
TCP Download Performance in Dense WiFi
Scenarios

Mukulika Maity
Department of Computer Science

and Engineering

IIT Bombay

Email: mukulika@cse.iitb.ac.in

Bhaskaran Raman
Department of Computer Science

and Engineering

IIT Bombay

Email: br@cse.iitb.ac.in

Mythili Vutukuru
Department of Computer Science

and Engineering

IIT Bombay

Email: mythili@cse.iitb.ac.in

Abstract—How does a dense WiFi network perform, specifi-
cally for the common case of TCP download? While the empirical
answer to this question is ‘poor’, analysis and experimentation
in prior work has indicated that TCP clocks itself quite well,
avoiding contention-driven WiFi overload in dense settings. This
paper focuses on measurements from a real-life use of WiFi in
a dense scenario: a classroom where several students use the
network to download quizzes and instruction material. We find
that the TCP download performance is poor, contrary to that
suggested by prior work. Through careful analysis, we explain
the complex interaction of various phenomena which leads to this
poor performance. Specifically, we observe that a small amount
of upload traffic generated when downloading data upsets the
TCP clocking, and increases contention on the channel. Further,
contention losses lead to a vicious cycle of poor interaction
with autorate adaptation and TCP’s timeout mechanism. To
reduce channel contention and improve performance, we propose
a modification to the AP scheduling policy to improve the
performance of large TCP downloads. Our solution, WiFiRR,
picks only a subset of clients to be served by the AP during
any instant, and varies this set of “active” clients periodically
in a round-robin fashion over all clients to ensure that no client
starves. By reducing the number of contending nodes at any point
of time, WiFiRR improves the download time of large TCP flows
by 3.2× in a simulation of our classroom scenario.

I. INTRODUCTION

The omni-presence of WiFi needs no justification. While
WiFi standards have improved significantly in terms of raw
bit-rate, whether this has translated to corresponding improve-
ments in application throughput is unclear. We are specifically
interested in dense user scenarios, such as conferences, sports
stadiums, and large classrooms, with the latter two being
especially nascent with respect to WiFi usage. How does a
dense WiFi network perform, specifically for the common case
of TCP downloads? This is the focus of our work.

Prior work has shown, both analytically [1], [2] and exper-
imentally [3], [4], that TCP download performance does not
degrade with increasing number of users in a WLAN. These
results are based on the performance of long running TCP
flows in controlled environments, using homogeneous well-
tested clients and artificial user traffic. These studies have
reported good TCP download performance even with over a
hundred clients [3].

In contrast, this paper presents a measurement study of
TCP performance “in the wild” over a dense WiFi network,

with real users running real applications over a variety of client
devices. We conduct several measurements in a WiFi-enabled
classroom, where students download online quiz questions and
instruction material. Our results show that, in contrast to prior
work, TCP performance degrades significantly in a dense usage
scenario, even with 20–30 clients per access point. (We focus
on a single WiFi BSS, and do not address scaling issues across
multiple interfering BSSs.)

We have analyzed why our results differ from the TCP
download scenarios in prior research. With long running TCP
downloads, the only traffic on the network is TCP data packets
in the downlink and ACKs in the uplink. In such cases, the
number of contenting nodes on the channel is usually quite
low, because the AP alone transmits TCP data, and only the
clients that most recently received a data packet are likely to
contend for the channel to send an TCP ACK. In contrast,
in our real-life measurements, we found significantly higher
channel contention due to “chattiness” of real applications that
create a small but noticeable amount of extra upload traffic
besides TCP ACKs.

For example, in our classroom scenario, a student logs in
to the class webpage, authenticates herself, locates a file to
download on a webpage (that has several smaller web objects
in addition to the main object of interest), using a browser
that opens several parallel TCP connections to download
the content. In addition, users also have a low volume of
background traffic automatically generated by email clients and
such. Somewhat surprisingly, this small amount of extra traffic
in the upload direction significantly increases the contention
on the channel (as the number of active clients is now close
to the total number of users), resulting in collisions due to
the CSMA MAC protocol’s channel arbitration mechanism. As
a result, we found that TCP performance degraded severely,
and students often took more than 8× the amount of time to
download the files needed for an in-class quiz, as compared
to a universe where TCP scaled perfectly with increasing user
density.

We find that the contention on the wireless channel and
the resulting collision losses also have an undesirable effect
on several other protocols in the system. For example, we
observed that WiFi clients picked lower bit rates during (and
for a short period of time after) contention, because most rate
adaptation algorithms confuse collisions for channel losses.
This lowering of rate increases the time taken for subsequent
transmissions, further increasing contention, leading to a vi-978-1-4244-8953-4/11/$26.00 c© 2015 IEEE

cious cycle. Further, we observed poor interaction between
channel contention and TCP’s timeout mechanism. We found
that the RTT of TCP flows was highly variable due to con-
tention losses, confusing the TCP timeout algorithm, leading to
spurious retransmissions. Note that while prior work [5], [6],
[7], [8], [9], [10] has also observed some subset of these prob-
lems, our analysis has focused on comprehensively identifying
all factors that contribute to poor TCP download performance
in dense scenarios, and understanding their complex interplay.

We also observed that in practice, several device drivers
become unresponsive when operating under high contention
losses, and need a driver reset to function even after the
contention has subsided. All of these real-life effects further
exacerbate the performance issues of TCP in a dense WiFi
network. Note that we have verified and eliminated other
factors (AP buffer mismanagement, wired network or server
overload, external interference) as possible causes for the poor
performance.

Having identified excessive channel contention as the root
cause behind the performance issues, we propose a solution,
WiFiRR, to improve the performance of large TCP downloads
in dense WiFi scenarios. WiFiRR works as a scheduler at the
packet queue of an access point. WiFiRR identifies a subset
of clients as “active” during every instant of time (up to 5
clients in our implementation), and the AP serves downlink
packets only to these clients. This results in the other clients
going quiet during this period, leading to lower contention
and improved performance. This set of active clients is varied
periodically (every 6s in our case) to cover all clients in a
round-robin fashion. Note that while clients may temporarily
be deprived of service for short durations, they will eventually
see improved performance over large TCP downloads. We
evaluate our solution in simulation, and find that WiFiRR
improves TCP download time by 3.2× over the base case of
serving all clients uniformly all the time. Our solution also
improves download time by 2.25× over WiFox [5], another
solution that seeks to improve TCP download performance in
dense scenarios. We realize that WiFiRR is not suited for dense
WiFi deployments that see predominantly short or interactive
flows, and adapting WiFiRR to work in such scenarios is part
of ongoing work.

Our contributions can be summarized as follows: (a) a real-
life measurement study of TCP download performance and its
careful analysis, which identifies the factors that contribute
(and eliminates the factors that do not) to poor performance
in dense scenarios, and (b) a solution approach that improves
the download time of large TCP flows by reducing channel
contention.

The rest of the paper is organized as follows. Section II
discusses related work. Section III describes our measurement
study in a real classroom, and Section IV describes some
controlled experiments and simulations we conducted to un-
derstand the measurement results in the classroom. Section V
describes our solution WiFiRR that improves performance
by addressing the problems we found. Finally, Section VI
concludes the paper.

II. RELATED WORK

Starting with Bianchi’s seminal work [11], several re-
searchers have analytically shown that the performance of
802.11 CSMA/CA degrades with increase in offered load, due
to increased contention on the wireless channel. This analysis
assumes saturated traffic, i.e., all stations are always back-
logged and contend for the channel. [12] further generalizes the
result, and shows that collision probability increases with in-
creasing number of stations. However, subsequent research [1],
[2] has considered a more specific problem of TCP downloads
over 802.11. In this case, the analysis shows that the number
of contending stations is much lower than the total number of
stations due to the TCP data/ack clocking mechanism. When
several downlink flows go through an AP, and the AP sends
a data packet to a client at a certain instant, the client that
received this data packet alone will generate a TCP ACK, and
contend with the AP for the channel. All the other clients will
not actively contend for the channel at this instant, until data
packets arrive for them from the AP. This data/ack clocking
mechanism of TCP flows ensures that the contention on the
channel and collision probability stay low, with the result that
the system throughput does not degrade much with increasing
number of clients.

The analysis results of the scaling of TCP downloads have
also been backed up by experimental studies [4], [3]. These
papers show that the TCP’s data/ack clocking mechanism
allows TCP downloads to scale to over hundred clients without
any significant degradation of aggregate system throughput.
However, the experiments in these papers consider only long
running TCP flows and emulated user traffic on testbeds
of homogeneous nodes. In contrast, our measurement study
conducted with several tens of users trying to download files
using TCP shows that TCP download does not scale as well
in the context of real user traffic.

Several researchers have reported some subset of the prob-
lems we have encountered in our measurement study, and
suggested several techniques to address these problems. Prior
work [5], [6], [7] has considered the problem of asymmetry
between uplink and downlink traffic in WLANs. When a large
number of users are downloading traffic over the WLAN,
most traffic is downlink. However, the AP that delivers all the
downlink traffic has to contend for the channel with the other
clients, resulting in an unfair allocation to the downlink traffic.
To solve this problem of asymmetry, these papers propose
several MAC-layer enhancements to prioritize the AP’s chan-
nel access. For example, WiFox [5] prioritizes AP’s channel
access over the clients dynamically depending on the load in
the network. The AP accesses medium with high priority when
AP’s transmission queue size is high and accesses with default
priority otherwise. As a result, WiFox claims to give 400-700%
increase in throughput and 30-40% improvement in average
response time. Our work differs from WiFox and other related
work in that we identify and address several factors (besides
asymmetry between uplink and downlink) that contribute to
poor TCP download performance in dense scenarios.

Other research [8] has observed the effect of channel
contention on the RTT of TCP flows through a WLAN. The
authors show that highly variable RTTs due to contention
lead to incorrect estimation of TCP retransmission timeout,
and hence lead to spurious retransmissions. The authors pro-

pose prioritization of TCP ACKs as a solution to address
this problem. Researchers have also observed the impact of
channel contention on bit rate adaptation [9], [10] in dense
deployments, and proposed solutions to prevent lowering of
bit rate unnecessarily in response to collisions. While each of
the above papers measure and analyze a subset of problems
that arise in a dense WiFi network, none of them have reported
all of the problems or their complex interplay we find in
our measurements. To summarize, our work improves over
prior work on improving TCP performance in real-life dense
scenarios by analyzing the problem more comprehensively, and
identifying interplay of all the factors that contribute to poor
performance.

III. MEASUREMENTS IN A LIVE CLASSROOM

A. Measurement setup

We first describe our data collection method for measure-
ments in a real classroom. In a course with 124 registered
students, taught by one of the authors, a subset of lectures
involved downloads of supplementary instruction material by
students, and some involved graded quizzes. The students used
individual laptops and tablets, and some desktops as well, for
these activities. Our setup consisted of students connecting to
a web server that hosts instruction or quiz content. A small
fraction of students used wired access. We had three enterprise-
grade WiFi APs, setup in the three non-overlapping 802.11g
channels 1, 6, and 11. All the relevant entities were on the
same extended LAN.

The activity was as follows. The students browsed to the
content server, authenticated themselves, and downloaded a
variety of content (video lectures, references, quizzes) over
the wireless channel as instructed. We instrumented the web
server to log the per-request service time. In addition, we also
collected network traces from two vantage points: (i) The WiFi
AP was instrumented to collect per-frame MAC layer statistics.
Our code had access to hardware registers in the WiFi NIC,
that let us determine the fraction of airtime that was spent
in transmissions, receptions, and in idle listening at a very
fine granularity of 250ns. (ii) A sniffer running tcpdump was
connected via an Ethernet hub to the content server to collect
TCP and HTTP logs.

Prior to our measurements, we ensured that the WiFi AP,
the web server, and the wired backhaul from the AP to the
web server were not loaded. That is, the performance seen by
the clients in all our measurements was constrained by the
wireless network bottleneck. External WiFi interference was
minimal.

From all our measurements, we choose one representative
dataset to present results from: a quiz conducted in class. In
the quiz, 94 students, spread roughly equally over 3 APs,
downloaded a quiz question paper of size ≃200KB. A subset
of 24 students also downloaded the optional reference material
file of size ≃4MB. We pick one of the three APs to present
results from; the results at the others were similar. This AP in
question served 32 students: all 32 students downloaded the
quiz file, and 17 students downloaded the reference material.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

C
D

F

Completion Time(Sec)

Quiz File
Reference File

Fig. 1: CDF of the time taken to download the quiz and
references files.

B. Results

First, we present the most important performance metric
– the completion time, since this delay determines how users
perceive the quality of the network. The completion time is
measured as the time from the issue of HTTP GET request for
the particular file to the last packet of the download received
by the user. Fig 1 shows the CDF of the completion times
for all the clients, for both the quiz and reference files. To
put these numbers in perspective, let us calculate the expected
download time. First, note that our classroom was such that
even the farthest client could comfortably operate at the highest
54Mbps datarate of 802.11g, when operating in isolation (we
verified this during AP placement). This physical layer data
rate translates to about 24Mbps of TCP-layer throughput, after
accounting for link-layer overheads and the overheads of TCP
ACKs. If we go by prior work that claims that TCP download
throughput scales perfectly with the number of clients, each
client should have gotten a TCP throughput of 24Mbps/32.
Assuming all clients downloaded both the quiz and reference
file, which we overestimate as 5MB worth of content per client,
the expected download time still works out to only about 54s.
In contrast, the highest completion times in Fig 1 was 229s
for the quiz file, and 478s for the reference file1!

Next, we investigate why the completion time was so bad.
Upon looking at the TCP time-sequence graphs, we found that
some clients suffered severe TCP segment losses, and often
timed out several times during the course of the measurement.
Fig 2 shows the average TCP retransmission rate (averaged
across all clients every 2s) as a function of time; most of these
retransmissions were due to a TCP timeout. Fig 3 shows the
TCP time sequence graph of a client that experienced multiple
TCP timeouts.

To understand why the application-layer performance was
so bad, we analyze the logs collected at the AP to understand
the MAC-layer performance in the network. Using our custom
instrumentation of the AP driver, we determined what fraction
of the airtime was reported as “busy” at the AP. This air
occupancy percentage is shown in Fig 4 for the duration of
the quiz download. Also shown is the aggregate download

1This of course created logistical problems; the instructor had to give time
extensions to those students who experienced delay in downloading!

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

R
e

tr
a

n
s
m

is
s
io

n
 P

e
rc

e
n

ta
g

e

Time(Sec)

Fig. 2: The average TCP retransmission rate across all clients
vs. time.

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50 60 70 80 90

S
e
q
u
e
n
c
e
 N

u
m

b
e
r(

B
)

Time(sec)

Data
Ack

Fig. 3: TCP time sequence diagram of a client that experienced
multiple timeouts.

throughput of the AP during this time. Both measures are
shown as two-second averages. We see from the figure that
there are periods where the channel is busy, and there are also
periods where the channel is idle for large fractions of time.
This behavior fits well with our earlier observation of TCP
timeouts. We also note that, irrespective of the channel busy
percentage, the aggregate throughput is poor most of the time.

We further analyze the AP’s logs to determine what
caused the AP to deliver such low throughput, even when
the channel was busy. We verified that the signal strength at
all clients was good enough to support high bit rates. The
other possibility is that of collisions, due to multiple clients
picking the same backoff counter and transmitting in the same
slot during CSMA MAC’s channel arbitration mechanism.
Collisions are notoriously hard to detect using packet logs,
because collisions often result in a synchronization error at the
physical layer, thereby leaving no trace in any kind of packet
tracing mechanism. So, we use hardware registers exported to
the device driver to determine the amount of “wasted” airtime
at the AP, defined as the amount of time spent in one of the
following activities: (i) transmitting packets that failed to elicit
a link-layer ACK, (ii) receiving packets which could not be
successfully decoded (either due to synchronization error at
the physical layer, or a CRC error after synchronizing with the
transmission). Fig 4 also shows this wasted airtime percentage
at the AP as a function of time. This figure shows that around
10–20% of the AP’s airtime is often wasted, possibly due to

 0

 25

 50

 75

 100

 0 100 200 300 400 500 600
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

C
h

a
n

n
e

l
T

im
e

(P
e

rc
e

n
ta

g
e

)

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t(

M
b

p
s
)

Time(Sec)

Air Occupancy
Wasted Airtime

Aggregate Throughput

Fig. 4: Aggregate throughput, air occupancy, and wasted
airtime at the AP.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

U
p
lo

a
d
 P

a
c
k
e
ts

 (
p
a
c
k
e
ts

/s
e
c
)

Time(Sec)

Fig. 5: Upload traffic (pkts/s) generated by clients during the
quiz.

collisions on the channel.

We next investigate why the contention and collision rate
on the channel was so high. Prior work, as discussed in
Section II, shows that if the only traffic on the channel is
TCP data and ACKs, the contention on the channel should
be very low. However, in our measurement, we found that
there was a small amount of extra upload traffic besides the
TCP ACKs. Figs 5 and 6 show the rate of upload traffic
in packets/sec and in kbps respectively. These metrics are
shown as averages over 100ms intervals; this indicates the
burstiness of the upload traffic. This traffic consists of GET
requests for various embedded objects on the course webpage,
traffic generated in navigating the authentication page, TCP
handshake packets for the multiple connections the browser
opens, and some small amount of extra background traffic
likely generated by email clients, Dropbox, and other such
applications. Note that the amount of upload traffic is very
low, averaging at about 8kbps in aggregate across all clients
at the AP. However, it appears that this traffic was enough
to increase the contention on the channel, and cause collision
losses.

The contention on the channel due to a large number of
active clients is further exacerbated by the interaction with
the bit rate adaptation. It is well known in prior work that
most rate adaptation algorithms mistake collision losses for
poor signal on the channel, and lower the bit rate in the
hope of increasing the probability of packet delivery. However,
transmissions at lower bit rate take up more airtime, further

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600

U
p

lo
a

d
 T

ra
ff

ic
(K

b
p

s
)

Time(Sec)

Fig. 6: Upload traffic (kbps) generated by clients during the
quiz.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

C
D

F

Average Rate(Mbps)

Downlink
Uplink

Fig. 7: CDF of the time-averaged bit rates of clients in the
uplink and downlink directions.

increasing the contention on the channel. Fig 7 shows a CDF
of the time-averaged bit rates of the clients during the quiz.
We see that most clients were operating at a very low average
rate, suggesting that the rate adaptation algorithms were using
lower rates upon observing losses.

In addition to the metrics reported above, the overall
experience of the students in using the WiFi network was
very bad. When the students were simultaneously downloading
large files and stressing the wireless networks, students often
complained that their WiFi was not responding. We found
many instances where a driver reset was needed to get the WiFi
interface to work, even after the contention had subsided. We
conjecture these to be possible device driver bugs that were
triggered under the high loss rate situations we encountered
in class. It is likely that such situations are not well tested in
client driver code.

Are collisions due to the CSMA MAC protocol mecha-
nisms alone enough to explain the high losses we saw in our
measurements? Or were there any other factors at work? The
limited control to vary parameters and monitor performance in
a live measurement makes it difficult to answer some questions,
which we seek to address with a combination of simulations
and controlled experiments in the lab in the next section.

IV. SIMULATIONS AND CONTROLLED EXPERIMENTS

In this section, we describe several results from simulations
and controlled experiments conducted in the lab to better
understand the classroom WiFi measurements.

A. Simulation

As described earlier, accurately measuring collision losses
in an experiment is a hard problem. Even using multiple
wireless sniffers on the air cannot guarantee that we can
identify the error rate due to collisions, because the sniffers

TABLE I: Simulation setup

Parameter Value

WiFi Protocol 802.11g

Rate adaptation algo-

rithm

Minstrel

AP queue size 512

Number of clients 30

Download size 5MB

Upload traffic 10Kbps

 0

 10

 20

 30

 40

 50

 60

 100 150 200 250 300

A
v
e

ra
g

e
 B

it
ra

te
(M

b
p

s
)

Time(Sec)

Fig. 8: The bit rates chosen by a WiFi client in the presence
of contention.

themselves may fail to decode most collisions. Therefore, we
resort to simulations, where we can instrument the simulator
to identify collisions.

We use the ns-3 network simulator to perform simulations.
Our simulation model consists of 30 802.11g WiFi clients
connected to an AP. To simulate the traffic seen in the
classroom, each client downloads a 5MB file from a server
via the AP, while uploading CBR traffic at the rate of 10 kbps
over a TCP connection. The clients are placed close enough
to the AP to eliminate the possibility of any channel losses,
so that a packet loss occurs only if two clients pick the same
backoff value and collide during the CSMA MAC operation.
We have used the Minstrel rate adaptation algorithm, and a
queue size of 512, as used in the real AP. Table I summarizes
the parameters in our simulations.

Our simulation resulted in a download time between 292
and 435 seconds for the clients, which roughly matches the
download performance seen during the classroom quiz. During
the download, the collision rate on the channel (defined as
the fraction of airtime on the channel that was wasted in
collision) was between 15% and 25%, proving that the poor
TCP performance was primarily due to collision losses on the
channel.

B. Controlled experiments

Next, we perform several small-scale controlled experi-
ments in the lab to better understand the impact of collisions
and contention on the channel. We first try to understand the
impact of collision losses on the rate adaptation algorithm.
We set up an experiment where a WiFi client (a Linux laptop
with a Qualcomm Atheros QCA9565 / AR9565 Wireless
Network Adapter (rev 01) device driver) is downloading a
large file via the AP. After 2 minutes, we introduce 14 other
WiFi clients on to the channel. These clients are Microtik
single-board computers, that generate TCP upload traffic at
the rate of 100kbps. After a further 2-minute duration of
high channel contention between the 15 WiFi clients, we

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200

R
T

T
 (

m
s
e
c
)

Time (sec)

Fig. 9: Highly variable RTTs of a TCP flow caused by high
channel contention.

turn off the Microtik boards, and let the laptop traffic run
for some more time. Fig 8 shows the time-averaged bit rate
(averaged over 2 sec) of the laptop in the upload direction
for the duration of this experiment. We observe from the
figure that the rate adaptation algorithm lowers its bit rate
due to collision losses, as expected. Further, we note that the
rate adaptation algorithm takes around 12 seconds (after the
Microtik boards are turned off) to recover from the effects
of channel contention, which is approximately the timescale
at which popular bit rate adaptation algorithms adapt rates.
Similar results were observed with 3 other laptops running 3
different device drivers as well. This recovery time of the bit
rate adaptation algorithm has a significance in explaining our
measurement data of the previous section. The bursty upload
traffic seen in our experiment has several periods of quiet
between bursts of high upload activity. However, due to the
relatively long recovery time of the rate adaptation algorithm,
the effects of contention (i.e., the lowering of transmit bit rates)
persist even in the periods between upload bursts, magnifying
the effect of the small amount of upload traffic.

Next, we identify the impact of collision losses on TCP
performance. We setup an experiment with 21 WiFi clients
(7 laptops and 14 Microtik single-board computers) connected
to an AP. The clients download a 9MB file from a server
connected to the AP. The clients run a browser emulation
script that generates around 50 GET requests to download
several embedded objects in a sample webpage. In addition, the
clients also generate a bursty upload TCP traffic at an average
rate of 200 kbps, to simulate other background application
traffic. This mix of upload and download traffic created enough
contention on the channel to slow down the TCP downloads,
and we observed several of the effects noticed in the classroom
measurements. A wireless sniffer over the channel reported
that 22% of frames decoded were marked as link-layer retries.
While this is not a true indication of the collision rate on
the channel (as the sniffer may have missed capturing several
frames due to synchronization errors caused by collisions etc.),
it gives us enough indication that the loss rate due to collisions
is substantial.

High channel contention also leads to variable delays in
transmitting a packet (a transmission may succeed without
collisions sometimes, but may require several unsuccessful
attempts and multiple backoffs some other time). For example,
Fig 9 shows the highly variable TCP RTT of a single client
in the controlled experiment with 21 clients described above.
Sudden RTT variations confuse the TCP’s RTO estimation al-
gorithm, and may lead to TCP timing out unnecessarily, while

the data packet is still in transit. In fact, we collected client-
side logs in the experiment above and noticed 61 instances of
spurious TCP timeouts and retransmissions (summed across all
the clients), where the original transmission and the subsequent
retransmission were both received by the client after a long
delay. While we could not collect client-side logs in the class-
room, we did notice highly variable RTTs and expect several
of the TCP retransmissions seen were in fact unnecessary.

Finally, we could reproduce the phenomenon of client
device drivers becoming non-responsive under high contention
with several different laptops and device drivers in our con-
trolled experiments as well.

Note that we have used our controlled experiments to verify
that there were no other causes of packet loss introduced by
the wired channel or the AP in our measurements. We repeated
our experiments with APs from two popular vendors, and
obtained similar results. We also verified that there was no
buffer mismanagement at the AP. For example, with vendor
supported AP logs we verified that the AP buffer always had
enough packets to transmit over the wireless link, and that
buffer underflow was not the reason for poor throughput.

V. OUR SOLUTION APPROACH

We now describe our solution, WiFiRR, that seeks to im-
prove the worst case completion time of large TCP downloads
in a dense WiFi setting like classrooms.

A. Design of WiFiRR

The measurements and analyses of the previous sections
lead us to conclude that high channel contention is root cause
for poor TCP download performance. To address this problem,
we seek to limit the number of clients contending for the wire-
less channel at any instant by modifying the AP’s MAC-layer
scheduling policy. One can plug in any MAC scheduling policy
which ensures fairness, we are using FIFO with round-robin.
Our solution, WiFiRR, is designed a modification to access
point driver code that manages the AP’s buffers. Normally,
APs transmit packets belonging to all clients from its buffer in
a FIFO manner. With WiFiRR, an AP designates a subset of K
out of the total N clients as “active” during a given time slot
T . Whenever the AP gets a chance to transmit, the AP looks
through its queue and preferentially picks packets to these K

active clients, skipping over packets from non-active clients in
the queue. The AP varies the set of K active clients in a round-
robin fashion in every slot, so that every client eventually gets
a chance to make progress. The AP transmits broadcast and
management frames normally, as per their turn in the queue.
Of course, the AP does not keep the link idle: if there are no
broadcast frames or frames to active clients, it will transmit
frames to non-active clients.

Now, in a time slot T, since we suppress downlink TCP
data and ACK packets for the marked inactive clients, their
TCPs will go quiet for the duration of the slot, and the uplink
traffic from the clients is greatly suppressed as well. This leads
to a lower number of contending nodes, fewer collision losses,
and eventually, better TCP performance for the active clients.
Our solution does not require any change at the clients.

While our solution leads to a temporary stalling of the
non-active clients, the overall performance improves over large

 0

 100

 200

 300

 400

 500

 1 10 100

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Slot Duration (sec)

Max w/o WiFiRR

Min w/o WiFiRR

Fig. 10: Min, median, max download completion times vs T
(K fixed at 5).

TCP downloads, because the clients will experience much
better network conditions once they become active. We realize
that our solution may not be beneficial in cases where the
TCP flows are very short or interactive, because the negative
effects of stalling may overweigh the benefits in such cases.
Enhancing the core ideas of WiFiRR to better handle short and
interactive TCP flows is part of ongoing work.

B. Results

We implemented WiFiRR in ns-3. We use the simulation
scenario as described in Section IV-A to evaluate our scheme:
a simulation of 30 clients performing a large download (of
5MB each), while simultaneously generating a low rate upload
traffic. We evaluate the performance gains with WiFiRR in this
scenario.

We experimented with different values of slot duration T

and number of active clients K. Fig 10 shows the minimum,
median, and maximum download completion times over 30
clients with WiFiRR, where the slot duration is varied from
1 sec to 50 sec, and the number of active clients K is fixed
at 5. The green and blue lines also show the minimum and
maximum completion times without WiFiRR. We find that the
worst case completion time reduces to 137 sec from 435 sec
(3.2× reduction) when the slot duration is 6 sec. Intuitively,
the optimal choice of slot duration is dependent on the RTT
of the flows. The slot duration should be in the order of
few RTT in order for TCP flows to adapt to the change in
channel contention. The average RTT of the TCP flows in our
simulation was around 1.2s due to high contention, resulting
in a slot duration of 6s working best2.

Fig 11 shows a similar comparison of completion times
with and without WiFiRR, where we set the slot size T to
6s, but vary the number of active clients K. Here, K = 5

leads to the best performance of 3.2× reduction in worst case
completion time. We have also verified that WiFiRR leads to
a lower rate of collisions. While the average rate of collisions
on the channel was 15-25% without WiFiRR, the collision rate
with WiFiRR (6s slot and 5 active clients) was 2-3%.

We also compare our solution WiFiRR (with 6s slot
duration, 5 active clients) to WiFox [5], another solution
that aims to improve TCP download performance in dense
scenarios by addressing the asymmetry between uplink and

2Making the WiFiRR approach practical would require devising a mecha-
nism to determine the slot duration as a function of the RTT.

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30 35

C
o
m

p
le

ti
o
n
 T

im
e
(s

e
c
)

Number of Active Clients (K)

Max w/o WiFiRR

Min w/o WiFiRR

Fig. 11: Min, max, median download completion times vs K
(T fixed at 6s).

 0

 100

 200

 300

 400

 500

W/O-WiFiRR WiFiRR WiFox
C

o
m

p
le

ti
o
n
 T

im
e
(s

e
c
)

Scheme

Fig. 12: Min, median and max download completion times.

downlink traffic (see Section II). We implemented WiFox in
ns3, as per the specification in [5]. We made AP use 802.11e,
and implemented the high and default priority channel access
settings as described in [5]. In WiFox, time is divided into
intervals of size T

′, each of which is divided into n slots. In
every time unit T ′, the AP accesses the channel in a prioritized
fashion for k ≤ n slots. The mapping between the priority level
k and the queue size of the AP can be logarithmic, exponential,
linear and logistic. We use the logistic mapping as it gave the
best results for WiFox. We also tuned the maximum queue
size (from 50 mentioned in the paper to 512) as it resulted
in better completion time for WiFox in our simulation setting.
We set T to 100ms, n to 10 slots, and set the k range to be 0-
10. Fig 12 shows the download completion times with WiFox,
as compared to the cases with WiFiRR and without WiFiRR.
While WiFox does lead to improved performance over the base
case without WiFiRR, WiFiRR outperforms WiFox by 2.25×

in our scenario of large TCP downloads.

VI. CONCLUSION AND FUTURE WORK

This paper presented measurements of TCP download per-
formance in a dense WiFi scenario of WiFi-enabled classroom,
where students download quizzes and instruction material
over WiFi. Our results show that TCP download performance
degrades significantly with increased user density, much more
beyond what is to be expected from prior work. We analyze
the reason for this poor performance and find that the small
amount of background upload traffic that coexists with the TCP
download traffic in real life causes an increase in contention on
the wireless channel. The subsequent collision losses trigger
undesirable behavior in other protocols: the bit rate adaptation
unnecessarily lowers its bit rate, TCP gets confused by the
highly variable RTTs and performs spurious retransmits, and

device drivers perform unexpectedly under such losses. We
also propose a solution, WiFiRR, that improves the perfor-
mance of large TCP downloads in a dense scenario. Our
solution operates as a scheduler at the AP buffer, and restricts
the number of active clients contending for the channel at any
instant by selectively transmitting packets to different subsets
of active clients over different slots.

Going forward, we will make WiFiRR adaptive to short
or interactive flows. We plan to build and deploy a prototype
of WiFiRR, to make our classroom teaching using WiFi more
effective. Finally, we believe that future standards of WiFi must
also focus on addressing this very real performance bottleneck
of contention on the wireless channel in dense usage scenarios,
in addition to just improving the peak data throughput at the
physical layer, to provide a better experience to the end user.

VII. ACKNOWLEDGEMENT

This work was supported in part by AirTight Networks.

REFERENCES

[1] R. Bruno, M. Conti, and E. Gregori, “Modeling TCP Throughput
Over Wireless LANs,” in Proc. 17th IMACS World Congress Scientific

Computation, Applied Mathematics and Simulation, 2005, pp. 11–15.

[2] G. Kuriakos, S. Harsha, A. Kumar, and V. Sharma, “Analytical Models
for Capacity Estimation of IEEE 802.11 WLANs using DCF for Internet
Applications,” Wireless Networks, 2009.

[3] M. A. Ergin, K. Ramachandran, and M. Gruteser, “An experimental
study of inter-cell interference effects on system performance in un-
planned wireless LAN deployments,” Computer Networks, 2008.

[4] S. Choi, K. Park, and C.-k. Kim, “On the Performance Characteristics
of WLANs: Revisited,” in Proc. SIGMETRICS, 2005.

[5] A. Gupta, J. Min, and I. Rhee, “WiFox: Scaling WiFi Performance for
Large Audience Environments ,” in Proc. CoNEXT , 2012.

[6] E. Lopez-Aguiler, J. Casademont, J. Cotrina, and A. Rojas, “Perfor-
mance Enhancement of WLAN IEEE 802.11 fot Asymmetric Traffic,”
in Proc. The International Symposium on Personal, Indoor and Mobile

Radio Communication, 2005.

[7] X. Wang and S. A. Mujtaba, “Performance enhancement of 802.11
wireless LAN for asymmetric traffic using an adaptive MAC layer
protocol,” in Proc. VTC, 2002.

[8] D. Malone, D. J. Leith, A. Aggarwal, and I. Dangerfield, “Spurious
TCP Timeouts in 802.11 Networks ,” in Proc. Wiopt, 2008.

[9] P. A. K. Acharya, A. Sharma, E. M. Belding, K. C. Almeroth,
and K. Papagiannaki, “Congestion-Aware Rate Adaptation in Wireless
Networks: A Measurement-Driven Approach ,” SECON, 2008.

[10] K. V. Cardoso and J. F. de Rezende, “Increasing throughput in dense
802.11 networks by automatic rate adaptation improvement,” Wireless

Networks, 2012.

[11] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed
Coordination Function ,” IEEE Journal on Selected Areas in Commu-

nications, 2000.

[12] A. Kumar, E. Altman, D. Miorandi, and M. Goyal, “New Insights
From a Fixed-Point Analysis of Single Cell IEEE 802.11 WLANs ,”
IEEE/ACM Transactions on Networking, 2007.

