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Abstract—Network Function Virtualization (NFV) is a new
trend in networking, where network functions are moving from
custom hardware appliances to software implementations run-
ning on virtual machines (VMs) hosted on commodity hardware.
While the benefits of NFV such as cost reduction and increased
agility are well understood, doubts still exist on whether a
software implementation can match up to the high performance
that hardware appliances deliver. In this context, network oper-
ators would benefit from frameworks that monitor performance
and identify bottlenecks in Virtual Network Function (VNF)
implementations obtained from vendors. While several tech-
niques already exist to identify performance issues in cloud-based
applications, most of them either use hardware resource utiliza-
tions to identify hot-spots (making them incapable of detecting
non-hardware performance bottlenecks) or rely on application
specific measurements (which may not be exposed by VNFs to
vendors always). This paper describes NFVPerf, a performance
monitoring and bottleneck detection tool for NFV. NFVPerf
works as part of a cloud that hosts a NFV deployment, and takes
a configuration file specifying the basic architecture of the VNF
as input. It sniffs packets on all VM-to-VM communication paths,
computes per-hop throughputs and delays, and uses these “black-
box” measurements alone to identify performance bottlenecks
(including software bottlenecks) in real time, without requiring
any instrumentation of the VNF. Further, NFVPerf can be
customized to any VNF implementations with just configuration
changes. Our evaluation of NFVPerf shows that it can monitor
performance and identify bottlenecks in an NFV deployment,
with high accuracy and minimal overhead. We believe that a
system like NFVPerf would form a great addition to cloud
management systems in the era of NFV.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] is a new net-
work architecture model, where network functions that are
traditionally implemented as custom hardware appliances are
now being implemented in software that runs in virtual
machines (VMs), and is hosted on commodity servers or
clouds. Examples of network functions being virtualized in-
clude firewalls [2], load balancers, and a variety of signal-
ing and control plane elements in telecommunication service
provider networks. The telecom industry is currently abuzz
with several vendors providing prototype Virtual Network
Functions (VNFs, e.g., Connect-em [3]), consortia develop-
ing suitable cloud-based platforms to host these VNFs (e.g.,
OpenStack [4], OPNFV [5]), and operators trying to find a
way to migrate from physical network functions to VNFs.
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The recent interest in NFV has been spurred by the advent of
faster CPUs and techniques for efficient packet processing in
software (e.g., Intel DPDK [6]), NFV is expected to save costs
for operators because software implementations are cheaper to
build and maintain than hardware appliances, especially given
the increasing complexity of network functions. Further cost
savings come from the fact that VNFs can be easily scaled
on demand to accommodate increased load, while hardware
appliances are often over-provisioned to account for future
increase in demand [7]. NFV also makes it easier to add
new features, improving the flexibility and agility of network
services. However, the excitement around NFV is tempered by
doubts over performance: it is not clear if software appliances
will have the high performance and resiliency of hardware.
Ideally, NFV should provide the same (or similar) level of
performance, availability, and SLA compliance that operators
are accustomed to from physical network functions, to make
NFV a clear winner for operators.

In a typical NFV deployment, a network operator sets up
an NFV infrastructure (NFVI, typically a private or public
cloud), obtains VNFs from vendors that build the software, and
installs the VNFs on the NFVI. The components of the VNF
are typically installed over several physical servers, and the
network is configured to correctly forward the packets along
the VNF forwarding chain (i.e., the sequence of VNF compo-
nents through which a request flows). The operator must then
orchestrate and manage the VNF components throughout their
lifecycle, to ensure good performance and SLA compliance.
For example, the operator must spawn new VMs and scale
the VNFs to meet increased load. The operator must restart,
repair, or replace failed VNFs. All these actions need a basic
mechanism to begin with: a way to monitor performance of
the VNF and identify performance bottlenecks.

Most cloud operators [8] identify performance bottle-
necks by monitoring hardware resource utilizations, or other
application-specific metrics obtained from instrumenting the
application itself (§II). For example, some cloud services use
thresholds on the utilizations of resources to identify hot-
spots, and spawn a new VM if the utilization of the bottleneck
resource of the service exceeds the threshold. Other research
uses request service times or other measurements from the
application to estimate system capacity and detect overload



(§I). However, both these techniques are not sufficient to
identify all performance issues. For example, a performance
bottleneck in a VNF could occur due to software issues
(e.g., multiple threads contending for a lock, or a “noisy
neighbor” VM), and may not always correspond to an increase
in hardware resource utilization [9]. Further, given the variety
of VNFs and vendors building them, coupled with a lack of
standardized interfaces analogous to SNMP (Simple Network
Management Protocol) in exporting application-specific met-
rics [10], the operator may not have easy access to application
layer metrics from the VNF. This situation calls for a tool
that can monitor application-layer performance and identify
performance bottlenecks or SLA violations in an NFV deploy-
ment [11]. The tool should work seamlessly across different
VNF implementations, without assuming any support from the
VNF itself, and identify all performance issues including those
caused due to non-hardware bottlenecks.

This paper presents the design and implementation of
NFVPerf (§I1I), a tool to monitor performance and identify
performance bottlenecks in an NFV system. NFVPerf runs as
part of a cloud management system like OpenStack [4], and
sniffs traffic between NFV components in a manner that is
transparent to the VNF. NFVPerf takes as input a configuration
file specifying the VNF forwarding graph as well as logic to
parse and identify different types of packets between the VNF
components. Using this information, NFVPerf computes the
per-hop (and end-to-end) application-layer throughputs and de-
lays along the VNF forwarding chain. NFVPerf analyzes these
application layer metrics in real-time to estimate the capacity
of each component of the VNF, and identify performance
bottlenecks. Because NFVPerf uses application layer metrics
(and not hardware resource utilizations alone) to identify per-
formance issues, it can identify software related performance
bottlenecks along with hardware resource bottlenecks. Further,
NFVPerf is a generic tool that can be easily customized to
most NFV applications with only configuration changes, and
requires no additional metrics or logs from the VNF itself for
its functioning. Our validation of NFVPerf (§1V) shows that
the tool can analyze large volumes of data with reasonable
monitoring overhead, and can accurately identify hardware as
well as software performance bottlenecks with high accuracy.

Given the current excitement surrounding NFV, we believe
that a tool like NFVPerf greatly eases operator’s performance
concerns, by enabling easy detection of performance issues
across a wide range of VNFs. NFVPerf nicely complements
existing monitoring tools that report hardware resource utiliza-
tions in cloud management systems, and can form a part of a
larger framework to orchestrate and manage VNFs for optimal
performance.

II. RELATED WORK

While NFV is a new concept, its basic ideas are similar
to those of multi-tier virtualized cloud-based services in data
centers. While there is no fundamental difference between
an NFV deployment and any other cloud-based application,
the additional emphasis accorded to performance by telecom

operators calls for a renewed look at cloud-based applica-
tion performance in the context of NFV. The ETSI NFV
ISG (European Telecommunications Standards Institute NFV
Industry Specification Group) [12] has recently come up
with a taxonomy of service quality metrics to monitor when
deploying NFV in telecom networks that have high availability
requirements. NFVPerf forms a part of the ecosystem that can
be deployed to measure these metrics, by measuring metrics
related to application performance.

The most common cause of performance issues in a cloud
based application is incoming load exceeding capacity of
a hardware bottleneck resource. Cloud service providers to-
day [13], [14], [15] monitor the resource utilizations of the
various hardware resources like CPU, memory and network,
and identify bottleneck based on these utilizations. These
simple techniques fail to detect performance issues when
the application has a non-hardware bottleneck such as lock
contention among multiple threads (e.g., in the LTE EPC
VNF described in [9]), while NFVPerf can detect performance
bottlenecks in such cases as well.

A large body of research on autonomous scaling of multi-
tier applications uses insights from queuing theory to build a
model of the system, and use this model to identify capacity
of various components of the application, thereby identifying
performance bottlenecks. These models [16], [17], [18],
[19], [20] largely assume the network operator has access to
application-specific parameters (e.g., request service times),
or that these parameters can be easily inferred from hardware
resource utilizations (implicitly assuming a hardware resource
bottleneck). NFV-Vital [21], Sandpiper [22], CloudScale [23]
also monitor the utilization of multiple hardware resources for
scaling and resource allocation. Because of the assumption
of a hardware bottleneck or knowledge of application-specific
metrics, we believe that these ideas cannot directly apply to the
NFV scenario, where there are a large number of applications
and vendors, and no standardized interfaces to export metrics.

Other research [24] proposes using application-layer
throughputs to identify performance bottlenecks. Some pre-
vious works also use packet analysis based monitoring for
network diagnosis [25] [26] [27]. The NetAlytics [28] packet
capture framework is closest to our method, but unlike
NFVPerf, the authors do not use the captured packets to iden-
tify application performance issues. Further, these methods are
dependent on support from the application or the end client to
extract these metrics, whereas NFVPerf estimates application
layer metrics without explicit support from the VNF.

III. DESIGN
A. Goals and Assumptions

We envisage NFVPerf to be deployed in the following
setup: a network operator has a NFVI (NFV Infrastructure),
presumably a private (or even public) cloud. The operator ob-
tains VNF implementations for one or more network functions
from VNF vendors, installs them on to VMs running on the
NFVI, and runs network traffic through them. NFVPerf runs
as part of the cloud management service on every physical



machine on the cloud, and alerts the network operator about
any performance issues, and localizes the issue to a specific
hop in real time. Operators can use this information to take
suitable mitigation steps to manage the problem.

We assume that the operator does not have a good idea
about the internals of the various VNF components, which is
a reasonable assumption if the VNF was not developed in-
house. The operator, however, knows the various components
that make up the VNF, and the VNF forwarding graph that
specifies how traffic must be routed along the chain of VNF
components. The operator needs this information to install the
VNF components and setup traffic forwarding rules between
them. Note that the VNF forwarding graph can be different
for different types of requests.

We assume that the VNF has a discrete number of request
types that it handles, which are known to the operator. While
NFVPerf can be extended to systems that do not comply with
this assumption, this description captures the most popular
network functions being considered for virtualization in the
telecom industry today, such as the LTE Evolved Packet Core
(EPC) functionality or the IP Multimedia Subsystem (IMS).
We also assume that the operators know the packet formats of
requests and responses that flow through the VNF: such infor-
mation can be easily obtained from standards specifications
that the VNF implementation is based upon. NFVPerf uses
this information as input to parse network data in real-time
to identify application-layer throughputs and delays. Note that
VNFs today do not have any standard interfaces to export or
query application-layer metrics like throughputs and delays.
While the network traffic to the VNF comprises of multiple
types of requests (i.e., heterogeneous traffic), we assume that
the mix of the traffic (i.e., the ratio of the different types of
requests) is fixed or changes infrequently. We believe this is a
reasonable assumption for some real life traffic cases, and we
will relax this assumption in future work.

The goal of NFVPerf is to measure various application
layer metrics like application throughput and delays by sniffing
traffic passively, and identify performance issues or bottle-
necks. We define a performance bottleneck as one where
the incoming load exceeds the capacity of the VNF. When
incoming load exceeds capacity, the component can no longer
keep up with the load, causing the application throughput to
drop below incoming load. This overload also results in a steep
increase in processing delay at the component. As a result,
NFVPerf uses a drop in application-layer throughputs and a
steep rise in application-layer delays to identify performance
bottlenecks. Note that a performance bottleneck may or may
not correspond to high hardware resource utilizations (e.g.,
if the application has a software bottleneck, all hardware
resource utilizations will be low), but will always correspond
to worse application-layer metrics like throughputs and delays
(by definition of a “performance issue”). We assume that the
load (as measured in requests/sec or bytes/sec) to the VNF
is varying with time. NFVPerf’s measurement and analysis
requires a few seconds to flag an overload scenario; we
therefore assume that the incoming load changes not more than

once every few seconds, to enable NFVPerf’s calculations to
converge.

B. Overview
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Fig. 1: NFVPerf Architecture.

The overall architecture of NFVPerf is as shown in Figure 1.
NFVPerf comprises a local capture module that runs on every
physical machine in the NFVI (say, the operator’s private
cloud), and a central analysis module (that can run anywhere
in the operator’s network). The local capture module computes
application-layer performance metrics and passes them on to
the central analysis module. Note that all the VMs in a cloud
typically plug into a software switch on every physical ma-
chine. For obtaining performance metrics without interfering
with the flow path of the packets through the VNF, all ingress
and egress packets of all the VNFs from all ports on a physical
host are mirrored (copied) on to a single port of the software
bridge using port mirroring (§I11-C). The local capture module
then uses knowledge of packet formats of the VNF to parse the
traffic and compute application-layer throughputs and delays
on each hop of the VNF forwarding graph (§III-D). In addition
to the metrics, the local capture module also infers other
properties of the VNF, e.g., if the communication on a given
hop is synchronous, that help the central module in identifying
bottlenecks. (We define synchronous communication as when
the sender waits for an acknowledgement for the previous
request before sending the next request.) All of these metrics
are periodically conveyed to the central analysis module via
memcached [29], where the bottleneck detection algorithm
(8III-E) is executed.

Once a performance issue is flagged by NFVPerf, an
operator can take suitable steps to mitigate the problem. For
example, if a hardware resource bottleneck is identified by
NFVPerf, the operator can add more resources (e.g., allocate
more CPU cores) and scale-out the bottlenecked component
on demand. If the issue is due to a software bottleneck in the
code, the operator can request for a redesigned VNFE. If the
cause of the poor application performance is found to be a
non-overload related hardware or software fault in the VNF,
suitable steps can be taken to patch the bug. NFVPerf currently
collects only application-layer metrics to identify application-
layer performance issues. As part of future work, we plan



to extend the framework to capture more metrics (e.g., errors
from I/O devices) that will enable a fine-grained diagnosis and
root cause analysis of the performance issues.

C. Port Mirroring

NFVPerf uses port mirroring on every physical machine to
capture all incoming and outgoing packets (including packets
between VMs on the same host) in the NFV deployment. The
mirrored packets are then analyzed by a script that performs
deep packet inspection to compute various metrics of interest.
While the setup of port mirrors will vary with the exact
deployment, below we describe the setup of port mirrors in
our testbed.

Our NFVI consists of a private cloud running the Open-
Stack [4] cloud management system. Our cloud consists of
several physical machines (PMs) that can host several VMs
each. OpenStack uses Open vSwitch as the software switch to
manage all the VMs on a single PM. The packets going in and
out of every VM are captured by mirroring the OVS ports to
which the VMs are connected. To understand how to setup port
mirrors, we first describe the path taken by packets through the
NFVI. The inter-VM communication between two VMs on the
same PM and on different PM in OpenStack happens as shown
in Figure 2 . The packets flow through the br—-int bridge of
OVS if both the VMs are on the same PM. If the VMs are on
different PMs (VM1 and VM3), the communication is through
the br-int and br-tun bridges of OVS and through the
VXLAN/GRE tunnel. From the figure, we can see that the
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Fig. 2: Inter-VM Communication captured on port mirrors in
OpenStack cloud.

ingress and egress packets from a VM can be captured by
mirroring:
o the corresponding VM interface on br—int (Mirror 1 in
Figure 2) and
o the patch interface through which the packets flow to
br-tun and in turn, through the tunnel to a VM on
different PM (Mirror 2 in Figure 2).

Now, notice that packets are mirrored on to ports on
br-int or br-tun based on whether they are flowing

between VMs on the same PM or different PM. To collect
all packets in to a single port, both the br—int and br—tun
mirror ports are once again mirrored onto a new mirror port
on a Linux bridge on the PM (Linux Mirror in Figure 2).
NFVPerf obtains the VNF forwarding graph as input, and
the mapping of VMs to PMs and OVS ports from the cloud
management system. Using this information, NFVPerf sets
up suitable port mirrors to capture packets on all hops of a
VNF forwarding chain. Next, NFVPerf analyzes these packets
in real time using the python-pcapy packet capture and
analysis library [30]. We tried several other packets capture
libraries (e.g., scapy [31]), but zeroed in on python-pcapy
due to its low overhead and fast packet capture. In addition
to per-hop application layer metrics, NFVPerf also collects
hardware resource utilizations (e.g., CPU utilization of each
VM) obtained from the Ceilometer service of OpenStack. Our
capture script is currently single threaded, because we found
that a single threaded application sufficed for the purpose of
our experiments. We are currently working on a (relatively
straightforward) multi-threaded extension of our capture script.

D. Computing performance metrics

After collecting a copy of all packets between VNF com-
ponents using port mirrors, NFVPerf proceeds to analyze the
packets to compute application-layer metrics. NFVPerf takes
as input (say, from a configuration file) the packet formats of
various types of requests and responses through the VNF, and
the MAC addresses of the various VNF components in the
cloud. NFVPerf matches the bytes in every collected packet
against the packet formats provided to calculate the count
of the various types of requests through the VNFs. These
counts over one-second intervals translate to per-second per-
hop application layer throughputs for each request type.

In addition to application-layer throughputs, NFVPerf also
calculates the time-stamp for when a request entered or exited
a VNF component. NFVPerf uses a “key” field in a packet to
uniquely identify a packet at both the ingress and egress of a
VNF component. This key can be a user identification number
(e.g., IMS]) in telecom VNFs, or a TCP 4-tuple and sequence
number field for VNFs handling TCP/IP flows. The packet
header field that can serve as a key is also provided as input
to NFVPerf, along with the packet formats. The timestamps
at the ingress and exit are subtracted to obtain the per-hop
delay contributed by each component in the VNF chain. The
delay samples are binned into discrete bins. The number of
bins is set to 10. The per-second average delay of each hop is
calculated as the average value of the samples in the bin which
has the maximum samples, to avoid bias due to outliers. Note
that there is an inherent inaccuracy in timestamps computed
in software, unlike timestamps provided by hardware, due to
noise added by the various software layers like the device
driver, kernel, the software switch, port mirroring, and our own
processing scripts. Our binning mechanism is used to reduce
the impact of this noise. All of these metrics are transferred to
the central node from each local capture node via memcached
every second. The data structures used to compute the metrics



are periodically flushed at the local capture nodes to keep
memory consumption low.

E. Central Analysis Module

The central module receives metrics corresponding to all
VNF components in the VNF chain every second, as described
above. The central node averages these metrics over epochs of
5 second duration, and runs a performance bottleneck detection
algorithm every epoch. The algorithms runs through all the
components of the VNF chain and examines the average
throughput, delay, and incoming load of that hop. The averages
may be computed over one or more epochs (we compute
averages over the past 10 seconds, i.e., the past two epochs),
even though the algorithm runs every epoch. The averages are
also weighted across all request types. For every component,
the algorithm checks if the component has seen an application
performance degradation, defined as the ratio of the average
throughput to the average load falling below a certain threshold
(set to 0.97 in our implementation), and the ratio of the average
delay to minimum delay exceeding a threshold (set to 8),
indicating that the component is unable to keep up with the
incoming load. If such a degradation is noticed, the algorithm
first identifies if there is a synchronous communication with a
downstream node; if it exists, the downstream itself could be
the bottleneck. Once the bottleneck is identified (as the current
node or its downstream), the algorithm notes the incoming
load level at which the degradation has occurred. If this
incoming load is lower than the previously learned capacity,
the algorithm updates capacity to the current load level. That
is, as the algorithm runs over several epochs, it builds up
a profile of throughputs and delays over several incoming
load levels, and eventually converges to the capacity, defined
as the highest load level that does not cause a performance
degradation. For every epoch where the incoming load at a
component exceeds its current known capacity, a performance
bottleneck alarm is raised to the operator.

The intuition behind the algorithm is fairly straightforward:
any component that has a hardware or software bottleneck
will eventually fail to keep up with the incoming load, caus-
ing its throughput to fall below the incoming load. Further,
the queuing delay at the component increases, causing the
average delay to increase steeply over the minimum delay
(that corresponds to a low load scenario). As a result, the
lowering throughput and increasing delay will eventually flag
the component as a bottleneck, once the system has run for
a few epochs and learnt the delay and throughput profile
at a few load levels. Note that this algorithm takes a few
epochs to calibrate itself, e.g., to learn the minimum delay.
Further, the load levels during this calibration period should
vary over a good range of values, to enable the algorithm to
learn good delay and throughput profile over several values of
load. However, once the algorithm has run for a few epochs,
it should be able to detect performance issues (i.e., falling
throughputs and rising delays) without any additional metrics
from the VNF itself. The delay and throughput profiles are
periodically flushed to learn changes in capacity.

Note that the average delays and throughputs across various
load levels are comparable as long as the traffic mix (i.e., the
ratio of different types of requests) stays roughly the same.
If the mix of the requests varies rapidly, one could end up
with widely different average delays for the same load level,
depending on the relative proportion of harder and easier
requests. Extending our algorithm to work with a varying mix
of requests is part of future work.

IV. SETUP AND EVALUATION

We begin by describing our testbed setup, and the validation
performed to quantify the performance overheads of our tool.
We then evaluate the accuracy of NFVPerf in identifying
performance bottlenecks.

A. VNF setup

We used the OpenIMSCore NFV prototype [32] as a can-
didate VNF in our experiments. OpenIMSCore is an open-
source NFV-based implementation of IMS (IP Multimedia
Subsystem [33]). IMS is a control-plane framework for setting
up multimedia communication (e.g., voice and video calls)
over IP networks. While it is not widely deployed in telecom
networks today, NFV-based implementations of IMS are re-
ceiving significant interest in the telecom operator community,
and are one of the most popular VNFs being tested out. The
IMS Core network function has several components: Proxy
Call Session Control Function (P-CSCF), Interrogating CSCF
(I-CSCF), Serving CSCF (S-CSCF), and a Home Subscriber
Server(HSS). Each of these components is implemented as a
separate software appliance in the OpenIMSCore prototype.
The IMS Core subsystem mainly handles two types of re-
quests: registration requests from new users that wish to use
the system, and call setup requests from registered IMS users
to other IMS or non-IMS users. Each request is serviced
by various components of the IMS core subsystem before a
response is returned to the user.

We used a custom load generator based on the open-
source software UCTIMSClient [34] for generating load to the
NFV prototype. Our load generator also prints out client side
throughputs and delays to serve as ground truth for validating
our tool. We also optimized our load generator and verified
that it did not become the bottleneck in our experiments.

B. Testbed Setup

We used our private cloud running the OpenStack cloud
management system [4] for all our experiments. OpenStack
comprises of a controller and several compute nodes. The
compute nodes run a hypervisor (kvm) and a software switch
(OpenvSwitch) to manage the VMs. Our cloud used in the
experiments below consisted of 4 physical servers, each with
8 CPU cores (Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz)
and 32GB RAM, all connected by a 1Gbps LAN. For our
tests, the 4 IMS Core VNF components (P-CSCF, I-CSCEF,
S-CSCF and HSS) were each installed on a VM and hosted
on the cloud. The P-CSCF, I-CSCF, S-CSCF and HSS VMs
were provisioned with the following number of cores and



RAM respectively: (1 core, 4GB), (2 cores, 4GB), (2 cores,
4GB), and (4 cores, 10GB). The load generator was run on
a VM with 4 cores and 10 GB RAM. The local capture
module was running on all physical machines, and the central
analysis module was running on one of the compute nodes.
The configuration file given as input to NFVPerf consisted
of the MAC addresses of the VNF components, and VNF
forwarding chain and packet formats for both request types.

C. Tool Validation

We now verify that NFVPerf can capture packets and parse
them in real time without significant overhead on the system.
For this purpose, we use iperf [35] to send and receive UDP
packets between VMs at the maximum possible rate, and
use NFVPerf to capture and parse the packets. The capture
script running on the mirrored ports was a single threaded
python script. The capture script ran in two modes: with deep
packet inspection (DPI) to emulate parsing packets with a real
VNEF, and without DPI to quantify the base case overhead.
The iperf client and server both ran on a single core VM, on
the same PM as well as on different PMs. Our experiments
showed that a single core capture module of NFVPerf is able
to keep up with real-time capture and parsing for up to 800
Mbps of incoming traffic before it hits a CPU bottleneck. We
believe than an optimized multi-threaded version of NFVPerf
can provide even better performance; this is part of our future
work. Next, we compare the delays computed by NFVPerf
with those obtained from analyzing the pcap files offline using
tcpdump. We found that the delays captured by NFVPerf
differed from those computed by offline analysis by 7% on
average, due to the overheads of real-time calculations in our
script. Therefore, we conclude that online measurement of
NFVPerf does not add much error as compared to offline
packet capture. Note, however, that the delays in the offline
analysis of pcaps could themselves be off from the true value
of delays, due to the overhead of software-based timestamps.
To validate the delays from NFVPerf against “ground truth”,
one would need access to accurate hardware timestamps.

D. Accuracy of NFVPerf

We now evaluate the accuracy of NFVPerf in detecting
performance bottlenecks. We setup the the OpenIMSCore
VNF components on our cloud testbed, and load the compo-
nents with traffic from our load generator. All the requests
in OpenIMSCore are CPU intensive. First, we performed
an offline benchmarking of the VNF to identify its capac-
ity, i.e., the incoming request rate it can process without
dropping requests. Note that this exercise was only to know
the ground truth, and NFVPerf did not have access to the
offline experimental results. Next, we ran experiments where
the incoming load (req/s) to the VNF was varied every 20
seconds over the course of the experiment, and we observed
if NFVPerf was able to flag a performance bottleneck when
the load exceeded the ground truth capacity. We also used
hardware resource utilizations to detect bottlenecks, in order
to compare with NFVPerf: when the CPU utilization of any

component crosses a threshold of 80% (given that we know our
workload is CPU-bound), we flag it as an overload, as such
heuristics are commonly used in current commercial cloud-
based systems [8].

We present results from an experiment where varying rates
of registration requests are sent to the OpenIMSCore VNF
components; results with other traffic scenarios were similar.
Figure 3 shows the incoming load as a function of time, the
ground truth capacity obtained from offline benchmarking,
and the times when NFVPerf detects a bottleneck. We see
from the figure that NFVPerf accurately identifies all epochs
where the load exceeds the ground truth capacity. NFVPerf’s
algorithm also correctly localized the fault to the correct VNF
component (HSS in this case). We also show the epochs where
the utilization threshold based technique detects bottlenecks,
and we find that its performance is comparable to NFVPerf.
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Fig. 3: Performance bottleneck detection in NFVPerf.

550 T

load detec V
500 overload dete(():ygé g:‘ilsedeoﬁ (t%gl}))bN zggmn -
capacity esti nch
450
__ 400
3
< 350 o @ L] -l &
123
§~ 300 B DB B DR BB - MKOOBBK
g
£ 250 = -
~ __
g 200 ol
E r—
150
100 . [~ ]
50 B -]
0

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600
Time in a experiment(seconds)

Fig. 4: Detection of software performance bottlenecks.

Next, we introduce a software bottleneck in the code of HSS
midway in our experiment, causing the HSS performance to
drop even before it hits high CPU utilization. This models real-
life scenarios where VNF implementations have non-hardware
bottlenecks. We then repeat our experiments and compare the



accuracy of NFVPerf and the method based on CPU utilization
threshold, as shown in Figure 4. We find that, while NFVPerf
can still accurately detect performance degradation due to a
non-hardware bottleneck, the CPU utilization based method
fails to identify performance bottlenecks in all overloaded
epochs. This experiment highlights the benefits of a sophisti-
cated tool like NFVPerf over simpler tools based on measuring
hardware resource utilizations.

V. CONCLUSION

As the concept of NFV is gaining attention from indus-
try, providing performance guarantees has become a critical
need for NFV infrastructure providers. The current tech-
niques to identify performance bottlenecks do not suit all
VNF implementations, e.g., if the VNF has a non-hardware
bottleneck, or if the VNF implementation does not expose
performance metrics. This paper describes NFVPerf, a pow-
erful tool to detect performance bottlenecks in real-time in a
NFV system. NFVPerf works by passively monitoring traffic
through the VNF forwarding graph, calculating application
layer throughputs and delays, and identifying performance
bottlenecks based on a degradation of these metrics. The
design of NFVPerf is generic enough to work across a variety
of VNFs. Our evaluation of NFVPerf on a real VNF prototype
running on our private cloud shows that NFVPerf can detect
performance bottlenecks with high accuracy. Our experience
showed us that NFVPerf is limited by the accuracy of software
timestamps available in kernel code, and would greatly benefit
from accurate hardware supported timestamps, which will lead
to more accurate estimates of delays over shorter epochs. We
will explore such avenues as part of future work.
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