A Comparison of SDN and NFV for Re-designing
the LTE Packet Core

Aman Jain, Sadagopan N S, Sunny Kumar Lohani, Mythili Vutukuru
Department of Computer Science and Engineering, Indian Institute of Technology, Bombay
Email: {amanjain, nss, slohani, mythili} @cse.iitb.ac.in

Abstract—With an increase in the number of mobile users
and traffic, mobile network operators are finding it difficult to
scale their radio and core networks. Further, hardware network
appliances are expensive to procure and upgrade, and are difficult
to adapt and program for new services. These trends have
recently spurred several efforts to redesign various components of
mobile networks, including the LTE Evolved Packet Core (EPC).
Software Defined Networking (SDN) and Network Functions
Virtualization (NFV) are two popular emerging networking
paradigms that aim to increase network flexibility and scalability,
while reducing the overall cost. With SDN, the control and data
planes of the packet core can be separated, enabling cheaper
packet gateways in the data plane, and an intelligent core network
controller to handle the signaling and management functions.
With NFYV, the various hardware components that comprise the
packet core can be virtualized and run as software on a cloud,
enabling benefits such as elastic scaling and quick innovation.
While several proposals exist to use SDN and NFV to redesign
the EPC, there is no common framework to compare the new
designs on various performance metrics. This paper presents the
design and evaluation of two open-source implementations of the
LTE EPC, one based on SDN principles and the other based
on NFV, and presents a performance comparison of the two
approaches. Experiments with our prototype show that an NFV-
based implementation is better suited for networks with high
signaling traffic, because handling the communication with the
SDN controller quickly becomes the bottleneck at the switches in
the SDN-based EPC. On the other hand, an SDN-based design
of the EPC is better suited for networks with high data plane
traffic, because SDN switches are often more optimized for packet
forwarding than virtualized software appliances. We believe that
our framework can be used to develop and compare several such
design alternatives, and can serve as a guide for future redesigns
of mobile data packet core networks.

I. INTRODUCTION

Mobile cellular networks have witnessed an abrupt increase
in the volume of data traffic due to growing user demands
and an almost pervasive presence of modern gadgets such as
smart phones and tablets. Cisco [1] predicts that mobile data
traffic will increase eightfold between 2015 and 2020. Current
telecom network architectures are expected to face difficulties
scaling to this load, causing mobile operators to look for new
alternatives to overcome this challenge. Let us consider the
particular case of the popular mobile packet core architecture
in use today, the 4G/LTE EPC (Long Term Evolution Evolved
Packet Core). The well-known problems with the traditional
EPC architecture (Figure 1) are:

978-1-5090-0933-6/16/$31.00 (© 2016 IEEE

e Cost: The EPC components such as MME (Mobility
Management Entity), HSS (Home Subscriber Server),
SGW (Serving gateway) and PGW (Packet data network
gateway) are proprietary devices, with a number of com-
plex functionalities packed into a single box. This makes
them expensive to procure, maintain, and upgrade with
increasing traffic demands.

o Flexibility: Most components of the EPC have all the con-
trol and data plane logic programmed into the hardware.
Any modifications in the functionality to add new services
requires replacement of the entire appliance. Further, it is
usually hard to integrate and incorporate functions from
different vendors into a single box.

e Scalability: Hardware appliances typically scale verti-
cally, i.e., the complete appliance must be replaced by
a more powerful one in order to handle higher load.
However, telecom operators would prefer architectures
that scale horizontally, in order to elastically scale the
network in response to load.

o Signaling overheads: The current architecture involves
a lot of control signaling among the EPC components,
incurring substantial amounts of overhead in terms of
bandwidth and processing time.

Fﬁa HSS

B
: S5

UE eNodeB§

fCRﬂ

Gx

SGi Packet Data
PGW Network

E-UTRAN EPC
(Radio Access Network) : (Core Network)

Fig. 1: Traditional LTE Architecture.

Given the limitations above, there is an immediate need to
re-design the LTE packet core network to make it more scal-
able, flexible, and cost effective in the coming years. Several
new architectures for the LTE EPC have been proposed re-
cently (see Section II for a detailed discussion), incorporating
the emerging trends of Software Defined Networking (SDN)
and Network Functions Virtualization (NFV). SDN is a new
paradigm which decouples the network control functions (con-
trol plane) and the forwarding functions (data plane), enabling
network administrators to program the network in a dynamic

HSS [MME SGW-C| PGW-C PCRF
4
$ & ¢
SDN Controller

OpenFlow protocol

@
. -
UE eNB SGgw.D — -
®

é/é/ PGW-D

SGW-D

Packet Data
Network

UE eNB

E-UTRAN SDN-based EPC
Fig. 2: A typical SDN-based LTE EPC.

MME

SGW

—— CONTROL
—— DATA

Fig. 3: A typical NFV-based LTE EPC.

and flexible manner. The control plane is built in software as
applications running on top of a controller, whereas general
purpose switches constitute the data plane. Both the planes
communicate with each other via a standardized protocol such
as OpenFlow. The principles of SDN can be applied to separate
out the control and data plane functionalities of the EPC
components as well, to reap the benefits of the new paradigm.
For example, Figure 2 shows a typical SDN-based LTE EPC.
Control plane entities like MME are implemented as part of
the SDN controller, while components with both control and
data functions are partitioned.

NFV is another network architecture concept that has gath-
ered significant interest recently. NFV proposes that network
functions (e.g., functionality of components such as MME,
SGW, PGW) should migrate from custom hardware equipment
to virtualized software appliances. NFV greatly reduces the
cost and complexity of implementing network functions, by
having network functions run on clusters of virtual machines
(VMs) hosted on commodity high-end servers. Further, such
virtualized network functions (VNFs) can be modified easily
to incorporate new features, and elastically scaled on demand
to handle increasing load. Figure 3 shows a typical architecture
of NFV-based LTE EPC. The core functions of MME, HSS,
SGW and PGW are deployed as software modules on VMs
in datacenters, and the corresponding control and data traffic
flow across these virtualized entities.

While there have been several proposals around these new
EPC architectures, there does not exist a common framework
to build and compare these architectures along dimensions

such as performance, to the best of our knowledge. While
commercial or licensed implementations exist for some new
EPC architectures (e.g., [2], [3], [4]), there is no open-source
implementation framework for researchers to experiment with
these ideas. As a result, there are no published studies com-
paring and understanding the tradeoffs across the various EPC
architectures for different types of networks.

This paper presents the design, implementation, and evalua-
tion of two LTE EPC architectures, one based on the principles
of SDN (Section 1V), and the other based on the idea of NFV
(Section V). While our implementations are not fully stan-
dards compliant, they carefully capture the various complex
functionalities of the various LTE components (Section III)
that impact performance, and can be used to make meaningful
comparisons across metrics such as throughput and latency.
Our entire source code is available on Github [5], [6] for other
researchers to use and modify. We believe that an open-source
codebase such as ours will spur research and innovation in the
area of new EPC architectures, both in academia and industry.

We have run several experiments with our code to draw
several interesting conclusions (Section VI). Our results show
that an NFV-based architecture provides better performance
than an SDN-based architecture on comparable hardware for
control plane traffic, because the SDN-based EPC runs into
performance bottlenecks on the path to the centralized con-
troller. On the other hand, an SDN-based architecture performs
better for data plane traffic, because the NFV architecture
incurs several I/O stack overheads when transferring packets
to/from VMs. Therefore, the relative merits of the two archi-
tectures depend on the network traffic characteristics among
other things. We believe that our EPC framework can be used
to build and evaluate several EPC architectures in this manner,
and can inform design choices of mobile packet cores for 5G
and future standards.

II. RELATED WORK

There have been several recent proposals to redesign various
components of mobile data networks using principles of SDN
and NFV. Proposals that deal with the LTE EPC form a
bulk of the work, given the significance of the packet core
to the operation of mobile data networks. Basta et al. [7],
[8] have proposed the use of SDN and NFV to redesign
LTE EPC. Their work has discussed several tradeoffs between
various futuristic EPC architectures. The authors also compare
and evaluate the various designs using simulations along
parameters such as network load and data plane delay. Several
other researchers [9], [10], [11], [12] propose using the idea
of SDN in different ways to redesign various components (or
replace the entire architecture) of the EPC. These papers differ
in the amount of work offloaded to a centralized controller,
and the accruing benefits. However, none of these papers have
a complete EPC implementation in order to compare with
other alternatives. Our SDN-based EPC is inspired by these
proposals, and takes their vision to completion by providing a
complete EPC implementation based on the idea of SDN. In

fact, our framework can be used to easily build and compare
several such SDN-based EPC architecture proposals.

NFV-based EPC implementations have also seen significant
interest from academia and industry. Authors in [13] evaluate
a commercial NFV-based EPC, and demonstrate that its per-
formance can match that of a hardware-based appliance. Other
research proposals [14], [15], [16] show how to horizontally
scale the MME component of a virtualized EPC in order to
build a high-performance scalable distributed EPC. In [15], the
central MME core node is distributed into multiple replicas
and pushed closer to the access edge, resulting in reduced
latency and better handover performance. SCALE [14] pro-
poses dividing an MME element into a load balancer and
packet processor components, and using consistent hashing
at the load balancer to distribute incoming connections. [16]
presents an MME architecture based on a stateless worker-
thread and centralized state storage model. However, none
of the prior work in this area make their code available for
researchers. Our NFV-based EPC implementation is intended
to be available as open-source code, in order to spur further
research into scalable NFV architectures.

Open EPC [3] and Open Air Interface [17] are two recent
efforts to develop software-based LTE network functions.
While the former is licensed code available for commercial
deployments, the latter has been designed with standards com-
pliance (and not performance) in mind. For example, all EPC
components of the Open Air Interface codebase are designed
to run on a single machine. On the other hand, our EPC
codebase has been developed with performance evaluation in
mind, and standards compliance testing is a non-goal for our
work. Given these differences, we believe that our work is
complementary to existing open-source EPC software, and can
be useful to conduct research on high performance, scalable
NFV designs of the LTE EPC.

III. BACKGROUND: LTE EPC PROCEDURES

We now briefly describe the basic procedures of LTE EPC
that are implemented by our NFV and SDN implementations.
An LTE network is composed of two parts: a Radio Access
Network (RAN) and an Evolved Packet Core (EPC). A user
equipment (UE) and the base station it connects to (eNodeB)
comprise the RAN, while the MME, HSS, SGW, PGW and
(an optional) PCRF make up the EPC. Following are the main
procedures implemented by the various EPC components.
UE Attach: A UE that wishes to connect to an LTE network
sends an attach request to the MME via its eNodeB. Prior to
sending the attach request, the air interface radio connection
is established between the UE and eNodeB. The UE sends its
IMSI (International Mobile Subscriber Identity) as its identifier
along with the attach request. After receiving the request, the
MME proceeds to implement the various authentication and
security setup procedures as follows: (i) UE authentication:
MME authenticates the UE with the help of the HSS, and a
mutual authentication between UE and network takes place.
(ii) Security setup: Next, various security setup procedures
take place, during which encryption and integrity keys are

P

% é MME HSS SGW PGW
UE eNodeB
. Attach:request : '
. ‘Authentication
request
‘Authentication
' —
Network reply
' authentication
. alithentication
Ciphering andimtegr/ty Setup:
= : ~— N
' registration

Session. request

Session request
2Eo0100 e

o Session response
Sessionresponse <

Attachfaccept
Attach.complete

EPS bea(‘er establishgd

Fig. 4: An overview of LTE Attach Procedure.

exchanged among the UE, eNodeB, and MME, to ensure
secure communication between them. (iii) Data tunnel setup:
After successful security setup, a default “bearer” is created
for the UE through the packet core. During this process, the
UE is assigned an IP address from the PGW, and tunnel
endpoint identifier (TEID) values for this bearer are exchanged
amongst the eNodeB, MME, SGW and PGW. At the end of
this procedure, a user plane tunnel gets established for the UE
from eNodeB to the PGW through the SGW.
Uplink/downlink UE data transfer: Once a UE attaches and
establishes a tunnel through the EPC, it can send/receive data
to/from the PDN via eNodeB and EPC. UE sends data packets
through the air interface to eNodeB. The eNodeB encapsulates
the received packet in a GTP (GPRS tunneling protocol)
header along with UDP/IP headers, and then forwards the
packet to the SGW. The SGW strips off the outer header of
the received encapsulated packet, adds GTP/UDP/IP headers
of its own, and then forwards to the PGW. The PGW decap-
sulates the received packet by stripping off the outer headers
(IP/UDP/GTP), and then forwards to the PDN. Similarly, the
downlink data transfer takes place from the PDN to UE.

UE initiated detach: When a UE wishes to disconnect from
the mobile cellular network, it initiates a detach procedure. All
state associated with the UE, including its bearer, is cleared
from all the EPC components. Finally, the MME sends a
detach accept response to the UE via eNodeB.

In addition to the procedures described above, the EPC
also implements procedures to page idle UEs, handle UE
mobility via handover procedures, among other things. The
EPC implementations evaluated in this paper handle the basic
attach, detach, and data transfer procedures, as this minimal
set of procedures was found to be sufficient to cover the
control and data functionalities at all nodes. We are in the
process of implementing handover and other features. We
would like to emphasize that standards compliance is a non-

goal, as we do not envision our code being used in production
settings. On the other hand, we carefully capture all aspects
of the procedures that impact performance, so that meaningful
performance comparisons can be made across designs.

IV. SDN-BASED EPC

We now describe our SDN-based LTE EPC implementation.
A typical SDN-based EPC (Figure 2) entails a separation of
control and data planes for the EPC Gateways—SGW and
PGW. The MME, of course, is only a control plane entity.
So the MME, SGW-C and PGW-C run as applications on top
of an SDN controller. The SGW-D and PGW-D are realized
as SDN (OpenFlow) switches which forward packets based
on the forwarding rules installed by the controller. Also, the
eNodeB has an SDN switch apart from the radio components,
which contains the forwarding rules installed by the controller
to divert traffic to the EPC switches. The HSS is implemented
as a separate application used by MME, whereas the PCRF
(Policy and Charging Rules Function) is a separate application
used by PGW.

Figure 5 shows the architecture of our actual implemen-
tation. We use the Floodlight SDN controller [18]. We use
OpenvSwitch (OVS) in lieu of OpenFlow-enabled hardware
switches for the data plane of the gateways, due to high cost
and difficulty in procuring hardware SDN switches. HSS uses
a MySQL database. We also built a RAN (Radio Access
Network) simulator that combines the functionalities of the
UE and the eNodeB, in order to generate control and data
traffic to our EPC. We do not implement the radio procedures
that take place between UE and eNodeB in the RAN simulator,
and focus only on the traffic that is seen by the EPC. A sink
node to represent the PDN (Packet Data Network) has also
been implemented, and it connects to the PGW. The PCRF
has not been implemented currently.

We have made a few practical modifications to the vanilla
SDN-based EPC design for feasibility of implementation. An
additional OpenFlow switch, which we refer to as the default
switch, is required in our setup to connect the RAN simulator
with the EPC. In real life SDN EPC, the role of the default
switch would be served by an SDN switch located in the
eNodeB. Also, since the OVS has no support for matching
on GTP headers, we use the VLAN ID field of the Ethernet
header (IEEE 802.1Q) to store the TEID (Tunnel Endpoint
Identifier). So, we do not encapsulate/decapsulate data packets
with GTP headers at the eNodeB/PGW, and instead edit the
VLAN ID field. Finally, the control traffic between RAN and
MME (via the default switch) uses UDP unlike in the case of
LTE which uses SCTP.

V. NFV-BASED EPC

We now provide an overview of our NFV-based EPC imple-
mentation, as shown in Figure 6. The core network functions
of the EPC (MME, HSS, SGW and PGW) are built as software
modules, and are run on VMs hosted on a private cloud.
Much like in the case of the SDN-based EPC, we also built a
RAN-simulator module that combines the functionalities of the

Hss [MME | [sow-c] [pGw-C)

F I B |

[Floodlight Controller}

4 [y

OpenFlow

@ é é ? (&

Sink
UE+eNB Default SGW-D PGW-D
switch

RAN EPC PDN
Fig. 5: SDN-based LTE EPC implementation.

UE and eNodeB into a single logical entity for the purpose
of generating traffic to our EPC. A separate sink module is
used to receive the generated traffic from the RAN and send
back downlink traffic. We use tun devices to perform GTP
encapsulations and decapsulations of TCP traffic at the source
and sink. MySQL is used for database operations by the HSS
entity. Standard communication protocol stacks prescribed by
3GPP are used across the implemented system, as shown in
Figure 6. We have modified the formats of the SIAP and
diameter protocols slightly for ease of implementation; the
rest of our implementation faithfully follows the standards.
Each of the EPC components (MME, SGW, PGW, HSS) is
implemented as a multi-threaded server that services requests
(e.g., UE attach request) from the downstream nodes and sends
responses back. Note that every component acts as a server to
the downstream node, and as a client to the upstream node
in the chain of VNF components traversed by a request. The
MME application module uses a multi-threaded SCTP server
to handle requests from the downstream eNodeB. For ease of
implementation, we did not use the multi-streaming feature of
SCTP. The EPC gateways are built around a multi-threaded
UDP server, because the protocol stack of the gateways uses
UDP to communicate with the other components. Below, we
elaborate on our multi-threaded server architectures.

EPC
SIAP/SCTP = [DAMETER 7 SCTP| ©
CONTROL MME [controL | HSS
@é
S E
\%§
. CONTROL
O STETTOOR) crec/oor|) D
RAN DATA SGW GTP[-)lATAUDP PGW [/ PATA| SINK

Fig. 6: NFV-based LTE EPC implementation.

Multi-threaded SCTP Server Architecture: The SCTP
server architecture consists of a single master thread and
several worker threads. The master thread communicates with
each of the worker threads via a logical Unix pipe. The master
thread listens for incoming client connections on a stream
socket, and creates an additional socket file descriptor for

every new SCTP client that is accepted. It then sends the new
connection socket file descriptor to the worker threads in a
round-robin fashion, to balance load across all worker threads.
The worker thread is responsible for servicing the request on
the new connection, through all the steps required to handle
the request. For example, the worker thread in the MME
must implement the various steps required to process a UE
attach request, blocking for responses at each stage from the
other nodes. The workers threads use the event-driven select
mechanism to multiplex the multiple requests being handled
by each of them concurrently. The number of worker threads in
this architecture can be sized to fully utilize all the processing
cores of the VM.

Multi-threaded UDP Server Architecture: The UDP
server at the gateways consists of a single datagram socket
being serviced by multiple server threads. All server threads
try to read a UDP packet from the common shared socket.
The thread that succeeds in reading the packet is responsible
for processing the request and sending a response back to
the downstream node. By fixing a suitable number of server
threads in proportion to the number of system cores, this
architecture provides good performance and scalability.

In both the server architectures, a global data structure is
used by the threads to store/retrieve necessary connection data
and state. This data structure is protected by locks to prevent
concurrent inconsistent access by the multiple threads. As
part of future work, we plan to redesign our system using
lock-free data structures to eliminate contention between the
threads for shared data structures. We also plan to explore
alternatives to the kernel-based socket communication model,
e.g., a userspace network stack built on top of kernel bypass
techniques like Intel DPDK [19].

VI. EVALUATION

We now compare our two EPC implementations on vari-

ous performance metrics under different traffic conditions, to
assess the pros and cons of the designs. We begin with a
description of our testbed setup.
Setup. We test our EPC implementations using two types
of traffic: control traffic, consisting mainly of UE attach
(registration) requests generated by simulated users in the
RAN simulator, and data traffic, consisting of TCP traffic
generated from the RAN simulator to the sink. We also ran
experiments with varying mixes of control and data traffic;
we do not report those results here due to lack of space.
For experiments with control traffic, we simulate a number
of concurrent UEs in the RAN simulator, and make the UEs
continuously attach and detach from the LTE network, to
create a continuous stream of control traffic. We vary load
on the EPC by varying the number of concurrent UE threads.
We then measure the throughput, or the number of registration
requests successfully completed by the EPC per second.

For experiments with data traffic, we attach a specified
number of UEs to the EPC from the simulator, and pump
traffic from the RAN to the sink using iperf3 [20]. We vary
the input data traffic into the EPC by varying both the number

HoRLr NN W W
o w o w o v
o o o o o o
o o o o o o

v
o
o

=]

5 10 15 20
Number of concurrent UEs

Registration throughput (regs/sec)

Fig. 7: SDN EPC: Registration throughput vs. no. UEs.

of concurrent UEs and the rate at which each UE generates
traffic. We measure two performance metrics: (i) throughput,
or the amount of data traffic successfully forwarded by the
EPC gateways to the sink per second, and (ii) round trip
latency, or the amount of processing overhead added by the
EPC gateways in the data plane, as measured by a ping
command during a load test. We ran all experiments for a
duration of 300 seconds.

For the NFV-based EPC setup, all VMs were installed
on a private OpenStack-based cloud, and were provisioned
resources as shown in Table I. We use two different setups
when testing our SDN-based EPC. For control traffic exper-
iments, where the bottleneck is likely to be the controller
CPU, we installed each of the components shown in Figure 5
on separate physical machines. All machines were connected
by a 1Gbps LAN. However, for data traffic experiments, the
network between the machines became a bottleneck. To avoid
the network bottleneck, we installed the various components
within Linux containers (LXC) on the same physical machine,
and connected them up using the Linux bridge. In all ex-
periments with the SDN EPC, all machines/containers of all
components were provisioned with 2-core Intel i5-4440 CPU
@ 3.10 GHz, and 4GB RAM. Care was taken to provision
similar resources in both the EPC implementations, in order
to be able to fairly compare the performance results.

TABLE I: Configuration of NFV-based EPC testbed.

ENTITY CPU #CORES | RAM | OS
RAN Intel Xeon 8 4GB Ubuntu
MME, SGW, PGW, HSS | E312xx @ 2 2GB 14.04
Sink 2.6 GHz 4 2GB Server

A. Control plane performance

We now generate continuous control traffic to our EPC
setups, and compare their performance along the metrics of
throughput and latency. Figures 7 and 8 show the registration
throughput of the EPC implementations, as we increase the
number of concurrent UEs in the RAN simulator. We find that
the NFV-based setup is able to support a much higher control
plane throughput (approx. 9000 reqs/s) than the SDN-based

1000

8000

6000

/

0 200 400 600 800
Number of Concurrent UEs

4000

2000

1000

Registration throughput (regs/sec)

Fig. 8: NFV EPC: Registration throughput vs. no. UEs.

(=)}
o

No. of CPU cores = 2‘

N
o

_e—e—0——1
T —x—%

—

=
o
o

o
o

/
.

(=)}
o

M

Fi
A e—e Controller

y/' +—+ Default switch

V-V SGW

v % PGW

N
o

N
o

OO

Avg. CPU utilization (out of 200%)
[e2]
o

5 10 15 20
Number of concurrent UEs

Fig. 9: SDN EPC: CPU utilisations of various components.

setup (approx. 3000 reqs/s) on comparable CPU provisioning.
While the NFV-based EPC is limited by the CPU of the MME,
the SDN-based EPC was limited by the CPU of the default
SDN switch. We verified that the CPU alone, and not the
network, was the bottleneck in all cases. Figure 9 shows that
the default switch that forwards the control traffic to the SDN
controller was overloaded even before the controller, because
the switch had the additional job of installing OpenFlow rules
and communicating via OpenFlow with the controller. This
finding was a surprising conclusion from our experimental
study, and has implications for SDN-based EPC designs. SDN-
based EPC designs must carefully consider the overhead of
installing rules and communicating with the controller at the
switches also, in addition to processing overheads at the
controller, when processing control plane signaling messages.
Therefore, for networks with heavy signaling traffic, an NFV-
based EPC design might provide better performance than an
SDN-based design, where switches must pass all signaling
messages to the controller and install flow rules.

B. Data plane performance

We now load our EPC implementations with only data
traffic and measure their performance. Figures 10 and 11 show
the data plane throughput forwarded by the EPC gateways
to the sink in the SDN and NFV setups respectively, as we
increase the offered data plane traffic to the EPC. We find
that the SDN EPC gateways that forward traffic directly from
the OpenvSwitch in kernel space are able to handle higher
amounts of traffic (approx. 45 Gbps) than the NFV EPC

IS
n

e—s Data rate at Sink

+— Ack data rate at Sink
v -v Total data rate at Sink

10 20 30 40 50
Input load generated (Gbps)

N
o

w

o

H = N N W W
o wn O wun

Throughput at Sink (Gbps)
w

GO

Fig. 10: SDN EPC: Data plane throughput vs. input load.

o
S
o

o
N
o

///4\/—

///:/H Data rate at Sink
/ ©—0 Ack data rate at Sink
// V-V Total data rate at Sink

50 100 150 200

Input load generated (Mbps)

=
o
o

©
o

o
o

N
o

N
o

Throughput at Sink (Mbps)

OO

Fig. 11: NFV EPC: Data plane throughput vs. input load.

0.9

E 0.8 /
£ 0.7 /
E 0.6,
os I
0.4 /
03 A
//
0.2
> 0'1'—0~«//
0.0

0 10 20 30 40 50
Input load generated (Gbps)

Fig. 12: SDN EPC: Data plane latency.

y (R

g. Laten

A

~

RS
>1"\
0.5

1 3

10 10° 10
Input load generated (Mbps)

Fig. 13: NFV EPC: Data plane latency.

gateways (approx. 110 Mbps) which must send the traffic to
user space in the VM to make a forwarding decision. In fact,
while our NFV-based EPC gateways hit a CPU bottleneck
in our experiments, we were never able to fully saturate our

SDN-based gateways, as we were limited by the maximum
network bandwidth for load generation (even in our container-
based setup), and not the forwarding capacity of the gateways.
Therefore, we believe their forwarding capacity is much higher
than what our results show.

We believe that our SDN EPC will give much higher
performance if run on hardware SDN switches instead of
software switches. Similarly, we expect the performance of the
NFV EPC gateways to also improve considerably if techniques
to bypass the kernel and improve network I/O for VMs, such
as Intel DPDK [19], were to be employed in the development
of our gateways. We are working on these improvements
currently. That said, with our current implementations, our
results show that an SDN-based EPC can give a much better
data plane performance than an NFV-based EPC, simply
because data plane forwarding can be done more effectively
in a hardware or kernel switch than in a user-space VM.
Figures 12 and 13 also show the data plane processing round-
trip latencies of the SDN and NFV EPC setups. As expected,
the SDN EPC has a lower processing overhead than the NFV
EPC for the same reasons discussed above.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented two implementations of the
LTE EPC, one based on the principles of SDN, and the
other based on the idea of NFV. The SDN-based architec-
ture separates out the control and data planes in the EPC
components. The control functions run as applications on top
of an SDN controller, while the data plane runs on general
purpose SDN switches. The NFV-based architecture builds the
EPC components as software appliances running on virtual
machines in datacenters. Both the architectures eliminate the
need for custom hardware equipment in deploying network
functions, and provide great flexibility in managing resources.
While these architectures have been proposed before, we
have provided a complete implementation and performance
comparison of both architectures across different types of
traffic. Our results show that an SDN-based EPC is a better
design choice when handling large amounts of data traffic,
since it incurs lesser overhead when forwarding packets from
the kernel or the switching hardware, as compared to an NFV
setup that makes forwarding decisions in user space. On the
other hand, an NFV-based EPC setup is better at handling
large signaling load, because communicating every signaling
message with the controller and processing the resulting rule
updates quickly overwhelms the SDN switches. Therefore, the
optimal EPC architecture for a given network would depend
on, among other things, the mix of control and data traffic
expected by the operator. We have released our entire code
on Github [5], [6] as open-source, in order to spur further
research in this direction.

While we have drawn some conclusions on the pros and
cons of various design options using our initial prototypes,
we envision this work to be the beginning, and not the end,
of the discussion on EPC design choices. We invite other
researchers to extend the code to build and compare several

other EPC architectures. We believe that such experimentation
will help us make informed choices in architecting the mobile
core in future standards. As part of our future work, we
plan to enhance our code by adding more features to make
our implementations more standards-compliant (though full
compliance and use in production settings are non-goals). We
are upgrading our code to use the latest high-performance
network I/O frameworks such as Intel DPDK. We are also
working on distributed versions of the various NFV-based EPC
software components, to explore the design choices in building
scalable virtual network functions.

REFERENCES
[1] Cisco, “Cisco visual networking index: Global mobile
data traffic forecast update, 2015-2020.” [Online]. Avail-

able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index- vni/mobile- white-paper-c11-520862.html

[2] “Connectem,” http://www.brocade.com/en/products-services/
mobile-networking.html.

[3] “OpenEPC,” http://www.openepc.com.

[4] “Virtual ~ Mobile Network,” http://www.affirmednetworks.com/
products-solutions/vepc/.

[5] “SDN_LTE_EPC,” https://github.com/networkedsystemsIITTB/SDN_
LTE_EPC.

[6] “NFV_LTE_EPC,”
LTE_EPC.

[7] A. Basta, W. Kellerer, M. Hoffmann, K. Hoffmann, and E.-D. Schmidt,
“A Virtual SDN-Enabled LTE EPC Architecture: A Case Study for S-
/P-Gateways Functions,” in Proc. of IEEE SDN for Future Networks and
Services (SDN4FNS), 2013.

[8] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,
“Applying NFV and SDN to LTE Mobile Core Gateways, the Functions
Placement Problem,” in Proc. ACM SIGCOMM Workshop on All Things
Cellular: Operations, Applications, Challenges, 2014.

[9] S. Ben Hadj Said, M. Sama, K. Guillouard, L. Suciu, G. Simon,

X. Lagrange, and J.-M. Bonnin, “New control plane in 3GPP LTE/EPC

architecture for on-demand connectivity service,” in Proc. IEEE Inter-

national Conference on Cloud Networking (CloudNet), 2013.

L. E. Li, Z. M. Mao, and J. Rexford, “Toward Software-Defined

Cellular Networks,” in Proc. European Workshop on Software Defined

Networking, 2012.

X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable and

Flexible Cellular Core Network Architecture,” in Proc. ACM Conference

on Emerging Networking Experiments and Technologies (CoNEXT),

2013.

J. Cho, B. Nguyen, A. Banerjee, R. Ricci, J. Van der Merwe, and

K. Webb, “SMORE: Software-defined Networking Mobile Offloading

Architecture,” in Proc. ACM SIGCOMM Workshop on All Things

Cellular: Operations, Applications, and Challenges, 2014.

Brent Hirschman, Pranav Mehta, Kannan Babu Ramia, Ashok Sunder

Rajan, Edwin Dylag, Ajaypal Singh, and Martin McDonald, “High-

performance evolved packet core signaling and bearer processing on

general-purpose processors,” IEEE Network, vol. 29, no. 3, 2015.

A. Banerjee, R. Mahindra, K. Sundaresan, S. Kasera, K. Van der Merwe,

and S. Rangarajan, “Scaling the LTE Control-Plane for Future Mobile

Access,” 2015.

X. An, F. Pianese, I. Widjaja, and U. Giinay Acer, “DMME: A Dis-

tributed LTE Mobility Management Entity, journal=Bell Labs Technical

Journal, year=2012, volume=17, number=2,.”

Y. Takano, A. Khan, M. Tamura, S. Iwashina, and T. Shimizu,

“Virtualization-Based Scaling Methods for Stateful Cellular Network

Nodes Using Elastic Core Architecture,” in Proc. IEEE International

Conference on Cloud Computing Technology and Science (CloudCom),

2014.

“Open Air Interface,” http://www.openairinterface.org/.

“Floodlight,” http://www.projectfloodlight.org/floodlight/, 2015.

“Intel Data Plane Development Kit for Linux*:

http://www.intel.com/content/www/us/en/intelligent-systems/

intel-technology/intel-dpdk- getting-started- guide.html.

“Iperf3,” https://iperf.fr/, 2014.

https://github.com/networkedsystemsIITB/NFV_

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19] Guide,”

[20]

