (enter_count
unlock (mutex)

—= N)

int rider_count
int enter_ count
cv_operatorl,

(initialized to 0)
(initialized to 0)
cv_operator?2

wait (cv_operatorl, mutex)

signal (cv_rider)

walt (cv_operator2, mutex)

signal (cv_operatorl)
// all wait,

even N-th guy

signal (cv_operator?2)

14

30. A host of a party has invited N > 2 guests to his house. Due to fear of Covid-19 exposure,
the host does not wish to open the door of his house multiple times to let guests in. Instead, he
wishes that all IV guests, even though they may arrive at different times to his door, wait for each
other and enter the house all at once. The host and guests are represented by threads in a multi-
threaded program. Given below is the pseudocode for the host thread, where the host waits for all
guests to arrive, then calls openDoor(), and signals a condition variable once. You must write the
corresponding code for the guest threads. The guests must wait for all N of them to arrive and for
the host to open the door, and must call enterHouse() only after that. You must ensure that all N
waiting guests enter the house after the door is opened. You must use only locks and condition
variables for synchronization.

The following variables are used in this solution: lock m, condition variables cv_host and cv_guest,
and integer guest_count (initialized to 0). You must not use any other variables in the guest for
synchronization.

//host

lock (m)

while (guest_count < N)
wailt (cv_host, m)

openDoor ()

signal (cv_guest)

unlock (m)

Ans:

//guest

lock (m)

guest_count++

if (guest_count == N)
signal (cv_host)

wait (cv_guest, m)

signal (cv_guest)

unlock (m)

enterHouse ()

15

31. Consider the classic readers-writers synchronization problem described below. Several processes/threads
wish to read and write data shared between them. Some processes only want to read the shared
data (“readers”), while others want to update the shared data as well (‘“writers”). Multiple readers
may concurrently access the data safely, without any correctness issues. However, a writer must
not access the data concurrently with anyone else, either a reader or a writer. While it is possible
for each reader and writer to acquire a regular mutex and operate in perfect mutual exclusion, such
a solution will be missing out on the benefits of allowing multiple readers to read at the same time
without waiting for other readers to finish. Therefore, we wish to have special kind of locks called
reader-writer locks that can be acquired by processes/threads in such situations. These locks have
separate lock/unlock functions, depending on whether the thread asking for a lock is a reader or
writer. If one reader asks for a lock while another reader already has it, the second reader will also
be granted a read lock (unlike in the case of a regular mutex), thus encouraging more concurrency
in the application.

Write down pseudocode to implement the functions readLock, readUnlock, writeLock, and write-
Unlock that are invoked by the readers and writers to realize reader-writer locks. You must use
condition variables and mutexes only in your solution.

Ans: A boolean variable writer_present, and two condition variables, reader_can_enter
and writer_can_enter, are used.

readLock:

lock (mutex)

while (writer_present)
wait (reader_can_enter)

read_count++

unlock (mutex)

readUnlock:
lock (mutex)
read_count--—
if (read_count==0)
signal (writer_can_enter)
unlock (mutex)

writeLock:

lock (mutex)

while (read_count > 0 || writer_present)
walt (writer_can_enter)

writer_present = true

unlock (mutex)

writeUnlock:

lock (mutex)

writer_present = false

signal (writer_can_enter)
signal_broadcast (reader_can_enter)
unlock (mutex)

16

32. Consider the readers and writers problem discussed above. Recall that multiple readers can be
allowed to read concurrently, while only one writer at a time can access the critical section. Write
down pseudocode to implement the functions readLock, readUnlock, writeLock, and writeUn-
lock that are invoked by the readers and writers to realize read/write locks. You must use only
semaphores, and no other synchronization mechanism, in your solution. Further, you must avoid
using more semaphores than is necessary. Clearly list all the variables (semaphores, and any other
flags/counters you may need) and their initial values at the start of your solution. Use the nota-
tion down (x) and up (x) to invoke atomic down and up operations on a semaphore x that are
available via the OS API. Use sensible names for your variables.

Ans:
sem lock = 1; sem writer_can_enter = 1; int readCount = 0;

readLock:
down (lock)
readCount++
if (readCount ==1)
down (writer_can_enter) //don’t coexist with a writer
up (lock)

readUnlock:
down (lock)
readCount—-
if (readCount == 0)
up (writer_can_enter)
up (lock)

writeLock:
down (writer_can_enter)

writeUnlock:
up (writer_can_enter)

17

33. Consider the readers and writers problem as discussed above. We wish to implement synchroniza-
tion between readers and writers, while giving preference to writers, where no waiting writer
should be kept waiting for longer than necessary. For example, suppose reader process R1 is ac-
tively reading. And a writer process W1 and reader process R2 arrive while R1 is reading. While
it might be fine to allow R2 in, this could prolong the waiting time of W1 beyond the absolute
minimum of waiting until R1 finishes. Therefore, if we want writer preference, R2 should not
be allowed before W1. Your goal is to write down pseudocode for read lock, read unlock, write
lock, and write unlock functions that the processes should call, in order to realize read/write locks
with writer preference. You must use only simple locks/mutexes and conditional variables in your
solution. Please pick sensible names for your variables so that your solution is readable.

Ans:

readLock:

lock (mutex)

while (writer_present || writers_waiting > 0)
wailt (reader_can_enter, mutex)

readcount++

unlock (mutex)

readUnlock:
lock (mutex)
readcount—-
if (readcount==0)
signal (writer_can_enter)
unlock (mutex)

writeLock:

lock (mutex)

writer_waiting++

while (readcount > 0 || writer_present)
wailt (writer_can_enter, mutex)

writer_waiting--

writer_present = true

unlock (mutex)

writeUnlock:
lock (mutex)
writer_present = false
if(writer_waiting==0)

signal_broadcast (reader_can_enter)
else

signal (writer_can_enter)
unlock (mutex)

18

34. Write a solution to the readers-writers problem with preference to writers discussed above, but
using only semaphores.

Ans:

sem rlock = 1; sem wlock = 1;

sem reader_can_try = 1; sem writer_can_enter = 1;
int readCount = 0; int writeCount = 0;

readLock:

down (reader_can_try) //new sem blocks reader if writer waiting
down (rlock)
readCount++
if (readCount ==1)
down (writer_can_enter) //don’t coexist with a writer
up (rlock)
up (reader_can_try)

readUnlock:
down (rlock)
readCount—-
if (readCount == 0)

up (writer_can_enter)
up (rlock)

writeLock:
down (wlock)
writerCount++
if (writerCount==1)
down (reader_can_try)
up (wlock)
down (writer_can_enter) //release wlock and then block

writeUnlock:

down (wlock)

writerCount—-

if (writerCount == 0)
up (reader_can_try)

up (wlock)

up (writer_can_enter)

19

35. Consider the famous dining philosophers’ problem. N philosophers are sitting around a table with
N forks between them. Each philosopher must pick up both forks on her left and right before she
can start eating. If each philosopher first picks the fork on her left (or right), then all will deadlock
while waiting for the other fork. The goal is to come up with an algorithm that lets all philosophers
eat, without deadlock or starvation. Write a solution to this problem using condition variables.

Ans: A variable state is associated with each philosopher, and can be one of EATING (holding
both forks) or THINKING (when not eating). Further, a condition variable is associated with each
philosopher to make them sleep and wake them up when needed. Each philosopher must call the
pickup function before eating, and put down function when done. Both these functions use a
mutex to change states only when both forks are available.

bothForksFree (i) :
return (state[leftNbr(i)] != EATING &&
state[rightNbr (i)] != EATING)

pickup (i) :
lock (mutex)
while (!bothForksFree (i))
wait (condvar([i])
state[1i] = EATING
unlock (mutex)

putdown (1) :

lock (mutex)

state[i] = THINKING

if (bothForksFree (leftNbr (i)))
signal (leftNbr (1))

if (bothForksFree (rightNbr (1i)))
signal (rightNbr (i))

unlock (mutex)

20

36. Consider a clinic with one doctor and a very large waiting room (of infinite capacity). Any patient
entering the clinic will wait in the waiting room until the doctor is free to see her. Similarly, the
the doctor also waits for a patient to arrive to treat. All communication between the patients and
the doctor happens via a shared memory buffer. Any of the several patient processes, or the doctor
process can write to it. Once the patient “enters the doctors office”, she conveys her symptoms
to the doctor using a call to consultDoctor (), which updates the shared memory with the
patient’s symptoms. The doctor then calls t reatPatient () to access the buffer and update it
with details of the treatment. Finally, the patient process must call noteTreatment () to see the
updated treatment details in the shared buffer, before leaving the doctor’s office. A template code
for the patient and doctor processes is shown below. Enhance this code to correctly synchronize
between the patient and the doctor processes. Your code should ensure that no race conditions
occur due to several patients overwriting the shared buffer concurrently. Similarly, you must
ensure that the doctor accesses the buffer only when there is valid new patient information in it,
and the patient sees the treatment only after the doctor has written it to the buffer. You must use
only semaphores to solve this problem. Clearly list the semaphore variables you use and their
initial values first. Please pick sensible names for your variables.

Ans:

(a) Semaphores variables:

pt_waiting = 0
treatment _done = 0
doc_avlbl = 1

(b) Patient process:

down (doc_avlbl)
consultDoctor ()

up (pt_waiting)

down (treatment__done)
noteTreatment ()

up (doc_avlbl)

(c) Doctor:

while (1) {

down (pt_waiting)
treatPatient ()

up (treatment_done)

}

21

37. Consider a multithreaded banking application. The main process receives requests to tranfer
money from one account to the other, and each request is handled by a separate worker thread
in the application. All threads access shared data of all user bank accounts. Bank accounts are
represented by a unique integer account number, a balance, and a lock of type mylock (much
like a pthreads mutex) as shown below.

struct account {
int accountnum;
int balance;
mylock lock;

bi

Each thread that receives a transfer request must implement the transfer function shown be-
low, which transfers money from one account to the other. Add correct locking (by calling the
dolock (&lock) and unlock (&lock) functions on a mylock variable) to the tranfer func-
tion below, so that no race conditions occur when several worker threads concurrently perform
transfers. Note that you must use the fine-grained per account lock provided as part of the account
object itself, and not a global lock of your own. Also make sure your solution is deadlock free,
when multiple threads access the same pair of accounts concurrently.

void transfer (struct account *from, struct account *to, int amount) {

from->balance -= amount; // dont write anything...
to->balance += amount; // ...between these two lines

Ans: The accounts must be locked in order of their account numbers. Otherwise, a transfer from
account X to Y and a parallel transfer from Y to X may acquire locks on X and Y in different
orders and end up in a deadlock.

struct account xlower = (from—>accountnum < to->accountnum)?from:to;
struct account xhigher = (from->accountnum < to->accountnum) ?to:from;
dolock (& (lower—->1ock));

dolock (& (higher->1lock));

from->balance —-= amount;
to->balance += amount;

unlock (& (lower—>1lock)) ;
unlock (& (higher->1lock));

22

38. Consider a process with three threads A, B, and C. The default thread of the process receives
multiple requests, and places them in a request queue that is accessible by all the three threads A,
B, and C. For each request, we require that the request must first be processed by thread A, then
B, then C, then B again, and finally by A before it can be removed and discarded from the queue.
Thread A must read the next request from the queue only after it is finished with all the above
steps of the previous one. Write down code for the functions run by the threads A, B, and C, to
enable this synchronization. You can only worry about the synchronization logic and ignore the
application specific processing done by the threads. You may use any synchronization primitive
of your choice to solve this question.

Ans: Solution using semaphores shown below. The order of processing is A1-B1-C-B2-A2. All
threads run in a forever loop, and wait as dictated by the semaphores.

sem aldone = 0; bldone = 0; cdone = 0; b2done = 0;

ThreadA:
get request from queue and process
up (aldone)
down (b2 done)
finish with request

ThreadB:
down (aldone)
//do work
up (bldone)
down (cdone)
//do work
up (b2done)

ThreadC:
down (bldone)
//do work
up (cdone)

23

39. Consider two threads A and B that perform two operations each. Let the operations of thread A
be Al and A2; let the operations of thread B be B1 and B2. We require that threads A and B
each perform their first operation before either can proceed to the second operation. That is, we
require that Al be run before B2 and B1 before A2. Consider the following solutions based on
semaphores for this problem (the code run by threads A and B is shown in two columns next to
each other). For each solution, explain whether the solution is correct or not. If it is incorrect, you

must also point out why the solution is incorrect.

(a) sem AlDone = 0; sem BlDone = 0;
//Thread A //Thread B
Al B1
down (BlDone) down (AlDone)
up (AlDone) up (BlDone)
A2 B2

(b) sem AlDone = 0; sem BlDone = 0;
//Thread A //Thread B
Al Bl
down (B1lDone) up (BlDone)
up (AlDone) down (AlDone)
A2 B2

(c) sem AlDone = 0; sem BlDone = 0;
//Thread A //Thread B
Al B1
up (AlDone) up (B1lDone)
down (BlDone) down (AlDone)
A2 B2

Ans:

(a) Deadlocks, so incorrect.
(b) Correct

(c) Correct

24

40. Now consider a generalization of the above problem for the case of NV threads that want to each
execute their first operation before any thread proceeds to the second operation. Below is the
code that each thread runs in order to achieve this synchronization. count is an integer shared
variable, and mutex is a mutex binary semaphore that protects this shared variable. steplDone
is a semaphore initialized to zero. You are told that this code is wrong and does not work correctly.
Further, you can fix it by changing it slightly (e.g., adding one statement, or rearranging the code
in some way). Suggest the change to be made to the code in the snippet below to fix it. You must
use only semaphores and no other synchronization mechanism.

//run first step

down (mutex) ;
count++;
up (mutex) ;
if (count == N)
up (steplDone) ;
down (steplDone) ;

//run second step
Ans: The problem is that the semaphore is decremented N times, but is only incremented once.

To fix it, we must do up N times when count is N. Or, add up after the last down, so that it is
performed N times by the N threads.

25

41. The cigarette smokers problem is a classical synchronization problem that involves 4 threads: one
agent and three smokers. The smokers require three ingredients to smoke a cigarette: tobacco,
paper, and matches. Each smoker has one of the three ingredients and waits for the other two,
smokes the cigar once he obtains all ingredients, and repeats this forever. The agent repeatedly
puts out two ingredients at a time and makes them available. In the correct solution of this prob-
lem, the smoker with the complementary ingredient should finish smoking his cigar. Consider the
following solution to the problem. The shared variables are three semaphores tobacco, paper
and matches initialized to 0, and semaphore doneSmoking initialized to 1. The agent code
performs down (doneSmoking), then picks two of the three ingredients at random and per-
forms up on the corresponding two semaphores, and repeats. The smoker with tobacco runs the
following code in a loop.

down (paper)

down (matches)

//make and smoke cigar
up (doneSmoking)

Similarly, the smoker with matches waits for tobacco and paper, and the smoker with paper waits
for tobacco and matches, before signaling the agent that they are done smoking. Does the code
above solve the synchronization problem correctly? If you answer yes, provide a justification for
why the code is correct. If you answer no, describe what the error is and also provide a correct
solution to the problem. (If you think the code is incorrect and are providing another solution, you
may change the code of both the agent and the smokers. You can also introduce new variables as
necessary. You must use only semaphores to solve the problem.)

Ans: The code is incorrect and deadlocks. One fix is to add semaphores for two ingredients at a
time (e.g., tobaccoAndPaper). The smokers wait on these and the agent signals these. So there is
no possibility of deadlock.

26

42. Consider a server program running in an online market place firm. The program receives buy and
sell orders for one type of commodity from external clients. For every buy or sell request received
by the server, the main process spawns a new buy or sell thread. We require that every buy thread
waits until a sell thread arrives, and vice versa. A matched pair of buy and sell threads will both
return a response to the clients and exit. You may assume that all buy/sell requests are identical
to each other, so that any buy thread can be matched with any sell thread. The code executed
by the buy thread is shown below (the code of the sell thread would be symmetric). You have
to write the synchronization logic that must be run at the start of the execution of the thread to
enable it to wait for a matching sell thread to arrive (if none exists already). Once the threads
are matched, you may assume that the function completeBuy () takes care of the application
logic for exchanging information with the matching thread, communicating with the client, and
finishing the transaction. You may use any synchronization technique of your choice.

//declare any variables here
buy_thread_function:

//start of sync logic

//end of sync logic
completeBuy () ;

Ans:

sem buyer = 0; sem seller = 0;
Buyer thread:

up (buyer)

down (seller)
completeBuy ()

27

43. Consider the following classical synchronization problem called the barbershop problem. A bar-
bershop consists of a room with N chairs. If a customer enters the barbershop and all chairs are
occupied, then the customer leaves the shop. If the barber is busy, but chairs are available, then the
customer sits in one of the free chairs and awaits his turn. The barber moves onto the next waiting
seated customer after he finishes one hair cut. If there are no customers to be served, the barber
goes to sleep. If the barber is asleep when a customer arrives, the customer wakes up the barber to
give him a hair cut. A waiting customer vacates his chair after his hair cut completes. Your goal
is to write the pseudocode for the customer and barber threads below with suitable synchroniza-
tion. You must use only semaphores to solve this problem. Use the standard notation of invoking
up/down functions on a semaphore variable.

The following variables (3 semaphores and a count) are provided to you for your solution. You
must use these variables and declare any additional variables if required.

semaphore mutex = 1, customers = 0, barber = 0;
int waiting_count = 0;

Some functions to invoke in your customer and barber threads are:
* A customer who finds the waiting room full should call the function leave () to exit the
shop permanently. This function does not return.

* A customer should invoke the function getHairCut () in order to get his hair cut. This
function returns when the hair cut completes.

* The barber thread should call cutHair () to give a hair cut. When the barber invokes this
function, there should be exactly one customer invoking getHairCut () concurrently.

28

Ans:

Customer:

down (mutex)
if (waiting_count == N)
up (mutex)
leave ()
waiting_count++
up (mutex)

up (customers)
down (barber)

getHairCut ()
down (mutex)
waiting_count--—
up (mutex)
Barber:

up (barber)

down (customers)
cutHair ()

29

44. Consider a multithreaded application server handling requests from clients. Every new request
that arrives at the server causes a new thread to be spawned to handle that request. The server
can provide service to only one request/thread at a time, and other threads that arrive when the
server is busy must wait for service using a synchronization primitive (semaphore or condition
variable). In order to avoid excessive waiting times, the server does not wish to have more than
N requests/threads in the system (including the waiting requests and any request it is currently
serving). You may assume that N > 2. Given this constraint, a newly arriving thread must
first check if IV other requests are already in the system: if yes, it must exit without waiting and
return an error value to the client, by calling the function thr_exit_failure (). This function
terminates the thread and does not return.

When a thread is ready for service, it must call the function get_service (). Your code
should ensure that no more than one thread calls this function at any point of time. This func-
tion blocks the thread for the duration of the service. Note that, while the thread receiving service
is blocked, other arriving threads must be free to join the queue, or exit if the system is over-
loaded. After a thread returns from get_service (), it must enable one of the waiting threads
to seek service (if any are waiting), and then terminate itself succesfully by calling the function
thr_exit_success (). This function terminates the thread and does not return.

You are required to write pseudocode of the function to be run by the request threads in this
system, as per the specification above. Your solution must use only locks and condition variables
for synchronization. Clearly state all the variables used and their initial values at the start of your
solution.

30

Ans

int num_requests=0;
bool server_busy = false
cv, mutex

lock (mutex)

if (num_requests == N)
unlock (mutex)
the _exit_failure ()

num_requests++

if (server_busy)
wait (cv, mutex)

server_busy = true
unlock (mutex)

get_service ()
lock (mutex)
num_requests—-—

server_busy = false

if (num_requests > 0)
signal (cv)

unlock (mutex)
thr_exit_success|()

31

45. Consider the previous problem, but now assume that NV is infinity. That is, all arriving threads will
wait (if needed) for their turn in the queue of a synchronization primitive, get served when their
turn comes, and exit successfully. Write the pseudocode of the function to be run by the threads
with this modified specification. Your solution must only use semaphores for synchronization, and
only the correct solution that uses the least number of semaphores will get full credit. Clearly state
all the variables used and their initial values at the start of your solution.

Ans

sem waiting =1
down (waiting)
get_service()

up (waiting)
thr exit success ()

32

46. Consider the following synchronization problem. A group of children are picking chocolates from
a box that can hold up to IV chocolates. A child that wants to eat a chocolate picks one from the
box to eat, unless the box is empty. If a child finds the box to be empty, she wakes up the mother,
and waits until the mother refills the box with N chocolates. Unsynchronized code snippets for
the child and mother threads are as shown below:

//Child

while True:
getChocolateFromBox ()
eat ()

//Mother
while True:
refillChocolateBox (N)

You must now modify the code of the mother and child threads by adding suitable synchronization
such that a child invokes getChocolateFromBox () only if the box is non-empty, and the
mother invokes refillChocolateBox (N) only if the box is fully empty. Solve this question
using only locks and condition variables, and no other synchronization primitive. The following
variables have been declared for use in your solution.

int count = 0;

mutex m; // you may invoke lock and unlock

condvar fullBox, emptyBox; //you may perform wait and signal
//or signal_broadcast

(a) Code for child thread
(b) Code for mother thread

33

Ans:

//Child
while True:
lock (m)
while (count == 0)
signal (emptyBox)
wait (fullBox, m)
getChocolateFromBox ()
eat ()
count—-—
signal (fullBox) //optional
unlock (m)

//Mother

while True:
lock (m)
if (count > 0)

wait (emptyBox, m)

refillChocolateBox (N)
count += N
signal (fullBox)
unlock (m)

There are two ways of waking up sleeping children. Either the mother does a signal broadcast to
all children. Or every child that eats a chocolate wakes up another sleeping child. You may also
assume that signal by mother wakes up all children.

34

47. Repeat the above question, but your solution now must use only semaphores and no other syn-
chronization primitive. The following variables have been declared for use in your solution.

int count = 0;

semaphore m, fullBox, emptyBox;

//initial values of semaphores are not specified
//you may invoke up and down methods on a semaphore

(a) Initial values of the semaphores
(b) Code for child thread
(c¢) Code for mother thread

Ans:
m = 1, fullBox = 0, emptyBox = 0

//Child
while True:
down (m)
if (count == 0)
up (emptyBox)
down (fullBox)
count += N
getChocolateFromBox ()
eat ()
count—-—

up (m)

//Mother

while True:
down (emptyBox)
refillChocolateBox (N)
up (fullBox)

Here the subtlety is the lock m. Mother can’t get lock to update count after filling the box, as that
will cause a deadlock. In general, if child sleeps with mutex m locked, then mother cannot request
the same lock.

35

48. Consider the classic “barrier” synchronization problem, where N threads wish to synchronize with
each other as follows. NV threads arrive into the system at different times and in any order. The
arriving threads must wait until all N threads have arrived into the system, and continue execution
only after all N threads have arrived. We wish to write logic to synchronize the threads in the
manner stated above using semaphores. Below are three possible solutions to the problem. You are
told that one of the solutions is correct and the other two are wrong. Identify the correct solution
amongst the three given options. Further, for each of the other incorrect solutions, explain clearly
why the solution is wrong. The following shared variables are declared for use in each solution.

int count = 0;
sem mutex; //initialized to 1
sem barrier; //initialized to 0

(a) down (mutex)
count++
if (count == N) up(barrier)
up (mutex)

down (barrier)

//wait done; proceed to actual task

(b) down (mutex)
count++
if (count == N) up(barrier)
up (mutex)

down (barrier)
up (barrier)

//wait done; proceed to actual task

(c) down (mutex)
count++
if (count == N) up(barrier)
down (barrier)
up (barrier)
up (mutex)

//wait done; proceed to actual task

Ans: In (a) up is done only once when many threads are waiting on down. In (c), down(barrier) is
called when mutex held, so code deadlocks. (b) is correct answer.

36

49. Consider the barrier synchronization primitive discussed in class, where the N threads of an appli-
cation wait until all the threads have arrived at a barrier, before they proceed to do a certain task.
You are now required to write the code for a reusable barrier, where the N application threads
perform a series of steps in a loop, and use the same barrier code to synchronize for each iteration
of the loop. That is, your solution should ensure that all threads wait for each other before the start
of each step, and proceed to the next step only after all threads have completed the previous step.
Your solution must only use semaphores. The following functions can be invoked on a semaphore
s used in this question: down (s), up (s), and up (s, n). While the first two functions are as
studied in class, the function up (s, n) simply invokes up (s) n times atomically.

We have provided you some code to get started. Shown below is the code to be run by each
application thread, including the code to wait at the barrier. However, this is not the correct
solution, as this code only works as a single-use barrier, i.e., it only ensures that the threads
synchronize at the barrier once, and cannot be used to synchronize multiple times (can you figure
out why?). You are required to modify this code to make it reusable, such that the threads can
synchronize at the barrier multiple times for the multiple steps to be performed.

Your solution must only use the following variables: int count = 0;and semaphores (initial
values as given): sem mutex = 1;sem barrierl = 0;sem barrier2 = 0;

For each step to be executed by the threads, do:

//add code here if required to make barrier reusable

down (mutex)

count++

if (count == N) up(barrierl, N)
up (mutex)
down (barrierl)

wait done, execute actual task of this step

//add code here if required to make barrier reusable for next step

Ans: The extra code to be added is at the end of completing a step, where you make all threads
wait once again.

down (mutex)

count—-

if (count==0) up(barrier2, N)
up (mutex)

down (barrier?)

37

50. Consider a web server that is supposed to serve a batch of IV requests. Each request that arrives
at the web server spawns a new thread. The arriving threads wait until N of them accumulate, at
which point all of them proceed to get service from the server. Shown below is the code executed
by each arriving thread, that causes it to wait until all the other threads arrive. The variable count
is initialized to N. The code also uses wait and signal primitives on a condition variable; and
you may assume that the signal primitive wakes up all waiting threads (not just one of them).

lock (mutex)
count——;
unlock (mutex)

if (count > 0) {
lock (mutex)
wait (cv, mutex)
unlock (mutex)

}

else {
lock (mutex)
signal (cv)
unlock (mutex)

wait done, proceed to server

You are told that the code above is incorrect, and can sometimes cause a deadlock. That is, in
some executions, all NV threads do not go to the server for service, even though they have arrived.

(a) Using an example, explain the exact sequence of events that can cause a deadlock. You must
write your answers as bullet points, with one event per bullet point, starting from threads
arriving in the system until the deadlock.

(b) Explain how you will fix this deadlock and correct the code shown above. You must retain
the basic structure of the code. Indicate your changes next to the code snippet above.

Ans: The given incorrect solution may cause a missed wakeup. For example, some thread decides
to wait and goes inside the if-loop, but is context switched out before calling wait (and before it
acquires the lock). Now, if count hits 0 and signal happens before it runs again, it will wait with no
one to wake it up, leading to deadlock. The fix is simply holding the lock all through the condition
checking and waiting.

38

51. Consider an application that has K + 1 threads running on a Linux-like OS (K > 1). The first K
threads of an application execute a certain task T1, and the remaining one thread executes task T2.
The application logic requires that task T1 is executed /N > 1 times, followed by task T2 executed
once, and this cycle of N executions of T1 followed by one execution of T2 continue indefinitely.
All K threads should be able to participate in the N executions of task T1, even though it is not
required to ensure perfect fairness amongst the threads.

Shown below is one possible set of functions executed by the threads running tasks T1 and T2.
You are told that this solution has two bugs in the code run by the thread performing task T2.
Briefly describe the bugs in the space below, and suggest small changes to the corresponding code
to fix these bugs (you may write your changes next to the code snippet). You must not change the
code corresponding to task T1 in any way. All threads share a counter count (initialized to 0), a
mutex variable m, and two condition variables t 1cv, and t 2cv. Here, the function signal on
a condition variable wakes up only one of the possibly many sleeping threads.

//function run by K threads of task T1
while True {
lock (m)
if (count >= N) {
signal (t2cv)
wait (tlcv, m)
}
//.. do task Tl once
count++
unlock (m)
}
//function run by thread of task T2
while True {
lock (m)
wait (t2cv, m)
// .. do task T2 once
count = 0
signal (tlcv)
unlock (m)

Ans: (a) check count<N and only then wait (b) signal broadcast instead of signal

39

52. You are now required to solve the previous question using semaphores for synchronization. You
are given the pseudocode for the function run by the thread executing task T2 (which you must not
change). You are now required to write the corresponding code executed by the K threads running
task T1. You must use the following semaphores in your solution: mutex, t1sem, t2sem. You
must initialize them suitably below. The variable count (initialized to 0) is also available for use
in your solution.

Ans:

//fi1ll in initial values of semaphores

sem_init (mutex,); sem_init (tlsem,) ; sem_init (t2sem,) ;
//other variables

int count = 0

//function run by thread executing T2
while True {

down (t2sem)

//.. do task T2

up (tlsem)

//function run by threads executing task T1
while True {

Ans:
mutex=1, tlsem=0, t2sem=0

down (mutex)

if (count == N)
up (t2sem)
down (t1lsem)
count = 0

do task Tl once

count++
up (mutex)

40

53. Multiple people are entering and exiting a room that has a light switch. You are writing a computer
program to model the people in this situation as threads in an application. You must fill in the
functions onEnter () and onExit () that are invoked by a thread/person when the person
enters and exits a room respectively. We require that the first person entering a room must turn
on the light switch by invoking the function turnOnSwitch (), while the last person leaving
the room must turn off the switch by invoking turnOffSwitch (). You must invoke these
functions suitably in your code below. You may use any synchronization primitives of your choice
to achieve this desired goal. You may also use any variables required in your solution, which are
shared across all threads/persons.

(a) Variables and initial values
(b) Code onEnter () to be run by thread/person entering
(¢) Code onExit () to be run by thread/person exiting

Ans:

variables: mutex, count

onkEnter () :

lock (mutex)

count++

if (count==1) turnOnSwitch ()
unlock (mutex)

onExit () :

lock (mutex)

count—-

if (count==0) turnOffSwitch ()
unlock (mutex)

Note that this problem is very similar to the readers-writers problem.

41

54. Consider a database server process that has two types of threads: N database worker threads, and
one garbage collector thread. The database datastructures are divided into N disjoint slices or
shards. Each of the N worker threads is assigned one of these slices, and handles all database
requests on its slice. All database threads run concurrently on a multicore system. The worker
threads do not need to use any locks to access the shared database datastructures when other
database workers are accessing them, because each worker thread operates on its own disjoint
slice. Therefore, slicing the database allows all worker threads to run in parallel without locking,
leading to improved performance of the database system on multicore servers. However, the
garbage collector thread that runs periodically touches the entire database, and cleans up unused
memory across all slices. Therefore, the garbage collector thread cannot run concurrently when
any of the worker threads is accessing the database, and similarly, the worker threads must not
touch the database when the garbage collector is cleaning it up.

You must write code to synchronize the database worker threads and the garbage collector thread
using semaphores to achieve the above behavior. Your solution must use two semaphores, semLock
(initialized to 1) and semGC (initialized to 1), and an integer count (initialized to 0). The code
for the garbage collector thread is given to you and must not be changed. You must complete
the code that the database worker thread must invoke when it accesses the database to service a
database read/write request.

garbage_collector {
down (semGC)
//perform garbage collection
up (semGC)

database_worker {
// fill code to run before accessing database

// actual database access to read/write its slice

//fi11l code to run after accessing the database

42

Ans:

database_worker {
down (semLock)
count++
if (count == 1) down (semGC)
up (semLock)

//access database to read/write its slice
down (semLock)
count—-—

if (count == 0) up (semGC)
up (semLock)

Note that this problem is very similar to the readers-writers problem.

43

55. Consider the following classic synchronization problem. There are two kinds of threads that arrive
in a system: hydrogen threads and oxygen threads. In order to assemble water correctly, we want
the arriving threads to wait until one oxygen and two hydrogen threads are ready to bond into HoO
molecules. Every arriving thread, whether hydrogen or oxygen, invokes the corresponding “entry”
function shown below. You must complete the entry functions for the hydrogen and oxygen threads
in such a manner that the threads return from the entry functions in groups of exactly two hydrogen
threads and one oxygen thread to bond, whenever such bonding is possible. Threads that are not
yet ready to bond, because the matching threads have not arrived yet, should wait in these entry
functions.

You must use condition variables and mutexes to solve this problem. The variables and synchro-
nization primitives you will need to use in your solution are: a mutex m, two condition variables
cvH and cvO, and two integers waitH and waitO both initialized to 0. You must not use any
other variables. Fill in the missing parts of the code to achieve the desired synchronization, and
write your answer in the space provided within the code itself.

hydrogen_entry {

lock (m) ;
waltH++;
if(waitH >= 2 && waitO >= 1) {
waitH —= 2; waitO -= 1;
’
7
}
else ;

unlock (m) ;

oxygen_entry {

lock (m) ;
waitO++;
if (waitH >= 2) {
waitH -= 2; waitO -= 1;
}
else ;

unlock (m) ;

Ans: signal(cvH), signal(cvO), wait(cvH, m), signal(cvH), signal(cvH), wait(cvO, m)

44

56. We will now solve the above water molecule problem, but using semaphores this time. The code
snippets shown below use three semaphores: semLock (initialized to 1), semHydrogen (ini-
tialized to 0), semOxygen (initialized to 0), and one integer count initialized to 0. You must not
use any other variables or semaphores in your solution. You are given the code of the hydrogen
thread entry function. You must write the corresponding code of the oxygen thread entry function.

hydrogen_entry {
down (semLock)
count++
if (count % 2 == 0) up(semOxygen)
up (semLock)

down (semHydrogen)

oxygen_entry {

Ans:

oxygen_entry {
down (semOxygen)
up (semHydrogen)
up (semHydrogen)

45

57. Continuing on the previous question, we provide you one possible solution of the hydrogen
and oxygen entry functions, which are supposed to work together. This solution uses only two
semaphores, semHydrogen (initialized to 0) and semOxygen (initialized to 0). However, this
solution shown below is incorrect and will not work in all cases. Explain the bug in the solution,
by providing a specific example of a scenario where the solution will fail. Write your answer in
the space next to the question.

hydrogen_entry {
up (semOxygen)
down (semHydrogen)

}

oxygen_entry {
down (semOxygen)
down (semOxygen)
up (semHydrogen)
up (semHydrogen)

Ans: This solution can lead to deadlocks sometime. For example, suppose two hydrogen threads
arrive, and the oxygen semaphore has increased to 2. Now, two oxygen threads arrive, each does
one down operation concurrently, and the semaphore is now back to 0. Now when both threads
perform the second down operation, both will end up waiting. Ideally, since two hydrogens are
already present, we would have wanted one of the oxygens to complete both down operations and
finish bonding. But due to interleaving, both oxygens can get deadlocked.

46

58. Consider the following synchronization problem. Children arrive at a playing field to play a game.
But before they enter the field, the children should form themselves into teams of 10 players, with
one of them being the captain. This is achieved by the children waiting outside the field until 10
of them arrive. The 10th player (that is, the last player who completes the team) is automatically
designated as the captain, and enters the field together with his team of 9 other players who arrived
just before him. Other players who arrive after the captain is designated (but before the team enters
the field) must wait until the previous team has entered the field, and must not interfere with the
previous team’s composition in any way.

In the pseudocode shown below, the children are all represented by threads and synchronization
between them is achieved using locks and condition variables. The code below uses the following
variables: integer count (initialized to 0), condition variables cv_player and cv_captain,
and a lock mutex. The solution shown below has a bug that leads to a deadlock under certain con-
ditions. Please identify the bug and suggest a suitable solution to fix it with minor modifications
to the code (using additional variables if required).

lock (mutex)

count++

if (count % 10 == 0) { //captain
do 9 times { signal (cv_player) }
count—-—

while (count > 0) wait (cv_captain, mutex)
}
else { //player
wait (cv_player, mutex)
count—-—
signal (cv_captain)
}
unlock (mutex)
//team is ready, enter field

(a) Description of the bug
Ans: The code works fine when only 10 players arrive, and the next team arrives only after
the previous team has entered the field. Any overlaps between teams will lead to errors.
For example, after the 10 player signals 9 times, and makes the count 9, the next player to
come will increment count to 10 again, and think of himself as the captain. Players of the
next team incrementing count may lead to the count never hitting 0, and the captain of the
previous team never waking up.

(b) Suggested change to the code.

Ans: One solution is to use a separate counter to track the players of a team who are entering,
carefully ensuring that the next team’s changes to count do not impact the current team that
is entering.

Another solution is to use a different lock, which will be held while a team is entering the
field, so that two consecutive teams cannot overlap. The code above can be fixed by using
a new mutex (let’s call it gate), and adding a statement lock(gate) to the start of the code.
This mutex is unlocked by the players before their wait (allowing other players to enter), but

47

is released by the captain only after all signaling and waiting is done. This ensures that the
“gate” is closed for future players while one team is entering the field. The complete solution
is shown below.

lock (gate)

lock (mutex)

count++

if (count % 10 == 0) { //captain
do 9 times: signal (cv_player)
count—-—
while (count > 0) wait (cv_captain, mutex)
unlock (gate)

}

else { //player
unlock (gate)
wait (cv_player, mutex) count—--—
signal (cv_captain)

}

unlock (mutex)

//team is ready, enter field

48

59. Now, write a solution to the above problem using semaphores. You must use the following vari-
ables in your solution: integer count (initialized to 0), semaphore mutex (initialized to 1),
semaphore sem_player (initialized to 0), and semaphore sem_captain (initialized to 0). Fill
in the five blanks in the code below to achieve the desired synchronization.

down (mutex)

count++

if(count % 10 == 0) { //captain
do 9 times {

}
else {
up (mutex)

}

//team is ready, enter field

Ans:

down (mutex)
count++
if (count % 10 == 0) { //captain
do 9 times {
up (sem_player)
down (sem_captain)
}
up (mutex) //hold this mutex till team completes
}
else {
up (mutex) //release to allow other players
down (sem_player)
up (sem_captain)
}

//team is ready, enter field

49

60. Consider a program that handles 3 types of requests (let us call them P, Q, and R) that arrive at
random times. A new thread is created to handle each request. The program batches requests
into groups of three (one each of P, Q, R) and processes them together. A thread waits until the
corresponding requests of the other types arrive, and three “matched” threads can run together.
The threads must be matched whenever possible, and a thread must not wait unnecessarily if the
matching threads have already arrived.

(a)

(b)

You are given pseudocode that synchronizes the threads handling the requests, where the
synchronization is done using three semaphores, semp, semq, semr, all initialized to 0.
The code for a thread handling request P is given below, and the code for requests Q and R
is symmetric.

up (semp)
up (semp)
down (semq)
down (semr)

Is the code shown above correct? Answer yes or no, with suitable justification. If you
answer yes, provide a brief explanation for why the code works. If you answer no, describe
one example scenario where the code fails to correctly match threads or leads to some type
of deadlock.

Ans: The code is incorrect. While it may work fine in simple cases (P, Q, R arrive one after
other, for example), it fails in some cases. Consider the scenario where two P, and one each
of Q, R arrive. By the time R arrives, 2 P and one are Q waiting in down R. If two P get
released by the two up operations of R, then Q and R deadlock. So, we will not be able to
match one set of P, Q, R, even though we could have.

You must now write the correct pseudocode that synchronizes the threads handling the re-
quests, where the synchronization is done using only semaphores. You must write the code
for a thread handling request P below, and the code for requests Q and R will be symmetric.
You must declare all the semaphores and any other variables (like boolean flags or integer
counters) that you may need in your solution, along with their initial values.

Ans: Variables needed are three semaphores for P, Q, R (initialized to 0), and 3 counters for
number of requests of each type that have arrived (all initialized to 0). We will also need a
semaphore to work as a lock to protect these counters (initialized to 1). The code for thread
P is given below.

down (lock)

countP++

if (countP >= 1 && countQ >= 1 && countQ >= 1) {
//set is complete
countP——-; countQ-—; countR-—-; //consume
up (semP); up(semQ); up(semR); //wakeup

}

up (lock)

down (semP)

50

