Lectures on Operating Systems (Mythili Vutukuru, II'T Bombay)

Problem Set: Networking

1. Consider a high performance networking application running on a high end multicore server. It
is found that, under high incoming packet load, the system spends a large fraction of its time
handling interrupts and context switches, leading to very little productive work at the application
layer. Suggest one mechanism by which this problem can be mitigated. (For this question and the
next, you are required to provide a description of the mechanism, not just its name.)

Ans: Polling or batching interrupts

2. The current Linux network stack copies packet buffers several times, from the device to kernel
space to user space. Suggest one mechanism by which the overhead of packet copies can be
minimized, in order to build a high performance network stack.

Ans: Directly DMA into user space (DPDK), or mmap kernel packet buffers to userspace (netmap).

3. Consider a web server that uses non-blocking event-driven I/O for network communication, but
uses blocking I/0 to access the disk. The web server wishes to run as multiple processes, so that
the server can be available even if some subset of the processes block on disk I/O. Further, the web
server wishes to receive web requests only on port 80, and not at different ports in the different
processes. Suggest one mechanism by which the multiple server processes can handle requests
arriving on a single port on the system.

Ans: The master process can open a socket on port 80, fork multiple processes, and all child pro-
cesses can accept connections from the same socket on port 80 using locks for mutual exclusion.
Or, the master process can alone listen to requests on port 80 and assigns all blocking disk 1/0 to
worker processes via [IPC mechanisms.

4. Below are several problems with the kernel network stack that arise in multicore systems desiring
high-performance network I/O. For each problem below, describe one technique that attempts to
solve the stated problem. You are required to provide a 1-2 sentence description of the mechanism
and how it fixes the stated problem, and not just its name.

(a) Buffers to store packets are dynamically allocated and deallocated in the kernel, leading to
dynamic memory allocation overheads.

(b) The payload of a packet is copied multiple times, once from the NIC to kernel memory, and
once again from kernel memory to userspace memory.

(c) Multiple threads of an application running on different cores all contend for a lock to accept
connections on the shared listen socket.

Ans:



(a) Preallocate a circular ring of packet buffers and expose them to userspace processes (netmap
and DPDK).

(b) Memory map the NIC ring into user space (netmap) or provide a userspace packet buffer
ring to the NIC via a userspace device driver (DPDK).

(c) Have per-core accept queues.

5. Consider a multicore system running a TCP-based multi-threaded key-value store application. The
incoming traffic to the system consists of new TCP connection requests, and get/put requests over
the established TCP connections. In order to distribute the interrupt load across all cores, the NIC
partitions incoming packets into multiple hardware queues using the hash of the 4-tuple (source
and destination IP address and port) of the packet. The interrupts from each hardware queue are
delivered to a separate core. The interrupts are processed via the regular Linux network stack on
the various cores thereafter. The key-value store application consists of multiple threads, all of
which access a shared hashmap data structure containing the key-value pairs.

(a) Are the interrupts generated for all packets of a certain TCP flow guaranteed to be delivered
to the same core by the NIC? Answer yes/no and justify.

(b) Are all get requests for a certain key guaranteed to be handled by the same core at the
application layer? Answer yes/no and justify.

Ans:

(a) Yes, because all packets of a flow will have the same 4-tuple hash.

(b) No, because a request of a key can be sent over different TCP connections with different 4
tuple hashes, and hence can be processed by different cores.

6. Consider a TCP server socket program written in an event-driven manner. The server receives
requests from multiple concurrent clients. The main thread of the server monitors read events
on the server listening socket as well as all client sockets using the select or epoll family
of system calls. When not processing any events, the server always blocks in an event-driven
wait loop, e.g., epoll_wait, waiting for notifications. To process a client request, the server
must read some data from the disk and send a reply back to the client. In order to avoid blocking
the main event-driven server thread during disk reads, the server uses worker threads to block on
disk I/O. After reading a client request, the main server thread spawns a new worker thread and
passes the client request to the thread. This worker initiates the disk read and blocks until the disk
read completes, while the main server thread continues to process other events on the sockets.
Once a worker thread completes the disk read, it places the data read from the disk in a shared
datastructure that is accessible by the main server thread (using suitable locking), and terminates.
Assume that the main server thread does not automatically get any notification from the OS when
the worker thread terminates. Now, we require that the server send a response back to the client
once the worker thread has completed the disk read operation. There are multiple mechanisms to
accomplish this goal, and the rest of the question lets you explore the various design choices.

(a) One way in which the server can send responses back to the clients is by monitoring the
status of the shared datastructure every time an event occurs, i.e., when the main server
thread returns from the select or epoll_wait system calls. At this time, if the server
finds that some worker has placed a response in the shared buffer, it can fetch this response



and send it back to the client on its socket. This solution is almost but not fully correct.
Describe one scenario where this solution will fail.

(b) Describe how you can fix the server design to overcome the above failure scenario.

Ans: (a) if only one request and no other traffic comes in, server will never wake up from epoll
loop (b) Have a unix socket from worker to main thread. When worker finishes, it will write to the
unix socket, which will cause the server to wake up from the event loop.

7. This question will explore the design of a simple multi-process file server. The server is expected
to serve multiple concurrent clients. Each client opens a TCP connection to the server, and sends
requests for files on that connection. The web server must read the name of the requested file from
the socket, read the file from disk, write it back into the socket, and wait for the client to request
the next file. The server must serve the client in this manner until the client closes the connection.

You are given a single-threaded file server running as a single process on a multicore system with
a Linux-like OS. Because the server performs multiple blocking operations (accepting new con-
nections, reading from sockets, reading from disk), a single server process can neither effectively
serve multiple clients nor efficiently utilize the multiple CPU cores. In order to overcome these
problems, you must modify the server to fork some children and delegate work to the child pro-
cesses. Note that you are constrained to increase the parallelism of the server only by spawning
processes and not threads. Further, you may not make any of the blocking operations (e.g., socket
reads) non-blocking.

The following sub-parts of the question will let you describe the design of your multiprocess file
server. Note that multiple correct designs are possible; it is sufficient if you describe one of the
possible correct designs.

(a) When (i.e., at what point in the server’s code) does the main server process spawn a child
process? And when does it reap this process?

(b) How is the work of handling a client (accepting a connection, reading from socket, reading
from disk, writing to socket) divided between the parent and child processes? In other words,
who does what part of the work?

(c) How do the parent and child processes exchange information with each other? Note that the
communication can be implicit via variables or file descriptors inherited at the time of fork,
or explicit via IPC mechanisms You must describe all such exchange of information between
the parent and child processes.

(d) State any other aspect of your design not covered by the questions above, and any assump-
tions you have made in your solution.

Ans: One possible design is spawn a child every time a new client connects and accept returns.
The parent process periodically (say before calling accept) reaps any dead children. The child
process does the network read, disk read, network write for the client, while the main process does
the job of accepting new connections. The child gets the new file descriptor of the client to serve
via a variable implicitly from the parent.

8. Which one of the following system calls initiates the three-way TCP handshake?

(a) socket



10.

(b) listen
(c) connect

(d) accept

Ans: ¢

. A modern DMA-capable NIC has received a packet over the network, and has raised an interrupt.

A modern Linux-like OS executes an interrupt handler to service this interrupt. Which one of the
following operations is executed by the OS during the top-half of the interrupt handler?

(a) Copy the packet buffer from NIC memory to kernel memory
(b) Copy the packet buffer from kernel memory to user memory
(c) Updates to the RX ring pointers

(d) Generation of TCP acknowledgement for the received packet
Ans: ¢

Consider a web server system consisting of N replicas. Clients send HTTP requests for web ob-
jects (HTML pages, images, etc.) to the server over TCP connections. All requests are sent to
a single server IP address and port that is publicized to clients (say, via DNS). A load balancer
placed before the replicas rewrites the destination IP address of the packets coming to the server
to redistribute traffic to the various server replicas. For every packet arriving for the web server,
the load balancer computes the hash h of the TCP/IP header 4-tuple (source/destination IP ad-
dress/port), computes ¢ = h mod [V, and redirects the packet to the i-th server replica. Ignore any
changes to the set of replicas, or any failures.

(a) Are all packets of a given TCP connection always sent to the same replica? Answer yes/no,
and justify.
(b) Are all requests for a given HTTP web object always sent to the same replica? Answer

yes/no, and justify.

Ans: (a) yes because all packets of a connection hash to same replica (b) no because requests of a
web object can come over multiple connections, and can hash to different replicas



