
WebQ: A Virtual Queue For Improving User
Experience During Web Server Overload

Bhavin Doshi, Chandan Kumar, Pulkit Piyush, Mythili Vutukuru
Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

Email: {bhavin,chandan,pulkitpiyush,mythili}@cse.iitb.ac.in

Abstract—This paper describes a system for improving user
experience when accessing overloaded web servers. While several
techniques exist today to build high-capacity web servers, little
attention is paid to the fact that servers often crash when
faced with transient overload, causing user experience to degrade
sharply when incoming load exceeds capacity. Existing overload
control mechanisms focus on some form of admission control
to protect the web server from overload. However, all such
techniques result in user requests failing, either due to timing out
or receiving a “service unavailable” message. More importantly,
there is no feedback to the frustrated user about when to retry
again, leading to adhoc retries. This paper describes WebQ, a
system consisting of two web proxies, that together simulate a
virtual queue of web requests, and shape incoming load to match
server capacity. Users accessing a server protected by WebQ
receive a HTTP redirect response specifying a wait time in the
virtual queue, and are automatically redirected to the web server
upon expiration of the wait time. The wait times are calculated
using an estimate of the server’s capacity that is computed by
WebQ. Users in the virtual queue are provided with a secure
cryptographic token, which is checked to guarantee that the user
has waited his prescribed time in the queue. We evaluate the ideas
of WebQ using a real prototype implementation. Our experiments
show that, with WebQ in place, users experience zero server
failures and significantly better response times from a web server,
even when the peak load is several times the provisioned capacity.

I. INTRODUCTION

The problem of websites “crashing” due to server overload
persists to date, despite huge advances in server technologies.
Some recent examples include the crash of AT&T’s servers
due to simultaneous activations from iPhones in 2011 [5], and
the overload of the U.S. government healthcare website in
2014 [7]. Server crashes can happen even when the website
capacity has been planned well, because websites may
sometimes receive an unexpected peak load that significantly
exceeds capacity (e.g., when a website is “slashdotted”).
Further, even if the peak load can be anticipated, it may be
expensive and impractical to provision a website for peak load
that occurs only for a short period of time. For example, the
online ticketing portal of the Indian Railways is provisioned
to serve a few thousand users a minute. However, for a short
period everyday when a block of last-minute tickets go up for
sale, about a million users visit the website [6]. In such cases,
unless an explicit overload control mechanism is in place
that protects the servers, a crash is nearly certain, resulting in
website unavailability.

Several solutions have been proposed to address the
problem of web server overload (§II). Most overload control

solutions involve some form of traffic policing and admission
control to protect the web servers, and do not aim to ensure
that user requests are eventually served. Requests coming in
during the overload period are simply dropped, and the user
receives some form of a “service unavailable” error message
or his connection times out. It is up to the user then to
retry such a request, which the user does arbitrarily, further
amplifying the load on the server. The end result from the
user’s perspective is a non-deterministic wait time with no
guarantee of eventual service.

This paper presents WebQ, a system to improve user
experience when accessing overloaded web servers. The goal
of WebQ is to ensure that every request to an overloaded
server is eventually served, without the user having to resort
to adhoc retrying. Our solution (§III) consists of two front-end
web proxies, TokenGen and TokenCheck, that together shape
incoming load to match server capacity. New requests coming
to the website first arrive at TokenGen. This proxy computes
a wait time for every request, proportional to the amount
of overload at the server. TokenGen replies to every request
with a HTTP “redirect after timeout” response, that redirects
the user to the website after the wait time. TokenCheck is
an inline web proxy that intercepts and forwards this request
to the web server. The TokenGen proxy also generates a
cryptographic token that can be checked by TokenCheck
to verify that the client did wait its prescribed duration.
Together, the two proxies simulate a “virtual queue” of web
requests to an overloaded web server. The proxies do not
maintain any per-user state, and rely on aggregate statistics
and cryptographic mechanisms to compute and enforce wait
times. This stateless queuing of users makes the proxies
themselves scalable and robust to overload.

The ability of WebQ to shape incoming traffic significantly
depends on having a correct estimate of the server capacity.
To this end, TokenGen and TokenCheck monitor the server’s
response time and goodput to dynamically discover the
server’s capacity, defined as the load level that maximizes the
ratio of its goodput to average response time. Note that WebQ
can also work with other capacity estimation algorithms or a
manual capacity configuration by the site administrator.

WebQ improves user experience by making response
times more predictable, and by eliminating server crashes
that occur due to transient overload. When the web server is
not overloaded, users are immediately redirected to the server
with negligible overhead. During periods of overload, users
are informed of their wait time in the queue, are automatically
redirected to the web server after the wait time expires, and
receive predictable service from the web server once their
turn comes up. All this improvement in user experience is978-1-4673-7113-1/15/$31.00 c©2015 IEEE

achieved without modifying the clients or the server. Note
that our solution is complementary to numerous techniques
that increase the capacity of the web server itself, e.g., load
balancing traffic over several replicas. While such techniques
improve the capacity of the server itself, our solution improves
user experience during those times when the incoming load
exceeds server capacity for various reasons.

Experiments with our WebQ prototype (§IV) show that a
web server protected by WebQ can easily handle a peak load
that is 10× its capacity, with 100% of the arriving requests
eventually getting served. Further, after the users wait for
a known duration prescribed by WebQ, subsequent server
response times are up to 20× lower and have low variability.

II. RELATED WORK

Web server technologies have matured significantly in the
past decade. Elson and Howell [10] provide an overview of
several techniques that can be used to handle overload at a web
server, e.g., Content Distribution Networks (CDNs), or load
balancing across replicas. Researchers have also proposed
web service architectures that enable effective overload
control (e.g., SEDA [19]). Our work is complementary to
such techniques. Even the most well designed and provisioned
servers can face peak load that exceeds capacity, and WebQ
helps web servers deal with this overload gracefully without
compromising on user quality of experience.

Various admission control based solutions [18], [11], [17],
[19], [9] have been proposed for controlling overload on
web servers, where some form of policing of incoming load
is used, and excess requests are dropped. While the above
systems try to protect the server from overload and guarantee
QoS to the admitted requests, the users that are not admitted
are not given feedback as to when to retry. On the other
hand, WebQ’s goal is to improve user experience for those
requests that cannot be served immediately, by providing a
deterministic wait time and a guarantee of eventual service.

Several researchers have studied the problem of estimat-
ing a web server’s capacity, in the context of web server
provisioning solutions ([20], [16], [13]). While such systems
rely on instrumentation at the server, WebQ’s simple capacity
estimation algorithm treats the server as a blackbox. That
said, WebQ can work with any of these methods, and is
complementary to this body of work. The idea of automatically
discovering server capacity by probing the server’s behavior at
various load levels has also been used by systems that automate
offline server benchmarking [12], [15]. Unlike these systems,
WebQ probes for and discovers capacity online.

III. WEBQ DESIGN

A. Setup and Assumptions

Use cases. The goal of WebQ is to improve user
experience when accessing overloaded web servers. Our
solution is particularly useful in the case of multi-tier
application servers that serve dynamic HTTP content in
response to user requests. In such cases, each user request
consumes finite and measurable computational (or other)
resources at the web server and at other tiers (e.g., database
server). For example, consider the case of a travel portal that
lets users check the availability of travel tickets and make
reservations. Servers hosting such requests perform significant

computation for every user request (e.g., computing the lowest
cost schedule across multiple legs of a journey). Therefore,
when offered load exceeds capacity of such a server, the
response time of the server increases, queued-up requests take
longer to complete, causing to server to eventually run out of
resources (e.g., socket descriptors) and turn down new user
requests with a “service unavailable” message.

Our solution is deployed as a pair of transparent
middleboxes between clients and servers, and does not require
modifications to either. During periods of overload, WebQ
makes clients wait for a predetermined amount of time and
shapes incoming traffic to the server, so that clients arrive at
the server at a rate that it can handle. WebQ is only useful
when server overloads are transient, and average incoming
load is below provisioned capacity eventually. WebQ allows
web servers to be provisioned for average load instead of
peak load, and insulates them from the consequences of
bursty traffic patterns. Note that WebQ does not fully solve
the overload problem when the incoming load always exceeds
server capacity, and can only help delay (but not eliminate)
the need for upgrading server capacity. As such, our work is
complementary to techniques that scale server capacity, which
are more suitable to alleviate persistent overload.

User Acceptance. We assume that users prefer a known
wait time in WebQ’s virtual queue to non-deterministic wait
times, server crashes, and adhoc retrying. Our assumption
is grounded in user studies such as [3] that highlight the
importance of feedback during long periods of waiting.

Deployment. We envision the WebQ proxies to be
deployed as a third party service (in the cloud, perhaps)
to which requests are redirected. If desired, WebQ can
also be integrated more closely with the server itself. The
functionality of TokenGen can be integrated into reverse
proxies, load balancers, application layer firewalls, or other
middleboxes that vet requests coming to a web server.
TokenCheck performs some simple checks before serving
every incoming request, and this functionality can be easily
integrated with the web server itself. For ease of exposition,
we describe both proxies as separate entities.

We assume that HTTP requests are redirected through
WebQ by the web site designer using techniques like DNS
redirection, much like how some parts of web pages are
redirected to and fetched via CDNs. Note that it is not
necessary for all web requests to pass through WebQ; the
server can choose to redirect only the most resource-intensive
ones. For example, a travel portal can host the landing web
page that collects information about the planned trip from
the user on its regular server farm. Now, after the user fills
up his requirements and hits on the “Submit” button, only
the subsequent computationally intensive web request can
be redirected via WebQ. Note that servers need not commit
to using WebQ at all times as well. Servers can choose
to redirect requests to our system only during periods of
expected overload, e.g., when a travel portal releases a block
of deeply discounted tickets or when a university web site
releases examination results.

Workload. For ease of exposition, we assume that all
requests to the web server are of equal hardness, and consume
similar resources at the server. However, our algorithms work
even when the workload to the server consists of different
types of requests with different relative hardness. In such

Fig. 1: Architecture of WebQ.

cases, the capacity estimate used by WebQ for traffic shaping
will implicitly depend on the relative ratio or mix of the
different request types. For example, consider a web server
that receives two types of requests of different hardness, with
their arrival rates in the ratio m:n. Let C be the capacity
estimate at WebQ, using which the proxies allow up to C
requests/sec to the server. Note that the capacity estimate C
implicitly depends on m and n, and would have probably been
lower (higher) if the relative proportion of harder requests
was higher (lower). Therefore, as long as the incoming traffic
to the server adheres to this mix m:n, WebQ’s traffic shaping
will ensure that the server is not overloaded. When the mix
of requests changes, WebQ will perceive this as a change in
server capacity, and will rerun its capacity discovery algorithm
to discover the capacity corresponding to the new mix. As
part of future work, we plan to extend WebQ to better handle
the case of varying traffic mix by leveraging several existing
techniques to determine server capacity under non-stationary
workloads (e.g., [20], [14]).

Overhead. WebQ proxies add a cost overhead to the web
server infrastructure. However, if deployed as a third-party
service in the cloud with a pay-as-you-go model, website
administrators can redirect traffic through WebQ only during
periods of expected overload, thereby incurring the cost of the
virtual queue infrastructure only when required. Redirection
via WebQ will also add an additional network round-trip time
to the request completion time. The processing overhead at the
proxies itself should be negligible, since the proxies do very
little beyond simply redirecting the requests back to the client
(when the server is overloaded) or to the server. WebQ shall be
deployed when the benefit of improved user experience (during
transient overloads) outweighs these costs.

B. Architecture

The WebQ system comprises two entities that work
together to simulate a virtual queue: an HTTP proxy server
TokenGen that assigns wait times to users, and an inline
HTTP proxy TokenCheck that forwards user requests to
the web server after the users have waited for the specified

time. Figure 1 shows the architecture of our system. User
requests that are destined to the web server being protected by
WebQ are redirected to TokenGen by the web site designer.
TokenGen computes a wait time for requests based on the
extent of overload at the server (0 if no overload), and returns
a HTTP redirect page to the user that redirects to the web
server after the wait time expires. While WebQ uses the
HTTP redirect mechanism to make web clients wait, our idea
can work with any other mechanism (e.g., a Javascript timer)
that can temporarily stall a user from accessing the server.

When the user is eventually redirected to the website,
the user’s request is intercepted by the TokenCheck inline
proxy, and forwarded to the server. In addition to bridging
the HTTP connections between the client and the server,
TokenCheck also computes statistics about server response
time and goodput, and communicates them to TokenGen
periodically. TokenGen uses this feedback from TokenCheck
to estimate server capacity (§III-E), which in turn feeds into
the wait time calculation. Assuming TokenGen calculates
server capacity and wait times correctly, the eventual load at
the TokenCheck proxy and the web server (after users have
waited their prescribed durations) will never exceed the server
capacity, even under overload, guaranteeing good quality of
experience to the end user.

Note that TokenCheck is protected from overload by
TokenGen’s traffic shaping, much like how the server is
protected. Therefore, it suffices for TokenCheck to handle a
load equal to the server capacity and not any more. Therefore
any techniques used to scale server capacity can be applied
to scale TokenCheck as well. On the other hand, TokenGen
may potentially face a much higher incoming load. However,
note that TokenGen immediately returns a response to every
request, and unlike a traditional inline proxy, does not need
to maintain any client sockets open during the duration of
the client’s interaction with the web server. TokenGen also
does not maintain any per client state beyond aggregate traffic
statistics. As a result, TokenGen is robust to overload, and can
scale to handle a much larger incoming load than the actual
web server. For the purpose of this work, we assume that a
single TokenGen proxy can handle and redirect all incoming
traffic. As part of our ongoing work, we are working on a
distributed horizontally-scalable design of TokenGen, where
multiple TokenGen replicas perform distributed traffic shaping.

C. Token Generation and Verification

A fundamental question still remains: how do we ensure
that the user does not “jump the queue”? For example, the
user (or the user’s browser) can modify the wait time in
the HTTP response from TokenGen, and attempt to access
the server sooner than its rightful turn. WebQ uses simple
cryptographic mechanisms to discourage such behaviors.
TokenGen and TokenCheck share a cryptographic secret key
K during setup. When a user arrives at TokenGen, the proxy
returns a cryptographic token to the user in addition to the
wait time. The token is simply the HMAC (hashed message
authentication code, computed using the shared secret key)
of the user IP address IP, the timestamp TS when the user
checked in at TokenGen, and the wait time w relative to
this current timestamp. This token, along with TS and w, is
embedded in the redirect URL and returned to the client.

When the user arrives at TokenCheck, the proxy extracts
the values of TS, w, and the token from the redirect URL. The
proxy first verifies that the current time matches the sum of
the timestamp of the user at TokenGen TS and the wait time w
prescribed by TokenGen, proving that the user waited exactly
for the prescribed time. To verify the authenticity of TS and w
themselves, the proxy recomputes the HMAC token using the
reported values of IP, TS, and w, and verifies that it matches
with the token presented by the user. If the user did tamper
with TS or w to show up earlier (or later) than his designated
time, the HMAC computed by TokenCheck would not match
that given to the user by TokenGen. Such non-conforming
requests can be dropped by TokenCheck. Note that for the
timestamp checks to work as described above, TokenGen and
TokenCheck should be time-synchronized. Alternatively, the
timestamps can be rounded off to a coarser time granularity
to accommodate time drift, without compromising safety.

Note that the timestamp check at TokenCheck also guards
against potential replay attacks, where a user reuses old tokens
to gain access to the server at a future time. Because the
timestamp check verifies that the user has arrived at exactly his
designated time, a user that tries to reuse the same token in the
future will not be allowed by TokenCheck. It is theoretically
possible for a user to reuse his token to gain access to the
server multiple times in the short period before the next tick
of the timestamp. For example, if timestamps are rounded
off to a second, it is possible for the user to reuse the same
token multiple times within the one-second interval that was
assigned to him for accessing the server. Because TokenGen
and TokenCheck do not keep any per-user or per-request state
for scalability, such an attack is a possibility. However, because
the window of vulnerability is so small (e.g., one second if
timestamps are rounded off to a second), we believe allowing
a small number of such malicious requests is a reasonable
tradeoff for simplicity and scalability of our design.

D. Wait Time Computation in TokenGen

We now describe how TokenGen assigns wait times to
requests. TokenGen periodically estimates the capacity of the
server (§III-E). The capacity C is a measure of the request-
processing capability of the web server, and is measured as
the maximum number of requests/sec that the server can
successfully handle. The capacity of the server is used as input
to compute a suitable wait time for arriving requests if the
server is overloaded. The wait time returned to a user indicates
the number of seconds the user has to wait before accessing
the web server. We only assign wait times in units of seconds
(and not milliseconds, for example) for several reasons: (i)
the HTTP refresh header supports redirection after an integer
number of seconds; (ii) a finer granularity of scheduling
is harder to enforce strictly due to network latencies and
other delays beyond our control. From now on, we assume
that the wait time w returned by TokenGen is an integer
and is in units of seconds. However, our design works for
any other granularity of wait time that can be reliably enforced.

TokenGen maintains a long circular array of numbers L,
where L[i] denotes the number of requests that have been
scheduled by WebQ so far to arrive at the web server at a
time i seconds into the future. For example, L[0] denotes
the number of requests that will be reaching the server in
the current second. WebQ can limit the maximum wait time

 0

 800

 1600

 2400

 0 20 40 60 80 100 120 140

P
o
w

er
 r

at
io

Input load (requests/sec)

T
ru

e
C

ap
ac

it
y

C
o
n
fi

g
u
re

d
 C

ap
ac

it
y

Fig. 2: Power ratio (ratio of goodput to response time) of a
web server as a function of offered load.

assigned to a client to some large value (say, based on what is
considered reasonable from a user’s perspective), and the array
L can be sized accordingly. Whenever a user request arrives at
TokenGen, it finds the earliest timeslot in the future that can
accommodate the user, subject to the capacity constraint at
the server. That is, it computes the smallest index i such that
L[i] < C, and assigns the wait time to the user as w = i. It
also increments the count of requests L[w] by one to account
for this user’s arrival in the future. Note that if the incoming
load is less than server capacity, the wait time will work out
to be zero, because L[0] < C always holds. The list L is also
updated every second to shift out the previous second’s entries.

WebQ also tracks server capacity, and adjusts its capacity
estimate from time to time. Changes in server capacity can
lead to transient periods where the wait time assignment
algorithm deviates from the one described above. Consider
the case where TokenGen has scheduled C requests each
for the next T > 0 seconds into the future, and is currently
assigning a wait time of T + 1 to new requests. At this
time, it discovers that the server capacity has increased, and
updates its capacity estimate to C ′ > C . After this update,
the wait time assigned to new requests will no longer be
T + 1, but can be as low as 0, because L[0] = C < C ′. That
is, new requests will be assigned shorter wait times to fill
up the newly discovered server capacity in the near future.
As a side effect, requests may not always be served on a
first-come-first-serve basis during the transient period when
capacity is being updated.

Let us now consider the case where the server capacity
has reduced and the new capacity estimate C ′ < C. Again,
assume that we have already scheduled C requests per second
to the server for the next T seconds before we discover the
capacity change. Here, we have unwittingly forced the server
into an overloaded situation, by scheduling more requests (C)
than it can handle (C ′) for the next T seconds. As a result,
the C ∗T requests scheduled in the future will actually take at
least T ′ = C ∗ T/C ′ seconds to complete, with T ′ > T .
Therefore, new requests that arrive at TokenGen after the
capacity reduction are assigned a wait time of T ′ + 1, and
no requests are scheduled to the server between T and T ′.

E. Capacity estimation

The effectiveness of WebQ crucially depends on assigning
appropriate wait times to requests at TokenGen, which in turn
depends on knowing the correct capacity C of the web server.
We now describe how WebQ estimates this capacity. It is well
known that the performance of a web server, as measured
by its goodput and response time, degrades significantly
when the incoming load is greater than its capacity. For

example, consider a simple web server that is configured
to have a capacity of 100 req/s (see Section IV for details
of our setup). As the incoming load exceeds capacity, the
goodput plateaus off (and eventually drops) and the response
time increases sharply. Therefore, the power ratio, defined as
the ratio of goodput to response time, attains its maximum
value around the server capacity, as shown in Figure 2. The
peak of the power ratio occurs a little below the configured
server capacity because response times of the server start to
increase due to queuing even before its configured capacity
is reached. We define the true capacity (as opposed to the
configured capacity) of a server as the offered load (in
req/s) that maximizes its power ratio. Our capacity discovery
algorithm aims to discover this true capacity, and WebQ
shapes incoming traffic to match this capacity in order to
keep response times low.

The capacity discovery algorithm collects samples of
power ratio at various levels of offered load, builds a function
of power ratio vs. offered load in real time, and estimates the
value of offered load that maximizes this function. For the
purpose of capacity estimation, time is divided into epochs
of duration τ (=8 s). Our algorithm probes the power ratio
at a given value of offered load by scheduling requests using
that load level as the capacity estimate in TokenGen for the
duration of an epoch. By virtue of being an inline proxy
that intercepts all requests to the web server, TokenCheck
can monitor the average HTTP response time and goodput
of the server during that epoch, and conveys these statistics
to TokenGen periodically. Using this feedback, TokenGen
computes the power ratio corresponding to the offered load
level in that epoch. The capacity estimation algorithm at
TokenGen collects several such observations of power ratios
by probing different load levels in different epochs, and fits
a polynomial curve (degree 3 works well empirically) over
the collected samples of power ratio vs. incoming load. The
capacity is found as the maximum value of this function.
(Note that a certain capacity estimate can be probed only if
the incoming load at TokenGen is at least equal to that load
level for the duration of the epoch. Our algorithm proceeds
with capacity discovery only when incoming load exceeds
its current capacity estimate, and pauses discovery during
periods of low load.)

Now, how do we pick values of offered load to probe
in each epoch? The capacity estimation algorithms starts
probing with a low estimate of capacity (15 req/s in our
case), and increases this load level by a multiplicative factor
in each successive epoch, until a drop in the power ratio is
observed. This multiplicative increase helps us to quickly
obtain a coarse capacity estimate, irrespective of how low we
start relative to the true capacity. Subsequently, the algorithm
linearly probes values around this coarse capacity estimate to
arrive at an accurate value for the true capacity. Our empirical
evaluation shows that the entire algorithm can take a few
hundreds of seconds to converge in typical cases. For further
details on our algorithm, please see [8].

WebQ also monitors for changes in capacity and adapts
to these changes. When the capacity of the server changes,
its power ratio curve also changes, and observations of
power ratio in subsequent epochs will be far away from
the original fitted curve. After capacity discovery completes,
WebQ computes the maximum distance between any power
ratio observation and the fitted curve, and remembers this

maximum error observed during the discovery procedure.
If the observed power ratio in any subsequent epoch is
at a distance more than twice this maximum error, WebQ
empirically concludes that capacity has changed, and reruns
its capacity discovery algorithm.

Finally, we note that WebQ can be made to work with
any other capacity estimation method also. Alternately, a web
service can explicitly specify the rate at which it intends to
receive requests (based on its own estimate of its capacity),
and WebQ can shape offered load to this specification.

IV. EVALUATION
WebQ Prototype. We first describe our prototype

implementation. TokenGen is implemented in two parts:
the request scheduling logic and capacity estimation. The
scheduling logic of TokenGen is implemented as a FastCGI
extension [2] to the popular Apache web server. The capacity
estimation part of TokenGen is implemented as a separate
Java module that keeps listening to the response time and
goodput information sent from TokenCheck, and periodically
runs the capacity estimation algorithm. Upon change of
capacity, it communicates the new capacity estimate to the
FastCGI module for scheduling. TokenCheck runs the lighttpd
proxy [4]. We modified the proxy code to intercept every
request to the web server and perform token verification. The
two proxies in our implementation share a 128-bit secret key.
The HMAC token is a 128-bit keyed hash (we use MD5,
but any other hash function like SHA-2 can also be used).
Both proxies use OpenSSL libraries to compute and verify
the HMAC token. In our evaluation setup, the TokenGen and
TokenCheck prototypes run on separate 4 core Intel i7 desktop
machines with 4GB RAM. We find that our unoptimized
implementations of TokenGen and TokenCheck are capable
of handling over 5000 req/sec each, without any degradation
in goodput. The average additional latency due to processing
at each proxy was only a few milliseconds.

Experimental setup. Our web server is an Apache
installation that runs on a 4 core Intel i7 desktop machine
with 4 GB RAM. Client requests to the web server trigger
a computationally intensive PHP script that performs integer
arithmetic for every request, simulating CPU-bound backend
processing in a multi-tier application. The server can be
configured to have a certain capacity by suitably adjusting the
number of integer operations performed for each request. We
simulate client load using Apache JMeter [1] on a 20-core
server. The server, clients, and the WebQ proxies are all
connected by an uncongested wired network.

Evaluation under transient overload. We now
demonstrate the effectiveness of WebQ when servers
face transient overload. We configure our web server to
have a capacity of 100 req/s, leading to a power ratio peak
and true capacity around 80 req/s. We generate an average
load of around 600 req/s from the clients for a duration
of 4 seconds, and a load of 3 request/sec for the next 32
seconds, such that the average load to the server is below
its capacity, but the peak load is much above capacity. The
experiment is run for four such cycles, for a total duration of
around 150 seconds. Figure 3 shows how WebQ evens out
the load to the web server. We can see from the figure that
the incoming load at TokenGen is highly bursty. However,
due to appropriate scheduling of client arrivals by TokenGen,

 80
 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

L
o

ad
 (

re
q

/s
ec

)

Time (sec)

Incoming Load at TokenGen
Actual Capacity

Incoming Load at TokenCheck

Fig. 3: Traffic shaping of WebQ with
bursty incoming load.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140
 0

 200

 400

 600

 800

 1000

A
ss

ig
n
ed

 a
v
g
 w

ai
ti

n
g
 t

im
e

In
p
u
t

lo
ad

 a
t

T
o
k
en

G
en

Time (sec)

Input Load at TokenGen
Waiting Time

Fig. 4: Wait times assigned by the WebQ
TokenGen proxy.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

A
v
g
.
R

es
p
o
n
se

 T
im

e
(s

ec
)

Time (sec)

Without WebQ
With WebQ

Fig. 5: A comparison of response time
of the server with and without WebQ.

the load at TokenCheck (and hence at the web server) is
much smoother. Slight fluctuation in the incoming load at
TokenCheck is due to the scheduling behavior of various
client threads at the client load generator, and is representative
of a real deployment where user arrival times may deviate
slightly from the assigned wait times due to network delays.

Figure 4 shows the wait times assigned to clients during
this experiment. We see that the wait times increase steeply
during the burst, forcing clients that arrive during the peak load
to wait for longer periods of time. As the incoming traffic burst
tapers off, we see that the wait times assigned to clients also
become lower. Figure 5 shows the average HTTP response time
recorded by clients for their transaction with the web server (as
reported by the JMeter tool) with and without WebQ. Note that
this response time only counts the time from the moment the
redirected request is made to TokenCheck to the time when the
server response is returned; it does not include the initial wait
time assigned by TokenGen (which was shown in Figure 4).
We see that the server response time with WebQ is fairly low
(under 1 second) and predictable. That is, once users wait out
their time in the virtual queue of WebQ, they can be assured
of good service at the server. On the other hand, the response
time without WebQ can even go over 20 seconds, and is highly
volatile, leading to bad user experience. We omit further details
of our evaluation due to lack of space. The interested reader
may refer to [8].

V. CONCLUSION AND FUTURE WORK

This paper presents WebQ, a system to improve user
experience with overloaded web servers. WebQ consists of
two proxies, TokenGen and TokenCheck, that together shape
incoming load to match server capacity. While most server
technologies today focus on improving server capacity, and
dropping excess load beyond the capacity, the problem of
poor user experience when offered load exceeds this capacity,
even for brief periods, hasn’t received much attention. Users
today face server crashes and connection timeouts when
accessing overloaded servers, and resort to adhoc retrying to
gain access. In contrast, users of WebQ-protected overloaded
servers are presented with a known wait time in a virtual
queue of the overloaded server, and are guaranteed service
after the wait time expires. With a system like WebQ in place,
servers no longer need to be provisioned to handle transient
peaks in incoming traffic, eventually leading to cost savings
during server provisioning as well.

Our work on WebQ has opened up several exciting avenues
for future research. We are developing a capacity estimation al-
gorithm to handle heterogeneous requests with rapidly varying
traffic mix. We are also working on a distributed horizontally-
scalable design of TokenGen that can scale to handle large

loads. Finally, we are exploring the possibility of integrating
and testing WebQ with production-quality web servers with
capacities of several thousands of req/sec, and under real-life
transient overload scenarios.

REFERENCES

[1] Apache JMeter. jmeter.apache.org.
[2] FastCGI. www.fastcgi.com.
[3] Integrating User-Perceived Quality into Web Server Design. http:

//logos-software.com/papers/websiteDesign.pdf.
[4] Lighttpd. www.lighttpd.net.
[5] Apple Insider. http://appleinsider.com/articles/11/10/14/rush of

iphone 4s activations forces some on att into holding pattern/, Oc-
tober 2011.

[6] Economic Times. http://articles.economictimes.
indiatimes.com/2012-02-23/news/31091228 1
irctc-website-indian-railway-catering-bookings/, February 2012.

[7] USA Today. http://www.usatoday.com/story/news/nation/2013/10/05/
health-care-website-repairs/2927597/, October 2013.

[8] Bhavin Doshi, Chandan Kumar, Pulkit Piyush, Mythili Vutukuru.
WebQ: A Virtual Queue For Improving User Experience During Web
Server Overload. Technical Report TR-CSE-2015-70, Department of
Computer Science and Engineering, IIT Bombay, April 2015.

[9] X. Chen, P. Mohapatra, and H. Chen. An Admission Control Scheme
for Predictable Server Response Time for Web Accesses. In Proc. of
WWW, 2001.

[10] J. Elson and J. Howell. Handling flash crowds from your garage. In
Proc. of Usenix ATC, 2008.

[11] H. Jamjoom, J. Reumann, and K. G. Shin. Qguard: Protecting internet
servers from overload. Technical Report CSE-TR-427-00, University
of Michigan, 2000.

[12] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam, and S. Babu.
Cutting Corners: Workbench Automation for Server Benchmarking. In
Proc. of USENIX ATC, 2008.

[13] R. Singh, U. Sharma, E. Cecchet, and P. J. Shenoy. Autonomic mix-
aware provisioning for non-stationary data center workloads. In Proc.
of ICAC, 2010.

[14] C. Stewart, T. Kelly, and A. Zhang. Exploiting nonstationarity for
performance prediction. In Proc. of Eurosys, 2007.

[15] A. Tchana, B. Dillenseger, N. De Palma, X. Etchevers, J.-M. Vincent,
N. Salmi, and A. Harbaoui. Self-scalable benchmarking as a service
with automatic saturation detection. In Proc. of ACM Middleware, 2013.

[16] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. Agile
dynamic provisioning of multi-tier internet applications. ACM Trans-
actions on Autonomous and Adaptive Systems, 2008.

[17] R. P. Verlekar and V. Apte. A proxy-based self-tuned overload control
for multi-tiered server systems. In Proc. of HiPC, 2007.

[18] T. Voigt and P. Gunningberg. Adaptive resource-based web server
admission control. In Proc. of ISCC, 2002.

[19] M. Welsh and D. Culler. Adaptive overload control for busy internet
servers. In Proc. of USITS, 2003.

[20] Q. Zhang, L. Cherkasova, G. Mathews, W. Greene, and E. Smirni. R-
capriccio: A capacity planning and anomaly detection tool for enterprise
services with live workloads. In Proc. of Middleware, 2007.

