
1

TCP Download Performance in Dense WiFi

Scenarios: Analysis and Solution
Mukulika Maity, Bhaskaran Raman Mythili Vutukuru

Department of CSE, IIT Bombay, India

mukulika,br,mythili@cse.iitb.ac.in

Abstract—How does a dense WiFi network perform, specifi-
cally for the common case of TCP download? While the empirical
answer to this question is ‘poor’, analysis and experimentation
in prior work has indicated that TCP clocks itself quite well,
avoiding contention-driven WiFi overload in dense settings. This
paper focuses on measurements from a real-life use of WiFi in
a dense scenario: a classroom where several students use the
network to download quizzes and instruction material. We find
that the TCP download performance is poor, contrary to that
suggested by prior work. Through careful analysis, we explain
the complex interaction of various phenomena which leads to this
poor performance. Specifically, we observe that a small amount
of upload traffic generated when downloading data upsets the
TCP clocking, and increases contention on the channel. Further,
contention losses lead to a vicious cycle of poor interaction
with autorate adaptation and TCP’s timeout mechanism. To
reduce channel contention and improve performance, we propose
a modification to the AP scheduling policy to improve the
performance of large TCP downloads. Our solution, WiFiRR,
picks only a subset of clients to be served by the AP during
any instant, and varies this set of “active” clients periodically
in a round-robin fashion over all clients to ensure that no
client starves. We have done extensive evaluation of WiFiRR
in simulation and in real settings. By reducing the number of
contending nodes at any point of time, WiFiRR improves the
download time of large TCP flows upto 3.5× of our classroom
scenario. We also compare WiFiRR with state-of-the-art prior
work WiFox, WiFiRR improves download time by 2.25× over
WiFox.

Index Terms: Dense WiFi Network, TCP download perfor-

mance, Channel contention, Real setting, Scheduler
I. INTRODUCTION

The omni-presence of WiFi needs no justification. While

WiFi standards have improved significantly in terms of raw

bit-rate, whether this has translated to corresponding improve-

ments in application throughput is unclear. We are specifically

interested in dense user scenarios, such as conferences, sports

stadiums, and large classrooms, with the latter two being

especially nascent with respect to WiFi usage. How does a

dense WiFi network perform, specifically for the common case

of TCP downloads? This is the focus of our work.

Prior work has shown, both analytically [1], [2] and exper-

imentally [3], [4], that TCP download performance does not

degrade with increasing number of users in a WLAN. These

results are based on the performance of long running TCP

flows in controlled environments, using homogeneous well-

tested clients and artificial user traffic. These studies have

reported good TCP download performance even with over a

hundred clients [3].

In contrast, this paper presents a measurement study of TCP

performance “in the wild” over a dense WiFi network, with

real users running real applications over a variety of client

devices. We conduct several measurements in several WiFi-

enabled classrooms, where students download online quiz

questions and/or instruction material. Our results show that, in

contrast to prior work, TCP performance degrades significantly

in a dense usage scenario, even with 20–30 clients per access

point. (We focus on a single WiFi BSS, and do not address

scaling issues across multiple interfering BSSs.)

We have analyzed why our results differ from the TCP

download scenarios in prior research. With long running TCP

downloads, the only traffic on the network is TCP data packets

in the downlink and ACKs in the uplink. In such cases, the

number of contenting nodes on the channel is usually quite

low, because the AP alone transmits TCP data, and only the

clients that most recently received a data packet are likely to

contend for the channel to send an TCP ACK. In contrast,

in our real-life measurements, we found significantly higher

channel contention due to “chattiness” of real applications that

create a small but noticeable amount of extra upload traffic

besides TCP ACKs.

For example, in one of our classroom scenario, a student

logs in to the class webpage, authenticates herself, locates

a file to download on a webpage (that has several smaller

web objects in addition to the main object of interest), using

a browser that opens several parallel TCP connections to

download the content. In addition, users also have a low

volume of background traffic automatically generated by email

clients and such. Somewhat surprisingly, this small amount of

extra traffic in the upload direction significantly increases the

contention on the channel (as the number of active clients is

now close to the total number of users), resulting in collisions

due to the CSMA MAC protocol’s channel arbitration mech-

anism. As a result, we found that TCP performance degraded

severely, and students often took more than 8× the amount

of time to download the files needed for an in-class quiz,

as compared to a universe where TCP scaled perfectly with

increasing user density.

We find that the contention on the wireless channel and

the resulting collision losses also have an undesirable effect

on several other protocols in the system. For example, we

observed that WiFi clients picked lower bit rates during (and

for a short period of time after) contention, because most rate

adaptation algorithms confuse collisions for channel losses.

This lowering of rate increases the time taken for subse-

quent transmissions, further increasing contention, leading

to a vicious cycle. Further, we observed poor interaction

2

between channel contention and TCP’s timeout mechanism.

We found that the RTT of TCP flows was highly variable due

to contention losses, confusing the TCP timeout algorithm,

leading to spurious retransmissions. Note that while prior

work [5], [6], [7], [8], [9], [10] has also observed some subset

of these problems, our analysis has focused on thoroughly

identifying almost all factors that contribute to poor TCP

download performance in dense scenarios, and understanding

their complex interplay.

We also observed that in practice, several device drivers

become unresponsive when operating under high contention

losses, and need a driver reset to function even after the

contention has subsided. All of these real-life effects further

exacerbate the TCP performance issues in a dense setting. Note

that we have verified and eliminated other factors (AP buffer

mismanagement, wired network/server overload, external in-

terference) as possible causes for the poor performance.

Having identified excessive channel contention as the root

cause behind the performance issues, we propose a solution,

WiFiRR, to improve the performance of large TCP downloads

in dense WiFi scenarios. WiFiRR works as a scheduler at the

packet queue of an access point. WiFiRR identifies a subset

of clients as “active” during every instant of time (up to 5

clients in our implementation), and the AP serves downlink

packets only to these clients. This results in the other clients

going quiet during this period, leading to lower contention

and improved performance. This set of active clients is varied

periodically (every 1.6s in our case) to cover all clients in

a round-robin fashion, hence the ’RR’ in the name WiFiRR.

Note that while clients may temporarily be deprived of service

for short durations, they will eventually see improved perfor-

mance over large TCP downloads. We evaluate our solution

in simulation and in real experiments.

In simulation, we emulate the classroom browsing be-

haviour by creating our own ns-3 application modules Chat-

tyClient (client) and WebServer (server). Here, WiFiRR im-

proves TCP download time by 1.6× over the base case. Next,

we evaluate WiFiRR in real settings. We set up a testbed of 15

clients connected to one 802.11n access point. We emulate the

browsing behaviour observed in classroom by using a browser

replacement tool i.e., Epload [11]. Here, WiFiRR improves

TCP download time by 2.4× over the base case.

We soon realized that our AP side solution of suppress-

ing downlink traffic in the view reducing uplink contention

might not be effective if the uplink traffic continues without

downlink traffic (for ex. TCP SYN retries). Thus to reduce the

client side chattiness even more we seek client side solution.

The new HTTP protocol, SPDY [12] helps in reducing the

client side chattiness. SPDY opens a single TCP connec-

tion for downloading multiple web objects. This helps in

reducing the contention. We have evaluated SPDY both in

simulation and in real settings. We have found WiFiRR pro-

vides most improvement when tried with SPDY compared to

HTTP. In simulation, HTTP+WiFiRR provides improvement

of 1.6×, SPDY+WiFiRR provides improvement of 2.9×. In

real settings, HTTP+WiFiRR provides improvement of 2.4×,

SPDY+WiFiRR provides improvement of 2.7×.

We examine scalability of WiFiRR by evaluating it for

different number of clients. We vary the total number of clients

from 10 to 50. WiFiRR provides maximum improvement

of 3.5× when the network size is 40. The improvement of

WiFiRR does not degrade with increasing number of clients.

We also compare our solution to another solution WiFox [5]

that seeks to improve TCP download performance in dense

scenarios by prioritizing AP. WiFiRR improves download time

by 2.25× over WiFox. To reduce contention, WiFox merely

prioritizes the AP over clients while we address contention

more directly by maintaining only a few ’active’ clients

while throttling all others. We have also evaluated WiFiRR

for different interactive applications like skype, ssh etc. We

realize that WiFiRR does not give significant performance

improvement for these traffic types but nor does it degrade

performance for these traffic types.

Our contributions can be summarized as follows: (a) a real-

life measurement study of TCP download performance and

its careful analysis, which identifies the factors that contribute

(and eliminates the factors that do not) to poor performance

in dense scenarios, and (b) a solution approach WiFiRR that

improves the download time of large TCP flows by reducing

channel contention, and (c) extensive evaluation of WiFiRR in

simulations and in real settings.

The rest of the paper is organized as follows. Section II

discusses related work. Section III describes our measurement

study in real classrooms, and Section IV describes some

controlled experiments and simulations we conducted to un-

derstand the measurement results in the classrooms. Section V

describes the design of our solution WiFiRR that improves

performance by addressing the problems we found. Section VI

presents evaluation of the solution in simulation and in real

settings. Finally, Section VII concludes the paper.

II. RELATED WORK

Starting with Bianchi’s seminal work [13], several re-

searchers have analytically shown that the performance of

802.11 CSMA/CA degrades with increase in offered load,

due to increased contention on the wireless channel. This

analysis assumes saturated traffic, i.e., all stations are always

backlogged and contend for the channel. [14] further general-

izes the result, and shows that collision probability increases

with increasing number of stations. However, subsequent re-

search [1], [2] has considered a more specific problem of TCP

downloads over 802.11. In this case, the analysis shows that

the number of contending stations is much lower than the

total number of stations due to the TCP data/ack clocking

mechanism. When several downlink flows go through an AP,

and the AP sends a data packet to a client at a certain instant,

the client that received this data packet alone will generate a

TCP ACK, and contend with the AP for the channel. All the

other clients will not actively contend for the channel at this

instant, until data packets arrive for them from the AP. This

data/ack clocking mechanism of TCP flows ensures that the

contention on the channel and collision probability stay low,

with the result that the system throughput does not degrade

much with increasing number of clients.

The analysis results of the scaling of TCP downloads have

also been backed up by experimental studies [3], [4]. These

3

papers show that the TCP’s data/ack clocking mechanism

allows TCP downloads to scale to over hundred clients without

any significant degradation of aggregate system throughput.

However, the experiments in these papers consider only long

running TCP flows and emulated user traffic on testbeds

of homogeneous nodes. In contrast, our measurement study

conducted with several tens of users trying to download files

using TCP shows that TCP download does not scale as well

in the context of real user traffic.

Several researchers have reported some subset of the prob-

lems we have encountered in our measurement study, and

suggested several techniques to address these problems. Prior

work [5], [6], [7] has considered the problem of asymmetry

between uplink and downlink traffic in WLANs. When a large

number of users are downloading traffic over the WLAN,

most traffic is downlink. However, the AP that delivers all

the downlink traffic has to contend for the channel with

the other clients, resulting in an unfair allocation to the

downlink traffic. To solve this problem of asymmetry, these

papers propose several MAC-layer enhancements to prioritize

the AP’s channel access. For example, WiFox [5] prioritizes

AP’s channel access over the clients dynamically depending

on the load in the network. The AP accesses medium with

high priority when AP’s transmission queue size is high and

accesses with default priority otherwise. As a result, WiFox

claims to give 400-700% increase in throughput and 30-

40% improvement in average response time. Our work differs

from WiFox and other related work in that we identify and

address several factors (besides asymmetry between uplink and

downlink) that contribute to poor TCP download performance

in dense scenarios. Specifically compared to WiFox, our work

differs in that while WiFox merely prioritizes the AP over

clients, we address contention more directly by throttling all

except a few ’active’ clients.

Other research [8] has observed the effect of channel

contention on the RTT of TCP flows through a WLAN. The

authors show that highly variable RTTs due to contention lead

to incorrect estimation of TCP retransmission timeout, and

hence lead to spurious retransmissions. The authors propose

prioritization of TCP ACKs as a solution. Researchers have

also observed the impact of channel contention on bit rate

adaptation [9], [10] in dense deployments, and proposed

solutions to prevent lowering of bit rate unnecessarily in

response to collisions. While each of the above papers measure

and analyze a subset of problems that arise in a dense WiFi

network, none of them have reported all of the problems or

their complex interplay we find in our measurements.

SPDY [12] is an enhancement to HTTP/1.1 protocol. SPDY

pronounced as ”SPeeDY” is an application layer protocol

developed primarily at Google to speed up the web. The basic

features of SPDY are: 1) TCP stream multiplexing, 2) HTTP

header compression, 3) Request prioritization and, 4) Server

push. 1) TCP stream multiplexing: SPDY opens a single TCP

connection for multiple web objects. It multiplexes requests

for multiple web objects on a single connection. This increases

the efficiency of TCP as fewer network connections are made.

2) HTTP header compression: SPDY compresses request and

response headers. So, the total number of transmitted packets

and bytes reduces. 3) Request prioritization: SPDY assigns a

priority to each request thus higher priority requests are served

before the non-critical requests. 4) Server push: SPDY allows

the server to push the content to the client even before it

requests them. This enables effective usage of the bandwidth.

SPDY is complementary to our work. Any application layer

protocol modifications or client side solutions are complemen-

tary to our work. In our evaluation, we show that the use of

SPDY in fact magnifies WiFiRR’s gain further.

A new IEEE standard IEEE 802.11ah [15] is coming

up which utilizes 1 GHz license-exempt bands. It basically

supports the concept of the Internet of Things (IoT). Here large

number of stations/sensors will co-operate to share the network

channel, thus the contention on the network will be high. To

reduce the contention/collision, the stations are divided into

several groups. The network channel access is divided into two

tiers: inter-group and intra-group. Two such grouping algo-

rithms exist following traditional IEEE 802.11 standard, they

are: Token-coordinated random access MAC (TMAC) [16]

and Group-based MAC (GMAC) [17]. In TMAC protocol, the

coordinating AP assigns a non-overlapping interval (slot) to

each group. Contention happens only within the group. In case

of GMAC, leaders from each group are selected. Contention

happens only within the leaders. Then the winning leader

specifies the schedule of the transmissions from the group

and stations transmit accordingly. [18] improves the above

TMAC and GMAC protocols in the context of Smart Metering

Network (SMN) for the new IEEE 802.11ah standard and

proposes enhanced version of TMAC and GMAC protocols.

They are: TDMA-DCF and DCF-TDMA respectively. These

two protocols take care of hidden terminal problem, static

nodes etc. The authors have done numerical analysis and have

proposed optimal group size for the above two protocols.

In case of IEEE 802.11ah, the scale is really high. For

e.g. IEEE 802.11ah TG needs to support 6000 smart meters

in smart grid use case [19]. However, we face performance

issues even with 20-30 devices per AP. Our idea is also

similar to these protocols, as we too maintain only a subset

of clients to be active in channel contention. But for our case,

group division is done implicitly. We do not require client-

side support or MAC protocol modification. WiFiRR works

for traditional IEEE 802.11 standard.

To summarize, our work improves over prior work on

improving TCP performance in real-life dense scenarios by an-

alyzing the problem more thoroughly, and identifying interplay

of almost all the factors that contribute to poor performance.

III. MEASUREMENTS IN LIVE CLASSROOMS

As discussed in the previous section, prior work has shown

analytically and experimentally that TCP download perfor-

mance scales well. So, will the good performance observed in

these analysis and lab experiments carry over to real life? To

understand this, we collected wireless and TCP measurements

for several courses running at our Institute in live classrooms.

WiFi was used in the classrooms for various classroom ac-

tivities i.e. online quiz, download of instructional materials

etc. Here we present three such sample scenarios in three

4

TABLE I: Measurement Dataset

Parameter Classroom-1 Classroom-2 Classroom-3

Number of WiFi clients 94 200 43

Number of Access Points 3 3 1

Activity Online quiz Online quiz Instructional material (video)
download

Clients Mostly laptops and few
phones/tablets

Mobile phones/tablets Mostly laptops and few
phones/tablets

different physical classrooms, and name them as classroom-

1, classroom-2 and classroom-3. Table I summarizes our

measurement data set showing the number of WiFi clients,

number of access points, classroom activities and type of

clients for the three classrooms.

A. Classroom-1

We first describe our classroom-1 measurements.

1) Measurement setup: We describe our data collection

method for measurements in a real classroom. In a course

with 124 registered students, taught by one of the authors,

a subset of lectures involved downloads of supplementary

instruction material by students, and some involved graded

quizzes. The students used individual laptops and tablets,

and some desktops as well, for these activities. Our setup

consisted of students connecting to a web server that hosts

instruction or quiz content. A small fraction of students used

wired access. We had three enterprise-grade WiFi APs, setup

in the three non-overlapping 802.11g channels 1, 6, and 11.

All the relevant entities were on the same extended LAN.

The activity was as follows. The students browsed to the

content server, authenticated themselves, and downloaded a

variety of content (video lectures, references, quizzes) over

the wireless channel as instructed. We instrumented the web

server to log the per-request service time. In addition, we also

collected network traces from two vantage points: (i) The WiFi

AP was instrumented to collect per-frame MAC layer statistics.

Our code had access to hardware registers in the WiFi NIC,

that let us determine the fraction of airtime that was spent

in transmissions, receptions, and in idle listening at a very

fine granularity of 250ns. (ii) A sniffer running tcpdump was

connected via an Ethernet hub to the content server to collect

TCP and HTTP logs.

Prior to our measurements, we ensured that the WiFi AP,

the web server, and the wired backhaul from the AP to the

web server were not loaded. That is, the performance seen by

the clients was constrained by the wireless network bottleneck.

External WiFi interference was minimal.

From all our measurements, we choose one representative

dataset to present results from: a quiz conducted in class. In

the quiz, 94 students, spread roughly equally over 3 APs,

downloaded a quiz question paper of size ≃200KB. A subset

of 24 students also downloaded the optional reference material

file of size ≃4MB. We pick one of the three APs to present

results from; the results at the others were similar. This AP in

question served 32 students: all 32 students downloaded the

quiz file, and 17 students downloaded the reference material.

2) Results: First, we present the most important perfor-

mance metric – the completion time, since this delay deter-

mines how users perceive the quality of the network. The

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

C
D

F

Completion Time(Sec)

Quiz File
Reference File

Fig. 1: CDF of the time taken to download the quiz and

references files.

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

R
e
tr

a
n
s
m

is
s
io

n
 P

e
rc

e
n
ta

g
e

Time(Sec)

Fig. 2: The average TCP retransmission rate across all clients

vs. time.

completion time is measured as the time from the issue

of HTTP GET request for the particular file to the last

packet of the download received by the user. Fig 1 shows

the CDF of the completion times for all the clients, for

both the quiz and reference files. To put these numbers in

perspective, let us calculate the expected download time. First,

note that our classroom was such that even the farthest client

could comfortably operate at the highest 54Mbps bit rate of

802.11g, when operating in isolation (we verified this during

AP placement). This physical layer bit rate translates to about

24Mbps of TCP-layer throughput, after accounting for link-

layer overheads and the overheads of TCP ACKs. If we go

by prior work that claims that TCP download throughput

scales perfectly with the number of clients, each client should

have gotten a TCP throughput of 24Mbps/32 = 0.75Mbps.

Assuming all clients downloaded both the quiz and reference

file, which we overestimate as 5MB worth of content per

client, the expected download time still works out to only

about 5MB/0.75Mbps = 54s. In contrast, the worst case

completion times in Fig 1 was 229s for the quiz file, and 478s

for the reference file1!

1This of course created logistical problems; the instructor had to give time
extensions to those students who experienced delay in downloading!

5

 0

 50000

 100000

 150000

 200000

 250000

 0 10 20 30 40 50 60 70 80 90

S
e
q
u
e
n
c
e
 N

u
m

b
e
r(

B
)

Time(sec)

Data
Ack

Fig. 3: TCP time sequence diagram of a client that experienced

multiple timeouts.

 0

 25

 50

 75

 100

 0 100 200 300 400 500 600
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

C
h

a
n

n
e

l
T

im
e

(P
e

rc
e

n
ta

g
e

)

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t(

M
b

p
s
)

Time(Sec)

Air Occupancy
Wasted Airtime

Aggregate Throughput

Fig. 4: Aggregate throughput, air occupancy, and wasted

airtime at the AP.

Next, we investigate why the completion time was so bad.

Upon looking at the TCP time-sequence graphs, we found that

some clients suffered severe TCP segment losses, and often

timed out several times during the course of the measurement.

Fig 2 shows the average TCP retransmission rate (averaged

across all clients every 2s) as a function of time; most of these

retransmissions were due to a TCP timeout. Fig 3 shows the

TCP time sequence graph of a client that experienced multiple

TCP timeouts.

To understand why the application-layer performance was

so bad, we analyze the logs collected at the AP to understand

the MAC-layer performance in the network. Using our custom

instrumentation of the AP driver, we determined what fraction

of the airtime was reported as “busy” at the AP. This air

occupancy percentage is shown in Fig 4 for the duration of

the quiz download. Also shown is the aggregate download

throughput of the AP during this time. Both measures are

shown as two-second averages. We see from the figure that

there are periods where the channel is busy, and there are also

periods where the channel is idle for large fractions of time.

This behavior fits well with our earlier observation of TCP

timeouts. We also note that, irrespective of the channel busy

percentage, the aggregate throughput is poor most of the time.

We further analyze the AP’s logs to determine what caused

the AP to deliver such low throughput, even when the channel

was busy. We verified that the signal strength at all clients was

good enough to support high bit rates. The other possibility is

that of collisions, due to multiple clients picking the same

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

C
D

F

Average Rate(Mbps)

Downlink
Uplink

Fig. 6: CDF of the time-averaged bit rates of clients in the

uplink and downlink directions.

backoff counter and transmitting in the same slot during

CSMA MAC’s channel arbitration mechanism. Collisions are

notoriously hard to detect using packet logs, because colli-

sions often result in a synchronization error at the physical

layer, thereby leaving no trace in any kind of packet tracing

mechanism. So, we use hardware registers exported to the

device driver to determine the amount of “wasted” airtime

at the AP, defined as the amount of time spent in one of the

following activities: (i) transmitting packets that failed to elicit

a link-layer ACK, (ii) receiving packets which could not be

successfully decoded (either due to synchronization error at

the physical layer, or a CRC error after synchronizing with the

transmission). Fig 4 also shows this wasted airtime percentage

at the AP as a function of time. This figure shows that around

10–20% of the AP’s airtime is often wasted, possibly due to

collisions on the channel.

We next investigate why the contention and collision rate on

the channel was so high. Prior work, as discussed in Section II,

shows that if the only traffic on the channel is TCP data and

ACKs, the contention on the channel should be very low.

However, in our measurement, we found that there was a

small amount of extra upload traffic besides the TCP ACKs.

Figs 5(a) and 5(b) show the rate of upload traffic in packets/sec

and in kbps respectively. These metrics are shown as averages

over 100 ms intervals; this indicates the burstiness of the

upload traffic. This traffic consists of GET requests for various

embedded objects on the course webpage, traffic generated in

navigating the authentication page, TCP handshake packets for

the multiple connections the browser opens, and some small

amount of extra background traffic likely generated by email

clients, Dropbox, and other such applications. Note that the

amount of upload traffic is very low, averaging at about 8kbps

in aggregate across all clients at the AP. However, it appears

that this traffic was enough to increase the contention on the

channel, and cause collision losses.

To investigate whether the upload traffic is the major reason

for such poor performance we set up an controlled experiment.

We connected 30 clients to an access point. The clients

downloaded a 5MB file through command line using WGET

command as opposed to using a browser to open the classroom

webpage, authenticating and then download. We shut down

all the background traffic like Dropbox, email clients etc.

The completion times were matching with the theoretical

expectation. Given that WGET completion times are way

lesser than the classroom scenario this points to the fact that

upload traffic is one of major factors for poor performance.

The contention on the channel due to a large number of

6

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

U
p

lo
a

d
 P

a
c
k
e

ts
 (

p
a

c
k
e

ts
/s

e
c
)

Time(Sec)

(a) Upload traffic (pkts/s)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600

U
p

lo
a

d
 T

ra
ff

ic
(K

b
p

s
)

Time(Sec)

(b) Upload traffic (kbps)

Fig. 5: Upload traffic pkts/s & kbps generated by clients during the quiz.

active clients is further exacerbated by the interaction with

the bit rate adaptation. It is well known in prior work that

most rate adaptation algorithms mistake collision losses for

poor signal on the channel, and lower the bit rate in the

hope of increasing the probability of packet delivery. However,

transmissions at lower bit rate take up more airtime, further

increasing the contention on the channel. Fig 6 shows a CDF

of the time-averaged bit rates of the clients during the quiz.

We see that most clients were operating at a very low average

rate, suggesting that the rate adaptation algorithms were using

lower rates upon observing losses.

In addition to the metrics reported above, the overall expe-

rience of the students in using the WiFi network was very

bad. When the students were simultaneously downloading

large files and stressing the wireless networks, students often

complained that their WiFi was not responding. We found

many instances where a driver reset was needed to get the WiFi

interface to work, even after the contention had subsided. We

conjecture these to be possible device driver bugs that were

triggered under the high loss rate situations we encountered

in class. It is likely that such situations are not well tested in

client driver code.

Below we present the measurements from two such scenar-

ios. Since the performance in these cases were similar to that

in classroom-1, we present only the MAC layer performance

in each case.

B. Classroom-2

Next, we describe our classroom-2 measurements.

1) Measurement setup: In this classroom almost 200 stu-

dents were present. We installed 3 access points in 3 non

overlapping channels of 2.4Ghz ISM band. The WiFi network

was used in classroom for online quiz activity using an

Android quiz application on students’ tablets. The activity is

as follows: the students authenticated themselves to a server

via the app. When the quiz is published by the teacher, the app

downloaded the quiz file and enabled students to answer the

questions. After that, responses are submitted to the server.

2) Results: The students’ experience of using WiFi network

was really bad. The download time of quiz file was high. For

some students, the download was stuck, they had to restart

the app, to download afresh. They faced the same scenario

during submitting answers as well. Out of 200 students, only

about 120 students could actually submit their responses. This

resulted in the instructor fall back on paper-printed quiz forms.

Out of the 3 access points we present result from one access

point (the others were similar) which served 80 clients. Given

that quiz file itself was small, we did not expect such poor

performance. Fig. 7(a) shows MAC layer performance over

a sample duration of 300sec (similar graph as of Fig 4 for

classroom-1). Here we see although air is always busy, the

aggregate throughput of the network is very low (less than

1Mbps). To get an idea of the contention/collision on the

channel, we determine the amount of wasted airtime. The

wasted airtime is about 20-40%, which is even higher than

in the case of classroom-1.

C. Classroom-3

Finally, we describe our classroom-3 measurements.

1) Measurement setup: In this classroom setting, 43 stu-

dents were associated to one AP. The WiFi network was

used in classroom for downloading online video instructional

material. The students used WiFi-enabled individual laptops

and tablets for downloading video content from web server.

The classroom activity is as follows: the students browsed

to the content server, authenticated themselves and viewed

embedded video content (with javascript controlled video

markers) over the network.

2) Results: The empirical observation was that the network

was noticeably slow when all the students were using the

network. Fig. 7(b) shows MAC layer performance over a

sample duration of 300sec for this classroom. Here we see an

interesting pattern, when the wasted airtime is low (10%) then

the aggregate throughput is high (12-14 Mbps) as soon as the

wasted airtime increases (20-30%), the aggregate throughput

reduces (4-5 Mbps). This might be pointing to the fact that as

the collision on the channel (thus the wasted airtime) increases

the aggregate throughput reduces.

Are collisions due to the CSMA MAC protocol mechanisms

alone enough to explain the high losses we saw in our

measurements? Or were there any other factors at work? The

limited control to vary parameters and monitor performance

in a live measurement makes it difficult to answer some

questions, which we seek to address with a combination of

simulations and controlled experiments in the next section.

IV. SIMULATIONS AND CONTROLLED EXPERIMENTS

In this section, we describe several results from simulations

and controlled experiments conducted to better understand the

classroom WiFi measurements.

7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

C
h

a
n

n
e

l
T

im
e

(P
e

rc
e

n
ta

g
e

)

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t(

M
b

p
s
)

Time(Sec)

Air Occupancy
Wasted Airtime

Aggregate Throughput

(a) Classroom-2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

C
h

a
n

n
e

l
T

im
e

(P
e

rc
e

n
ta

g
e

)

A
g

g
re

g
a

te
 T

h
ro

u
g

h
p

u
t(

M
b

p
s
)

Time(Sec)

Air Occupancy
Wasted Airtime

Aggregate Throughput

(b) Classroom-3
Fig. 7: Aggregate throughput, air occupancy, and wasted airtime at the AP for Classroom-2 and Classroom-3.

A. Simulations

As described earlier, accurately measuring collision losses

in an experiment is a hard problem. Even using multiple

wireless sniffers on the air cannot guarantee that we can

identify the error rate due to collisions, because the sniffers

themselves may fail to decode most collisions. Therefore, we

resort to simulations, where we can instrument the simulator

to identify collisions.

We use the ns-3 network simulator to perform simulations.

Our simulation model consists of 30 802.11g WiFi clients

connected to an AP. To simulate the traffic seen in the class-

room, each client emulates the browsing behaviour observed in

classroom-1 and simultaneously downloads a 5MB file from a

server. We use BulkSendApplication module (predefined in ns-

3) for downloading 5MB file. ns-3 does not support any type

of browsing module. So, we created two application modules

in ns-3 for client and server. We have named them as Chatty-

Client for client module and WebServer for server module. In

the ChattyClient module, one can specify number of parallel

connections to be opened, number of web objects and their

sizes. In the WebServer module one can specify response sizes.

To emulate the browsing behaviour observed in classroom,

each client opens two TCP connections and sends request for

20 objects. The request sizes are within 300-700Bytes and

response sizes are within 500-900Bytes. The average upload

rate is 10kbps: close to what we observed in our classroom

measurements. The clients are placed close enough to the AP

to eliminate the possibility of any channel losses, so that a

packet loss occurs only if two clients pick the same backoff

value and collide during the CSMA MAC operation. We have

used the Minstrel rate adaptation algorithm, and an AP queue

size of 512 packets, as used in the real AP. Table II summarizes

the parameters in our simulations.

Our simulation resulted in a download time between 297

and 443 seconds for the clients, which roughly matches the

download performance seen during the classroom quiz. During

the download, the collision rate on the channel (defined as the

fraction of airtime on the channel that was wasted in collision)

TABLE II: Simulation setup

Parameter Value

WiFi Protocol 802.11g

Rate adaptation algorithm Minstrel

AP queue size 512 packets

Number of clients 30

Download size 5MB

Upload traffic Browser behaviour

 0

 10

 20

 30

 40

 50

 60

 100 150 200 250 300

A
v
e

ra
g

e
 B

it
ra

te
(M

b
p

s
)

Time(Sec)

Fig. 8: The bit rates chosen by a WiFi client in the presence

of contention.

shown in Fig 122 was between 15% and 20%, proving that the

poor TCP performance was primarily due to collision losses

on the channel.

B. Controlled experiments

Next, we perform several small-scale controlled experiments

in the lab to better understand the impact of collisions and

contention on the channel. We first seek to understand the

impact of collision losses on the rate adaptation algorithm. We

set up an experiment where a WiFi client (a Linux laptop with

a “Qualcomm Atheros QCA9565 / AR9565 Wireless Network

Adapter (rev 01)”) is downloading a large file via the AP.

After 2 minutes, we introduce 14 other WiFi clients on to the

channel. These clients are Microtik single-board computers,

that generate TCP upload traffic at the rate of 100kbps. After a

further 2-minute duration of high channel contention between

the 15 WiFi clients, we turn off the Microtik boards, and let

the laptop traffic run for some more time. Fig 8 shows the

time-averaged bit rate (averaged over 2 sec) of the laptop

in the upload direction for the duration of this experiment.

We observe from the figure that the rate adaptation algorithm

2Fig 12 is part of WiFiRR’s evaluation and appears in sequence later.

8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200

R
T

T
 (

m
s
e
c
)

Time (sec)

Fig. 9: Highly variable RTTs of a TCP flow caused by high

channel contention.

lowers its bit rate due to collision losses, as expected. Further,

we note that the rate adaptation algorithm takes around 12

seconds (after the Microtik boards are turned off) to recover

from the effects of channel contention, which is approximately

the timescale at which popular bit rate adaptation algorithms

adapt rates. Similar results were observed with 3 other laptops

running 3 different device drivers as well. This recovery time

of the bit rate adaptation algorithm has a significance in

explaining our measurement data of the previous section. The

bursty upload traffic seen in our experiment has several periods

of quiet between bursts of high upload activity. However, due

to the relatively long recovery time of the rate adaptation

algorithm, the effects of contention (i.e., the lowering of

bit rates) persist even in the periods between upload bursts,

magnifying the effect of the small amount of upload traffic.

Next, we identify the impact of collision losses on TCP

performance. We setup an experiment with 21 WiFi clients (7

laptops and 14 Microtik single-board computers) connected

to an AP. The clients download a 9MB file from a server

connected to the AP. The clients run a browser emulation script

that generates around 50 GET requests to download several

embedded objects in a sample webpage. In addition, the clients

also generate a bursty upload TCP traffic at an average rate

of 200 kbps, to simulate other background application traffic.

This mix of upload and download traffic created enough

contention on the channel to slow down the TCP downloads,

and we observed several of the effects noticed in the classroom

measurements. A wireless sniffer over the channel reported

that 22% of frames decoded were marked as link-layer retries.

While this is not a true indication of the collision rate on

the channel (as the sniffer may have missed capturing several

frames due to synchronization errors caused by collisions etc.),

it gives us enough indication that the loss rate due to collisions

is substantial.

High channel contention also leads to variable delays in

transmitting a packet (a transmission may succeed without

collisions sometimes, but may require several unsuccessful

attempts and multiple backoffs some other time). For example,

Fig 9 shows the highly variable TCP RTT of a single client

in the controlled experiment with 21 clients described above.

Sudden RTT variations confuse the TCP’s RTO estimation al-

gorithm, and may lead to TCP timing out unnecessarily, while

the data packet is still in transit. In fact, we collected client-

side logs in the experiment above and noticed 61 instances of

spurious TCP timeouts and retransmissions (summed across all

the clients), where the original transmission and the subsequent

retransmission were both received by the client after a long

delay. While we could not collect client-side logs in the class-

room, we did notice highly variable RTTs and expect several

of the TCP retransmissions seen were in fact unnecessary.

Finally, we could reproduce the phenomenon of client

device drivers becoming non-responsive under high contention

with several different laptops and device drivers in our con-

trolled experiments as well.

Note that we have used our controlled experiments to verify

that there were no other causes of packet loss introduced by

the wired channel or the AP in our measurements. We repeated

our experiments with APs from two popular vendors, and

obtained similar results. We also verified that there was no

buffer mismanagement at the AP. For example, with vendor

supported AP logs we verified that the AP buffer always had

enough packets to transmit over the wireless link, and that

buffer underflow was not the reason for poor throughput.

V. DESIGN OF WIFIRR

We now describe our solution WiFiRR, that seeks to im-

prove the performance of large TCP downloads in a dense

WiFi setting like classrooms.

The measurements and analyses of the previous sections

lead us to conclude that high channel contention is root cause

for poor TCP download performance. To address this problem,

we seek to limit the number of clients contending for the

wireless channel at any instant by modifying the AP’s MAC-

layer scheduling policy. Our solution, WiFiRR, is designed

as a modification to the AP. Normally, APs transmit packets

belonging to all clients from its buffer in a FIFO manner. With

WiFiRR, an AP designates a subset of K out of the total N
clients as “active” during a given time slot T . Whenever the

AP gets a chance to transmit, the AP looks through its queue

and preferentially picks packets to these K active clients,

skipping over packets from non-active clients in the queue. The

AP varies the set of K active clients in a round-robin fashion

in every slot, so that every client eventually gets a chance to

make progress. The AP transmits broadcast and management

frames normally, as per their turn in the queue. Of course,

the AP does not keep the link idle: if there are no broadcast

frames or frames to active clients, it will transmit frames to

non-active clients.

Now, in a time slot T, since we suppress downlink TCP

data and ACK packets for the marked inactive clients, their

TCP flows will go quiet for the duration of the slot, and the

uplink traffic from the clients is greatly suppressed as well.

This leads to a lower number of contending nodes, fewer

collision losses, and eventually, better TCP performance for

the active clients. Our solution does not require any change at

the clients. While our solution leads to a temporary stalling

of the non-active clients, the overall performance improves

over large TCP downloads, because the clients will experience

much better network conditions once they become active.

Intuitively, number of active clients K should be a reason-

able value such that the collision on the channel is less. Also,

slot-time T should be large enough so that few frames of

active clients could be exchanged and should be small enough

so that non active clients’ performance does not get affected.

9

In our evaluation (Sec VI), we show that an empirical value of

K = 5 and T = 1.6 sec works best for a variety of settings.

The principle of WiFiRR is: by suppressing the downlink

data and TCP ACKs for uplink data, it expects that the uplink

traffic will be reduced and thus the uplink contention will

reduce too. But if the uplink traffic can continue without TCP

ACKs, then WiFiRR will be less effective. For example, for

opening a webpage typical browsers open 6-8 multiple parallel

TCP connections for downloading multiple web objects em-

bedded in the webpage. So, from each of the TCP connections

TCP SYN packet will be sent by the client. Now if we suppress

TCP SYN+ACK packet at the AP, that will result in reattempt

of TCP SYN packet transmission by the client. SYN max

retry limit is 6, so if all the TCP SYN+ACK packets are

suppressed, each client will send 6-8 connection requests and

6 retry requests per connection. This will increase contention

in the network. While WiFiRR shows some performance

improvement in such scenarios, performance will improve

more if a client-side solution is used in conjunction.

As we discussed in Section II, SPDY [12] is an application

layer protocol as a replacement for HTTP. The goal of SPDY

is to reduce web page load latency and improve security. Out

of different features that SPDY provides, the most important

one in our context is TCP stream multiplexing. SPDY opens a

single TCP connection for downloading multiple web objects,

as opposed to typical HTTP browsers which open 6-8 multiple

parallel connections to download multiple web objects. SPDY

also allows requests for multiple web objects to be interleaved

on a single connection. Thus SPDY reduces the chattiness of

the clients. This helps in reducing the contention/collision on

the channel. Note that while overall performance improves

with client-side support, such support is not necessary for

WiFiRR to be beneficial.

A possible concern with WiFiRR as described above is the

following. If we suppress traffic for non active flows, this

might affect short/interactive flows. Here the negative effects

of stalling may overweigh the benefits. To address this in

WiFiRR, we do not suppress the non active flows totally,

instead we allow a low rate traffic to continue for the non

active flows. We show in our evaluation that this is effective

in practice.

VI. EVALUATION

We have done extensive evaluation of WiFiRR in simulation

and in real settings. In Section VI-A we discuss simulation

results and in Section VI-B we discuss experimental results.

A. Simulations

We have implemented WiFiRR in ns-3 by modifying AP’s

MAC layer scheduling policy as described before. We use the

same simulation scenario discussed in Sec. IV-A (Table II) to

evaluate our scheme: a simulation of 30 clients performing a

large download (of 5MB each), while simultaneously gener-

ating a low rate upload traffic emulating browser behaviour.

Each client opens two connections and sends request for 20

objects with average upload rate at 10kbps.

TABLE III: WiFiRR evaluation: Browsing upload

Number of con-

nections

Number of web

objects

WiFiRR gain

2 20 1.6×

3 13 1.11×

4 10 1.05×

We experimented with different values of slot duration T
and number of active clients K. Fig 10(a) shows the minimum,

median, and maximum download completion times over 30

clients with WiFiRR. The slot duration is varied from 500

millisec to 7 sec, and the number of active clients K is fixed at

5. The horizontal lines also show the minimum and maximum

completion times without WiFiRR. We find that the worst

case completion time reduces to 284 sec from 443 sec (1.6×
reduction) when the slot duration is 1.6 sec. Note that the worst

case completion time is an important metric in settings like

classrooms: the instructor can move on to the next activity

only after the last student is done. The average RTT of the

TCP flows in our simulation was around 400 millisec due to

contention, resulting in a slot duration of 1.6 sec working best.

Fig 10(b) shows a similar comparison of completion times,

where we set the slot size T to 1.6s, but vary the number of

active clients K. Here, K = 5 leads to maximum reduction

(1.6×) of worst case completion time.

In the above browsing upload model, we vary the number

of parallel connections, number of web objects keeping the

request and response size and upload rate same i.e., 10Kbps,

and evaluate with WiFiRR. Table III shows improvement

for different combinations. With more parallel connections,

WiFiRR’s mechanism of suppressing the downlink ACK is

less effective in reducing uplink data traffic.

Next, we discuss results of browsing upload case using

SPDY as application layer protocol instead of HTTP. We

implemented SPDY in ns-3. We created two application mod-

ules and name them as SPDYClient and SPDYServer. Out

of all the features SPDY provides: multiplexing, compres-

sion, prioritization and server push; we implemented only

the multiplexing i.e., single TCP connection feature as this is

the most useful feature for our context. SPDYClient opens a

single TCP connection and sends requests for 40 objects to the

SPDYServer. The size of the request and responses are same

as of our ChattyClient and WebServer module (see Sec. IV-A).

We evaluate SPDY in the same simulation scenario of 30

clients doing a 5MB download, described before in Table II.

In Fig 11, we show a comparison of minimum, median and

maximum download completion time for the clients for HTTP

(base case) and SPDY with and without WiFiRR. SPDY alone

improves worst case completion time by a factor of 1.8×. Then

we evaluate the same scenario after enabling WiFiRR at the

AP. SPDY+WiFiRR provides the maximum improvement of

worst case completion time by a factor of 2.9×.

WiFiRR benefits most from SPDY over HTTP because

single TCP connection not only reduces the total uplink traffic

but also the contention. When at the AP, WiFiRR marks a

client as inactive, packets for that client are queued up till

its turn comes. For SPDY all these packets belong to the

single connection and TCP adapts to this stalling, suppresses

uplink traffic correctly. Now for HTTP as there are multiple

TCP connections, each of those connections will adapt to

10

 0

 100

 200

 300

 400

 500

 1 10

C
o
m

p
le

ti
o
n
 T

im
e
 (

s
e
c
)

Slot Duration (sec)

Max w/o WiFiRR

Min w/o WiFiRR

Median
Min
Max

(a) Varying T (K fixed at 5)

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30 35

C
o
m

p
le

ti
o
n
 T

im
e
(s

e
c
)

Number of Active Clients (K)

Max w/o WiFiRR

Min w/o WiFiRR

Median
Min
Max

(b) Varying K (T fixed at 1.6s)

Fig. 10: Min, median, max download completion times varying T and K

 50

 100

 150

 200

 250

 300

 350

 400

 450

HTTP HTTP-RR SPDY SPDY-RR

C
o
m

p
le

ti
o
n
 T

im
e
(s

e
c
)

Scheme

Fig. 11: Min, median and max download completion times for

HTTP and SPDY with & w/o WiFiRR.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400 450

C
o

lli
s
io

n
 P

e
rc

e
n

ta
g

e

Time(sec)

Base
SPDY+WiFiRR

Fig. 12: Collision percentage during download with and w/o

WiFiRR

this stalling differently and thus the uplink traffic may not

be suppressed adequately.

Now, we inspect whether WiFiRR has indeed reduced the

collision percentage. Fig 12 shows the collision percentage

for the base case and with SPDY+WiFiRR. WiFiRR leads to

a lower rate of collisions. While the average rate of collisions

on the channel was 15-20% without WiFiRR, with WiFiRR

(1.6 sec slot and 5 active clients) it reduces to 2-3%.

Next, we examine the scalability of WiFiRR by evaluating it

under different test settings. In the above simulation scenario

in Table II, we vary the total number of clients from 10 to

50 and evaluate with WiFiRR. Fig 13 shows min, median

and max download completion time for HTTP and SPDY

with and without WiFiRR as the network size grows. WiFiRR

provides an improvement of 2.7× for a network size of 10 and

3.4× for a network size of 50. The improvement of WiFiRR

does not degrade with increasing number of clients. Thus,

WiFiRR scales well with number of clients. WiFiRR provides

maximum improvement of 3.5× when the network size is 40.

We also evaluate WiFiRR with another type of upload

traffic i.e., constant upload traffic. We have used the same

simulation scenario of 30 clients performing a large download

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

10 20 30 40 50
C

o
m

p
le

ti
o
n
 T

im
e
(s

e
c
)

Number of Clients

HTTP
HTTP-RR

SPDY
SPDY-RR

Fig. 13: Scalability of WiFiRR

 0

 100

 200

 300

 400

 500

CBR-BASE CBR-RR BE-BASE BE-RR

C
o
m

p
le

ti
o
n
 T

im
e
(s

e
c
)

Scheme

Fig. 14: Min, median and max download completion times for

different upload traffic types

(of 5MB each) described in Table II. Here we have used

the OnOffApplication application module in ns-3. Each client

opens a single TCP connection and uploads constantly at

10Kbps rate. We have made the OnOffApplication to be always

on and uploads at a rate of 10Kbps. Fig 14 shows the

min, median and max download completion time for constant

upload and browsing upload case with and without WiFiRR.

We denote constant upload as CBR (constant bit rate) and

denote w/o WiFiRR as CBR-BASE and with WiFiRR as CBR-

RR. We denote browsing upload as BE (browsing emulation)

and denote w/o WiFiRR as BE-BASE and with WiFiRR as

BE-RR. For constant upload case, WiFiRR provides 3.2×
reduction in worst case completion time.

Next, we compare our solution WiFiRR (with 1.6 sec slot

duration, 5 active clients) to WiFox [5], another solution that

aims to improve the TCP download performance in dense

scenarios. WiFox addresses the asymmetry between uplink

and downlink traffic by prioritizing the AP (see Section II).

We implemented WiFox in ns3, as per the specification in

[5]. We made the AP to use 802.11e, and implemented the

high and default priority channel access settings as described

in [5]. In WiFox, time is divided into intervals of size T ′,

11

 0

 100

 200

 300

 400

 500

BASE WiFiRR WiFox

C
o
m

p
le

ti
o
n
 T

im
e
(s

e
c
)

Scheme

Fig. 15: Min, median and max download completion times for

WiFiRR vs WiFox.

Fig. 16: Mimicking WiFiRR for experimentation

each of which is divided into n slots. In every time unit

T ′, the AP accesses the channel in a prioritized fashion for

k ≤ n slots. The mapping between the priority level k and the

queue size of the AP can be logarithmic, exponential, linear

and logistic. We use the logistic mapping as it gave the best

results for WiFox. We also tuned the maximum queue size

(from 50 mentioned in the paper to 512) as it resulted in better

completion time for WiFox in our simulation setting. We set

T ′ to 100 millisec, n to 10 slots, and set the k range to be

0-10. We evaluate WiFox for both constant upload traffic and

browsing upload traffic. Fig 15 shows min, median and max

download completion times with WiFox, as compared to the

cases with WiFiRR and without WiFiRR for constant upload

traffic. While WiFox does lead to improved performance over

the base case without WiFiRR, WiFiRR outperforms WiFox by

2.25× in our scenario of large TCP downloads. For browsing

upload traffic, WiFox does not provide any improvement over

base case while WiFiRR provides 2.9× improvement.

B. Experimental results

Next, we evaluate WiFiRR in real settings. Prior to experi-

mental result, we first discuss our implementation options.

1) Implementation options: WiFiRR can be implemented

either by modifying AP’s driver or at a middlebox before the

AP. WiFiRR is agnostic to where it is implemented. Given

that every vendor might not allow modifications to the driver

to support WiFiRR, implementing it at a middlebox before the

AP is a more practical solution. So, instead of modifying AP’s

MAC layer scheduling policy, we implemented WiFiRR as a

scheduler before the AP. The setup is shown in Fig 16.

The middlebox has two ethernet interfaces connected to two

different subnets. The first one (eth0) is connected to the AP’s

subnet and the other one (eth1) is to the web server’s subnet.

In the middle box, we forward traffic from one interface to

the other. We perform source natting at eth1 so that all the

Root qdisc
Main

Link

Class1

Class2

ClassM

.

.

.

K flows

High

BW

Low

BW

Low

BW

Fig. 17: WiFiRR implementation using HTB

traffic forwarded by eth0 can reach the webserver’s subnet.

Now all the traffic to and from the access point will go via

the middlebox.

We implemented WiFiRR using Linux tc. We created class-

ful queuing discipline (qdisc) at eth0 i.e., the ethernet interface

connected to the AP’s subnet. We used HTB i.e., hierarchical

token bucket queuing discipline. Fig 17 shows the schematic

diagram of WiFiRR implementation using HTB. Under root

qdisc of the ethernet interface we created child classes, each

of which has a rate and ceiling parameter. Rate specifies the

minimum bandwidth a class is assigned, ceiling specifies the

maximum bandwidth a class can use. The algorithm is as

follows: we mapped a set of K flows to one class, so for

total N flows there are M = N/K classes. Then in round-

robin fashion, we provided high bandwidth configuration to

one class and low to others. The round-robin frequency is

T time. In implementation, we have used K = 5 flows and

T = 1.6 sec.

2) Results: Now we discuss experimental results. We em-

ulate the browsing behaviour as observed in the classroom by

using Epload tool [11]. The Epload tool emulates the page load

process by segregating network operations from computations.

This is a replacement for browser. In Epload, computations

are performed deterministically, which gives a measure of

repeatability to the experiments. Epload works as follows:

it first records the “dependency graph” of an webpage using

WProf [20]. The dependency graph captures the computations

and network operations to be made, timings of those and their

dependencies. The Epload replays the dependency graph i.e.,

the computations and network operations for the page load

process. Epload supports HTTP, HTTPs (opens 6-8 multiple

parallel connections) and SPDY (opens single connection) as

the application layer protocol.

To evaluate WiFiRR, we set up an experiment with 15

laptops connected to one 802.11n access point. Prior to the

experiment, we ensured that the wired backhaul, server and

clients are not the bottleneck. We also switched off other

BSS working on same/neighboring channel of ours during the

experiment. We performed experiment at night to avoid any

interference on 2.4Ghz band. We collected traces at our custom

instrumented AP collecting per-frame MAC layer statistics and

tcpdump at the server. Along with the browsing upload, all the

clients download a 9MB file.

Fig 18 shows min, median and max download completion

time for the clients for HTTP and SPDY with and without

WiFiRR. For base case (i.e., HTTP), the worst case completion

12

 0

 50

 100

 150

 200

 250

HTTP HTTP-RR SPDY SPDY-RR

C
o
m

p
le

ti
o
n
 T

im
e
(s

e
c
)

Scheme

Fig. 18: Min, median and max download completion times for

HTTP and SPDY with & w/o WiFiRR

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

R
e

tr
a

n
s
m

is
s
io

n
 P

e
rc

e
n

ta
g

e

Time(Sec)

Fig. 19: The average TCP retransmission rate across all clients

vs. time. with WiFiRR

time is 220 sec. Then we enabled WiFiRR at the middlebox, it

reduces the worst case completion time to 91.44 sec, the im-

provement over base case is 2.4×. After that, we experimented

with SPDY as the application layer protocol instead of HTTP.

We installed SPDY module i.e., mod spdy module for apache

at the server, this enables SPDY at the server. At the client

side, we used Epload module with SPDY as the application

layer protocol instead of HTTP. We configured SPDY by

disabling SSL: that eases debugging. SPDY alone reduces the

worst case completion time to 169 sec, the improvement over

HTTP is 1.3×. Finally, we enabled WiFiRR at middlebox

and performed the same experiment with SPDY protocol. The

worst case completion time with SPDY+ WiFiRR is 82 sec, the

improvement over base case (HTTP) is 2.7×. SPDY+WiFiRR

combination provides the most improvement, as expected.

Now we look at different metrics discussed in Section III to

understand how WiFiRR helps in improving application layer

performance. We first look at the TCP retransmission percent-

age. Fig 19 shows average retransmission rate (averaged across

all clients every 2s) as a function of time. The average TCP

retransmission percentage with WiFiRR is 2-5%. This explains

better performance of large TCP downloads with WiFiRR.

Next, we inspect impact of WiFiRR on MAC layer perfor-

mance. We specifically see air occupancy, wasted airtime and

aggregate throughput. The corresponding metrics are shown

in Fig 20. Here too, air is busy for most of the times

but now aggregate throughput has improved: it is between

20 − 40Mbps. The airtime wasted due to contention is also

small (less than 8%).

Now, we look at TCP RTT with WiFiRR. Fig 21 shows

RTT of a sample client after enabling WiFiRR. There is a

saw-tooth pattern for RTT. This is expected, because WiFiRR

suppresses inactive flows in view of better performance for

active flows. So during slot time T, inactive flows’ packets

will not be sent by the AP. Thus a flow’s packet might have

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

C
h
a
n
n
e
l T

im
e
(P

e
rc

e
n
ta

g
e
)

A
g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t(

M
b
p
s)

Time(Sec)

Air Occupancy
Wasted Airtime

Aggregate Throughput

Fig. 20: Aggregate throughput, air occupancy, and wasted

airtime at the AP with WiFiRR.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40 45 50

R
T

T
(M

ill
is

e
c
)

Time(Sec)

Fig. 21: RTT with WiFiRR
to sit at the AP’s queue for few times the slot duration till

its turn comes. Eventually when the flow becomes active RTT

reduces. TCP’s RTO estimation algorithm is able to adapt to

these changes and does not create any performance problem.

Next, we look at average bit rate of the clients. Fig 22 shows

CDF of time averaged physical layer bit rate of the clients in

uplink and downlink directions after enabling WiFiRR. The

clients are operating at high bit rate.

To understand the impact of WiFiRR in presence of multiple

APs, we use the same experimental setup described before. 15

laptops were connected to one 802.11n access point. It was

set to operate at channel 6 of 2.4GHz band. But unlike the

previous scenario (i.e., no neighboring APs), there were two

other access points operating on channel 6. We placed our

operating AP close to these access points. From our custom

instrumentation of the AP, we observed around 30% of the

airtime was taken up by these other access points throughout

the experiment. Fig 23 shows min, median and max download

completion time of the clients for HTTP and SPDY with and

without WiFiRR. For base case (i.e., HTTP), the worst case

completion time is 481 sec. Note that, here the completion time

is higher than the previous single AP case as the interference

from neighboring APs reduces the operating AP’s airtime.

WiFiRR provides an improvement of 1.3× over HTTP. SPDY

alone provides an improvement of 1.1× over HTTP. Finally,

SPDY + WiFiRR provides an improvement of 1.9×. Here the

improvement is lesser than the previous single AP case (2.7×),

because of the interference from neighboring APs.

C. Interactive traffic

To understand the effect of WiFiRR on interactive applica-

tion, we evaluated WiFiRR for different interactive applica-

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

C
D

F

Average Rate(Mbps)

Downlink
Uplink

Fig. 22: CDF of the time-averaged bit rates of clients in the

uplink and downlink directions with WiFiRR

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

HTTP HTTP-RR SPDY SPDY-RR

C
o
m

p
le

ti
o
n
 T

im
e
(s

e
c
)

Scheme

Fig. 23: Min, median and max download completion times

for HTTP and SPDY with & w/o WiFiRR in presence of

neighboring APs

tions: using simulations as well as real experiments.

1) Simulations: We used the same simulation scenario of

30 clients connected to one 802.11g access point. To simulate

interactive traffic, 30 clients perform constant download from

the server. Here we have used the existing OnOffApplication

application module in ns-3. We have evaluated WiFiRR for

low (10Kbps for e.g. Skype audio) and high (1024Kbps for

e.g. video traffic) download rates.

Here we measure delay and jitter, delay is one way time and

jitter is variation of the delay at client. Fig 24(a) and Fig 24(b)

show the min, median and max of delay and jitter across the

flows for 10Kbps and 1024Kbps upload rate with and without

WiFiRR. For 10Kbps upload rate, the delay profile with and

without WiFiRR is similar, between 1-9 ms. The jitter for

base case i.e., without WiFiRR is between 1-4.5 ms, and with

WiFiRR it reduces to 0.4 ms-2 ms. One might wonder how

the delay is in order of few ms, where as the slot time T for

WiFiRR is itself few hundreds of ms. This is due to the fact

that we allow a low rate traffic to continue for the non active

flows. For 1024Kbps upload rate, the delay without WiFiRR is

between 380-430 ms, with WiFiRR it reduces to 200-240 ms.

The jitter without WiFiRR is between 7-10 ms, with WiFiRR

it increases to 14-22ms. Thus, WiFiRR improves delay, while

causing only a minor increase in the jitter; note that jitter

values of up to about 30 ms are considered acceptable for

interactive traffic [21].

2) Experimental result: In real settings, we evaluated

WiFiRR for SSH (secure shell) and chat applications. The

same experimental set up was used like in Sec VI-B i.e.,

15 clients were connected to one 802.11n AP. WiFiRR was

enabled in the middlebox. We put a lower minimum bandwidth

for each classes in the HTB. The ceiling parameter of the HTB

classes was specified as 100Kbps, so the non active flows can

take up to 100Kbps bandwidth of the link. We collected traces

at our custom instrumented AP collecting per-frame MAC

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

R
T

T
(M

ill
is

e
c
)

Time(Sec)

Fig. 25: SSH: RTT with WiFiRR

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35

R
T

T
(M

ill
is

e
c
)

Time(Sec)

Fig. 26: Chat: RTT with WiFiRR

layer statistics, and tcpdump at the server and at the clients.

SSH traffic: Here all the clients remotely logged into a

server using ssh, and ran different commands. At the user side

we did not notice any perceptible delay. We measure RTT at

the server. RTT for this traffic is shown in Fig 25. It is less than

40 ms which is imperceptible to ssh users. As we allow a low

rate traffic to continue, WiFiRR could successfully support low

bit rate interactive traffic. The minimum bandwidth to other

non active flows did not cause any performance impact on the

active flows.

Chat application: We used the same setup for testing a

chat application. All the clients run a chat application, while

the chat server runs on the server. We did not notice any

perceptible delay while entering the message. The RTT for

the chat application is shown in Fig 26. It is less than 45 ms,

which is too small for chat users to notice.

VII. CONCLUSION

This paper presented measurements of TCP download per-

formance in a dense WiFi scenario of WiFi-enabled classroom,

where students download quizzes and instruction material

over WiFi. Our results show that TCP download performance

degrades significantly with increased user density, much more

beyond what is to be expected from prior work. We ana-

lyze the reason for this poor performance and find that the

small amount of background upload traffic that coexists with

the TCP download traffic in real life causes an increase in

contention on the wireless channel. The subsequent collision

losses trigger undesirable behavior in other protocols: the

bit rate adaptation unnecessarily lowers its bit rate, TCP

gets confused by the highly variable RTTs and performs

spurious retransmits, and device drivers perform unexpectedly

under such losses. We then propose a solution, WiFiRR, that

improves the performance of large TCP downloads in a dense

scenario. Our solution operates as a scheduler at the AP,

and restricts the number of active clients contending for the

channel at any instant by selectively transmitting packets to

14

 0.1

 1

 10

 100

 1000

10Kbps 10Kbps-RR 1Mbps 1Mbps-RR

D
e
la

y
(M

ill
is

e
c
)

Scheme

(a) Delay

 0

 5

 10

 15

 20

 25

10Kbps 10Kbps-RR 1Mbps 1Mbps-RR

J
it
te

r(
M

ill
is

e
c
)

Scheme

(b) Jitter
Fig. 24: Interactive traffic: Min, median and max delay, jitter with and w/o WiFiRR

different subsets of active clients over different slots. To reduce

the client side chattiness even more, we then incorporate

SPDY into our solution. SPDY opens single connection for

multiple web objects thus reduces chattiness. We have done

extensive evaluation of WiFiRR in simulation and in real

experiments. WiFiRR provides most improvement when tried

with SPDY compared to HTTP. For a sample scenario of

30 clients, in simulation, HTTP+WiFiRR reduces worst case

download completion time by 1.6× and SPDY+WiFiRR by

2.9×. In real settings, HTTP+WiFiRR reduces worst case

download completion time by 2.4× and SPDY+WiFiRR by

2.7×. WiFiRR scales well irrespective of the network size.

The maximum gain with WiFiRR is 3.5×. We have also

evaluated WiFiRR for interactive traffic. WiFiRR does not

harm interactive traffic’s performance since we allow a low

rate traffic to continue from the non active flows.

This paper thus examines and effectively addresses per-

formance problems in emerging use cases of WiFi: dense

settings with several tens or more clients, such as conferences,

sports stadiums, and WiFi-enabled classrooms. Going forward,

we plan to analyze mathematical foundation of WiFiRR by

following the Bianchi’s model.

REFERENCES

[1] R. Bruno, M. Conti, and E. Gregori, “Modeling TCP Throughput
Over Wireless LANs,” in Proc. 17th IMACS World Congress Scientific

Computation, Applied Mathematics and Simulation, 2005, pp. 11–15.
[2] G. Kuriakos, S. Harsha, A. Kumar, and V. Sharma, “Analytical Models

for Capacity Estimation of IEEE 802.11 WLANs using DCF for Internet
Applications,” Wireless Networks, 2009.

[3] M. A. Ergin, K. Ramachandran, and M. Gruteser, “An experimental
study of inter-cell interference effects on system performance in un-
planned wireless LAN deployments,” Computer Networks, 2008.

[4] S. Choi, K. Park, and C.-k. Kim, “On the Performance Characteristics
of WLANs: Revisited,” in Proc. SIGMETRICS, 2005.

[5] A. Gupta, J. Min, and I. Rhee, “WiFox: Scaling WiFi Performance for
Large Audience Environments ,” in Proc. CoNEXT , 2012.

[6] E. Lopez-Aguiler, J. Casademont, J. Cotrina, and A. Rojas, “Perfor-
mance Enhancement of WLAN IEEE 802.11 fot Asymmetric Traffic,”
in Proc. The International Symposium on Personal, Indoor and Mobile

Radio Communication, 2005.
[7] X. Wang and S. A. Mujtaba, “Performance enhancement of 802.11

wireless LAN for asymmetric traffic using an adaptive MAC layer
protocol,” in Proc. VTC, 2002.

[8] D. Malone, D. J. Leith, A. Aggarwal, and I. Dangerfield, “Spurious TCP
Timeouts in 802.11 Networks ,” in Proc. Wiopt, 2008.

[9] P. A. K. Acharya, A. Sharma, E. M. Belding, K. C. Almeroth, and K. Pa-
pagiannaki, “Congestion-Aware Rate Adaptation in Wireless Networks:
A Measurement-Driven Approach ,” SECON, 2008.

[10] K. V. Cardoso and J. F. de Rezende, “Increasing throughput in dense
802.11 networks by automatic rate adaptation improvement,” Wireless

Networks, 2012.
[11] “http://wprof.cs.washington.edu/spdy/tool/.”

[12] “https://www.chromium.org/spdy/spdy-whitepaper.”
[13] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed

Coordination Function ,” IEEE Journal on Selected Areas in Communi-

cations, 2000.
[14] A. Kumar, E. Altman, D. Miorandi, and M. Goyal, “New Insights From a

Fixed-Point Analysis of Single Cell IEEE 802.11 WLANs ,” IEEE/ACM

Transactions on Networking, 2007.
[15] “Status of Project IEEE 802.11ah

http://www.ieee802.org/11/Reports/tgah update.htm.”
[16] Y. Yuan, W. A. Arbaugh, and S. Lu, “Towards scalable MAC design for

high-speed wireless LANs,” EURASIP Journal on Wireless Communi-

cations and Networking, 2007.
[17] Z. Z. Abichar and J. M. Chang, “Group-based medium access control for

IEEE 802.11 n Wireless LANs,” Mobile Computing, IEEE Transactions

on, 2013.
[18] Y. Yang and S. Roy, “Grouping-Based MAC Protocols for EV Charging

Data Transmission in Smart Metering Network,” Selected Areas in

Communications, IEEE Journal on, 2014.
[19] “Potential Compromise for 802.11ah Use Case Document,” IEEE

802.11-11/0457r0, 2011, IEEE 802.11ah TG.
[20] “http://wprof.cs.washington.edu/.”
[21] “Enterprise QoS Solution Reference Network Design Guide:

”http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/
WAN and MAN/QoS SRND/QoS-SRND-Book.pdf”,” 2005.

Mukulika Maity Mukulika Maity received her B.E
in Computer Science and Engineering from Bengal
Engineering and Science University, Shibpur (India)
in 2010. Then she joined Computer Science and
Engineering Dept. of Indian Institute of Technology,
Bombay (India) in 2010 to pursue her M.Tech. In
2012, she converted to Ph.D. Her PhD topic is
health diagnosis and congestion mitigation of WiFi
networks. Her research interests are broadly in the
area of wireless networks, mobile computing.

Bhaskaran Raman Bhaskaran Raman received his
B.Tech in Computer Science and Engineering from
Indian Institute of Technology, Madras in May 1997.
He received his M.S. and Ph.D. in Computer Science
from University of California, Berkeley, in 1999 and
2002 respectively. He was a faculty in the CSE
department at Indian Institute of Technology, Kanpur
(India) from June 2003. Since July 2007, he is a
faculty at the CSE department at Indian Institute of
Technology, Bombay (India). His research interests
are in communication networks, wireless/mobile net-

works, large-scale Internet-based systems, and Internet middleware services.

Mythili Vutukuru Mythili Vutukuru received her
B.Tech in Computer Science and Engineering from
Indian Institute of Technology, Madras in 2004. She
obtained Ph.D. and M.S. degrees in Computer Sci-
ence from the Massachusetts Institute of Technology
in 2010 and 2006 respectively. After her Ph.D.,
she worked at Movik Networks, a startup in the
telecom space, for 3 years. Since July 2013, she is a
faculty at the CSE department at Indian Institute of
Technology, Bombay (India) . Her research interests
are in networked systems, wireless communication,

and network security.

