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Abstract—Ns-3 is a widely used as a the network simulator of

choice by researchers. It contains many well tested and high

quality models of network protocols. However, the application

layer models of ns-3 are very simplistic, and do not capture

all aspects of real life applications. As a result, there is

often a huge gap between the results of real experiments and

the corresponding simulations. This problem is particularly

exacerbated for wireless simulations, where many networking

phenomena like wireless channel contention crucially depend

on the application traffic characteristics. One way to bridge

the gap between experiments and simulations is to incorporate

knowledge from network traces into simulations. To this end,

our work builds a trace-based application layer simulator

in ns-3. Given a network trace collected from a user, our

TraceReplay application layer model automatically generates

traffic that is faithful to the real application in the ns-3

simulator. TraceReplay infers and replays only application

layer delays like user think times, lets the simulator control

the lower layer phenomena. TraceReplay extracts application

layer characteristics from a single trace, and replays this

information across many users in simulation, by using suitable

randomization. Our model is also generic enough to replay any

application layer protocol. Validation of our simulation model

shows that simulation results obtained using TraceReplay are

significantly different from those using other models, and are

closer to experimental observations.

1. Introduction

Ns-3 is a widely used open-source discrete-event net-
work simulator. It contains a large number of high-quality
network models for all layers of the network stack, using
which it is very easy to build various network scenarios
and simulate them. While ns-3 provides a large number of
models for the transport and lower layers, it provides only a
limited choice at the application layer. The most commonly
used application layer models in ns-3 are BulkSend, which
generates uni-directional bulk TCP traffic, and OnOff, which
generates CBR traffic with on and off times. None of these
models correspond exactly to any application (e.g., HTTP).
Furthermore, these models assume that there are no parallel
TCP connections between any pair of nodes, and that there
are no variable user-side or application-layer delays.

Real life applications, however, are much more complex.
For example, when downloading a file from a webpage,
there are often several parallel connections between the web

client and server. In addition to the file being downloaded,
HTTP requests and responses are also generated for a large
number of other objects on the webpage. Using BulkSend
to model this complex traffic seems very simplistic, and can
fail to account for several interesting networking phenom-
ena. For example, previous research [6] has found that the
small amount of upload traffic generated while downloading
files from a webpage over WiFi can significantly increase
wireless contention, leading to much longer download times
than using just one TCP connection for download. This
divergence between simulation and experimental results
makes it hard to run realistic network simulations, and casts
a doubt over the applicability of research evaluated only
via simulations. However, simulations are vital to quickly
testing out new ideas, and it is therefore critical to strive for
more realistic network simulations.

In addition to being far removed from reality, the ap-
plication layer models of ns-3 also require manual setting
of suitable parameters. For example, a researcher wishing
to model a new application (e.g., an IoT smart meter) must
manually select a suitable model (e.g., OnOff) and must set
its parameters (e.g., on time and off time) manually.

The key insight of our work is that a network trace
(pcap) collected during an experiment contains significant
information about application layer traffic, and finding a
way to replay network traces within a simulator can enable
generation of realistic application layer traffic with minimal
manual effort. To this end, we have built and tested a new
application layer model called TraceReplay in ns-3. To use
TraceReplay, a user collects a pcap trace on a single machine
while the application is running. The user then sets up an ns-
3 simulation with the TraceReplay application layer model,
providing the network trace as input. Note that a single
network trace can be used to generate traffic at multiple
nodes in a simulation, because TraceReplay can be made to
introduce some randomization in the trace.

To correctly generate application layer traffic, TraceRe-
play collects information about the various transport connec-
tions between nodes, the amount of data sent and received
on each connection, packet sizes, and inter-packet delays.
It is very important to note that TraceReplay carefully
identifies and replays only the application layer delays (e.g.,
user think times) from the trace. Other inter-packet delays,
such as transport or network layer delays, are dictated by
the conditions within the simulator, and will not be (and,
should not be) replayed from a trace. Therefore, the network
conditions in the simulator can be very different from the



network conditions when the trace was collected. The logic
of TraceReplay is agnostic to the actual application layer
protocol being used, so that it can replay a trace with
any application layer protocol based on TCP (e.g., HTTP
or SSH), enabling easy modeling of several applications.
TraceReplay faithfully models multiple parallel connections
between hosts (as with parallel connections in HTTP). It
uses heuristics to identify and preserve the causal dependen-
cies (e.g., bytes corresponding to a HTTP request must be
sent before the bytes of the response) between data transfers
within one connection and across connections.

There are several advantages of using TraceReplay.
In addition to the convenience of not having to worry
about picking a suitable model and parameters, TraceReplay
also leads to simulation results that are closer to reality.
TraceReplay is particularly useful in conducting wireless
simulations, because traffic characteristics greatly influence
wireless channel contention and other phenomena, making
it crucial to get the application traffic model right.

We have built and integrated the TraceReplay application
layer model with the latest release of the ns-3 source code.
We validated our model by verifying that the traffic gener-
ated by the model in simulations closely matches the actual
traffic generated in experiments. We have presented results
for two application layer protocols—HTTP and SSH—but
our model has no protocol-specific code, and hence gen-
eralizes to any application layer protocol. Furthermore, we
show that simulations with TraceReplay produce results that
are closer to real life that those using other application layer
models.

2. Related Work

There has been prior work on generating realistic HTTP
traffic in ns-3. Web traffic generator [5], 3GPP FTP traffic
simulator [1], transactional traffic generator [4] and other
similar work use various HTTP parameters (e.g., file size
distribution, think time), obtained either from traces or from
user input, to generate synthetic traffic in the simulator.
Our work differs from these papers in several ways. In
prior work, the parameters once learnt or set stay constant
throughout the simulation. Further, none of these models
support parallel TCP connections between HTTP clients and
servers. Finally, the approaches in these papers cannot be
easily generalized to other applications.

The idea of using network traces to aid simulations
and emulations itself is not new. For example, T-RATE [3]
presents a model for using network traces to simulate bet-
ter rate adaptations algorithms at the MAC layer of ns-3.
Mahimahi [7] presents a framework for recording HTTP
traffic and later replaying it in experiments (i.e., not in a
simulator) under different network conditions. Our work was
inspired by these and similar efforts.

Tmix [8] is probably the work closest to ours. Tmix re-
plays packet traces in the ns-2 network simulator, much like
TraceReplay. However, the significant difference between
Tmix and our work is that TraceReplay carefully identifies
are preserves causal dependencies and ordering of packets

across multiple connections, while Tmix replays traffic in
each TCP connection independently.

3. Existing application layer models in ns-3

The BulkSend application in ns-3 models a single uni-
directional TCP/UDP flow between source and sink nodes in
the simulation. A BulkSend source tries to send the spec-
ified amount of data as fast as possible, using MSS-sized
packets, without any application layer delays. BulkSend is
a good choice to model long-running TCP flows, large file
downloads over FTP, and so on. The OnOff application layer
model is similar to BulkSend, with the difference that the
traffic generation has an “on” time and an “off” time. Data
is generated at a specified rate during on periods, and no
data is generated during off periods. Finally, ns-3 also has a
UDP trace replay application layer model that can be used
to replay MPEG4 stream trace files.

There are many shortcomings of the existing application
layer models, due to which they may not be able to produce
realistic simulation results. We discuss some of them below.

Unidirectional flow of traffic. In all the application layer
models discussed above, the flow of traffic is always from
the server to the client. However, most real life applica-
tions have bi-directional data flows (e.g., HTTP request
and response), that are often causally dependent on each
other, making it hard to model such applications with two
unidirectional flows. For example, even if one were to use
two BulkSend applications, one in each direction, between
a simulated HTTP client and server, there is no way to
guarantee that the bytes corresponding to the HTTP request
in one direction will be sent before the bytes of the HTTP
response in the other direction.

Fixed packet sizes and inter-packet gaps. BulkSend al-
ways sends MSS-sized packets, while real life applications
display a wide variety of packet sizes. Further, one can only
introduce a fixed application-layer delay between packets
using the “off time” knob of the OnOff application, while
real applications often exhibit highly variable inter-packet
gaps at different stages of the application processing.

No support for parallel connections. Finally, none of
the application models support multiple parallel transfers
between two nodes, a feature that is a hallmark of modern
application layer protocols like HTTP.

4. TraceReplay Application

We now describe the design of our TraceReplay appli-
cation layer model. To use TraceReplay, a user must run
the desired application at a single host, and collect a trace
(pcap) file. This trace can then be replayed at multiple nodes
in ns-3 using randomization. When a trace is replayed at a
certain simulated node, the traffic sent and received by the
simulated node will be similar to that of the host on which
the trace was collected.

To use a certain trace in ns-3, the user creates a Trac-
eReplay application and provides it a path to the pcap, a



parameter for randomization, and the addresses for the two
endpoints of the application. The TraceReplay application
generates traffic between two simulated network nodes—
the node that initiates the first packet in the trace is called
the client, and the other end point is the server. Note that
the collected trace file may have traffic from the local host
to several remote servers—all of these remote servers are
abstracted as one simulated server during replay.

Our implementation of the TraceReplay application layer
model adds three classes and about 1500 lines of code to the
ns-3 codebase. The TraceReplayApplication class is
responsible for parsing the input trace file, and scheduling
appropriate data transfers between the TraceClient and
TraceServer classes.

What information does our model replay? TraceReplay
collects information about all the TCP connections between
the client and server, and starts the connections at the time
specified in the trace. On every connection, it generates
packets of appropriate sizes as found in the trace, and
transmits them one after the other, as fast as the simulated
network allows. Note that TraceReplay ensures that there
is enough space in the transmit buffer of the simulated
socket to send the packet of the specified size, and defers
transmission in case of insufficient buffer space.

TraceReplay can be used to replay any application layer
protocol that runs atop TCP. Our evaluation replays primar-
ily HTTP and SSH traffic, but nothing in the model limits
the usage to these two protocols. TraceReplay currently does
not support UDP-based application layer protocols.

While TraceReplay preserves packet sizes found in the
trace, it does not strive the maintain the inter-packet gaps
seen in the trace, except for the gap is inferred to be an ap-
plication layer delay. Section 4.1 describes how application-
layer delays are inferred by our model. This selective re-
playing of only application layer delays ensures that other
network delays are governed by the network conditions
in the simulator, which can be very different from the
conditions when the trace was collected.

In addition to identifying and replaying application layer
delays, TraceReplay also tries to maintain the causal order-
ing of packets within a connection and across connections.
For example, the HTTP response bytes from the server must
only be sent after the corresponding HTTP request bytes
arrive on the same connection or on a different connection.
Inferring such constraints from the trace and respecting them
will ensure that timing of packet transmissions in the simu-
lation closely matches that in the trace. Section 4.2 describes
how we infer and enforce such ordering constraints.

4.1. Calculating application layer delays

We define an application layer delay as that caused due
to application layer semantics or user think time, and not
due to delays at the transport, network, or lower layers. We
replay two kinds of inter-packet delays in TraceReplay.
Delays between HTTP requests. Once a HTTP client
makes a GET request and fetches a page, the user may take
time to read the page before clicking on another link and

generating another GET request on the same TCP connec-
tion. Therefore, we replay any inter-packet gap between the
first packet of a HTTP request and the packet immediately
preceding it on the same TCP connection. We note that not
all such delays correspond to user think times (e.g., multiple
GET requests can be generated by a single click); however,
we replay all such delays conservatively.

Delays greater than a threshold. While the above heuristic
can be used to identify user think times for HTTP, the ap-
proach does not generalize to other applications. Therefore,
we need another heuristic to identify application layer delays
across applications. We hypothesize that application layer
delays (e.g., delay between packets in an SSH flow caused
due to the user typing the next command) are typically
in the oder of seconds, while network delays are typically
much shorter, even for longer network RTTs. To verify this
hypothesis, we collected inter-packet delays for SSH traffic,
for varying network RTTs. We varied the network RTT
in the experiment using tc and netem. Figure 1 shows
the inter-packet gaps during the SSH session, with varying
RTTs. We manually looked over the traces and verified
that all delays over 1 second always corresponded to user
pausing to type a command. Therefore, a simple threshold
on inter-packet gaps can almost always identify user think
times from other network delays.
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Figure 1. Time difference between two packets

Our TraceReplay model replays delays that match one
of the above two heuristics, and does not replay any other
packet delay. We also do not replay packet delays of re-
transmitted packets, because retransmissions could signal a
network issue.

When replaying the same network trace at multiple
nodes in simulation, we use the randomization parameter
provided to TraceReplay to randomize application layer
delays. Given randomization parameter R, TraceReplay adds
a random value r ∈ (−R,R) to application layer delays,
and connection start times, in order to avoid synchronization
between multiple nodes.



4.2. Ordering packets between client and server

When replaying packets in a single TCP connection,
TraceReplay does not replay each of the two directions
(client to server, and server to client) independently, because
the bytes from the server (e.g., HTTP response) could be
causally dependent on the bytes from the client (e.g., HTTP
request). Therefore, TraceReplay maintains the property that
if a packet X in one direction of the TCP flow occurred
after another packet Y in the other direction in the original
experimental trace, then it will be replayed in the same order
in the simulation as well. Therefore, while the exact inter-
packet gaps in simulation may differ from that in the trace,
the relative ordering of packets across both directions of the
connection will be preserved.

Causality can exist not just between packets of one
connection, but also across multiple TCP connections. For
example, a HTTP client may send a GET request for an
image file on a TCP connection only after receiving the
HTTP response specifying that image’s URL on another
connection. TraceReplay tries to preserve causality across
connections as follows. Whenever an application layer delay
is detected between two packets of a certain TCP connection
(using the heuristics of Section 4.1), TraceReplay checks if
any other connections exist between the same source and
destination pairs in the trace. If other parallel connections
exist, TraceReplay compares the number of packets sent on
each of those connections in the trace before the current
point of time with the actual number of packets sent on those
connections in the simulation. If any of those connections is
found to have sent fewer packets in simulation than in the
experimental trace, TraceReplay delays the transmission of
the current packet to a point where all parallel connections
have made sufficient progress. These constraints of causality
introduce an additional delay when replaying packets, and
serve to pace packet transmissions in a realistic fashion, over
other applications layer models like BulkSend that send data
as soon as the network allows.

5. Validation and Observations

We now validate our simulation model, to verify both its
correctness and usefulness, in the following two ways: (i) we
replay an experimental trace collected at a single client in a
single client simulation, and verify that TraceReplay is able
to correctly replay the trace; and (ii) we run simulations with
large number of nodes using TraceReplay and compare our
results to similar ones using other application layer mod-
els. We show that TraceReplay produces significantly
different and more realistic simulation results, especially in
simulations with wireless bottlenecks.

To collect pcap traces, we run a variety of applications
on a laptop connected to a WiFi access point, and collect
traces of individual applications and activities. We then
replay these traces in ns-3 using a topology as shown in
Figure 2. Our simulation setup consists of one or more WiFi
clients connected to a remote server via an AP. All WiFi
clients replay the pcap collected in the experiment (with

Figure 2. Test setup

suitable randomization). The server node in simulation re-
plays the traffic from all remote destinations in the collected
pcap. Our experiment and simulations all run on 802.11g.

5.1. HTTP download from local server

Our first experiment consists of a user downloading
video lectures from a course website hosted on a local
web server in our university campus. The user opens his
web browser, authenticates himself, browses the website for
content, and then downloads a 7 MB lecture video. Other
applications like email are running in the background, and
user also browses other sites for short periods of time while
the download is ongoing. A network trace was collected
during this entire activity of the user. This trace represents
typical traffic that WiFi networks see in classrooms. The
network trace consisted of mainly HTTP traffic, with a total
of 56 TCP connections to various remote hosts.

We now setup a simulation with a single WiFi client
connected to an AP, and replay the trace on the client and
the server. The bandwidth and delay of the point-to-point
link from the AP to the server are set to 100 Mbps and 5
ms respectively, because the actual server in the experiment
was connected over the LAN to the AP. We now compare
the traffic generated in the simulation by TraceReplay to the
traffic seen in the actual trace, to validate the correctness of
TraceReplay. Figures 3 and 4 show the upload and download
traffic (aggregated over 0.1 sec intervals) generated by the
client in the experiment and with TraceReplay. We find that
the traffic generated in simulation matches very closely to
that in the experimental trace. Further, this realistic traffic
was generated in simulation with very little effort, i.e., with-
out the user having to set any parameters for any models.

Does a realistic replay of traffic translate to significantly
different simulation results? To answer this question, we
run simulations comparing TraceReplay with the BulkSend
application layer model in ns-3, with varying number of
clients. For the TraceReplay simulations, we replay the
single trace collected above at all clients, with a suitable
randomization parameter. For simulations with BulkSend,
we generate traffic with two BulkSend connections, one for
the upload and the other for download. The parameters of
BulkSend (like total bytes to send) are derived from the ex-
periment trace, in order to enable a fair comparison. Figure 5



shows the total time taken to fetch the video lecture from the
course server in simulation, for both when simulation traffic
was generated with TraceReplay and with BulkSend, as we
vary the number of clients from 10 to 50. In all cases, we
find that TraceReplay leads to higher download times than
BulkSend. The download times generated from TraceReplay
are found to be closer to what the course instructor observed
(for comparable class sizes in real life), and also match
results on TCP performance in large classrooms in our
previous research [6].
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Figure 3. Download traffic when fetching content over HTTP from local
server.
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Figure 4. Upload traffic when fetching content over HTTP from local server.

Why does TraceReplay lead to higher download times
as compared to BulkSend? One reason is that TraceReplay
accurately captures user think times and other application
layer delays. It also delays sending packets to preserve
causal ordering of packets, much like real applications. The
most important reason, however, is that the traffic generated
by TraceReplay introduces significantly higher contention
on the wireless channel as compared to the traffic from
BulkSend. With BulkSend, the small amount of upload
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Figure 5. Total download time (min, max, avg) when fetching content over
HTTP from local server, for TraceReplay and BulkSend

traffic proceeds independently from the large download, and
lasts for a shorter duration, unlike in the real trace. As
a result, for most part of the simulation, the contention
on the wireless channel was very low. With TraceReplay,
however, the upload traffic overlaps significantly with the
download (much like in the actual experiment), and adds a
constant “chattiness” on the wireless channel. This increases
contention, leading to more wireless collisions and losses,
resulting in higher download times.

5.2. HTTP download from remote server

Next, we perform another HTTP download experiment,
but this time, from a remote server outside our campus.
We downloaded a 26MB ns-3 tarball from the ns-3 website,
and collected a pcap. Unlike in the previous experiment, the
wired network from the AP to the server (not the wireless
network) was the bottleneck. As a result, we set a suitable
value of bandwidth and delay on the point-to-point link
between the AP and server in our experiments to reflect
this situation. We replayed the pcap at a single client in
simulation and found that the pattern of traffic generated
closely matches the trace. We skip those results due to lack
of space.

Next, we run simulations with varying number of clients,
using both TraceReplay and BulkSend as application layer
models, and measure the time taken to complete the down-
load in simulation. Figure 6 shows the download time of the
file for varying number of clients, for the two application
layer models. In this scenario, we find that BulkSend and
TraceReplay produce similar download times. Even though
TraceReplay carefully replays application layer delays, and
recreates the right mix of upload and download traffic
contention on the wireless link, the download time is this
scenario is largely determined by the rate of the wired net-
work bottleneck link, and not by other factors. As a result,
the features of TraceReplay make no significant difference
to the end result. This experiment is informative on when
TraceReplay is useful and when it is not.
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Figure 6. Total download time (min, max, avg) when fetching content over
HTTP from remote server, for TraceReplay and BulkSend

5.3. SSH traffic

Finally, we validate our claim that TraceReplay can be
used to replay any application layer protocol. We collect
a network trace with a user running commands over an
SSH session to a remote server. We then replay this trace in
simulation. In the absence of TraceReplay, as SSH session
would have been modeled using the OnOff model in ns-3, as
it is a low rate application, with the OnOff model parameters
being set manually. We run simulations of a single client
running SSH, using both TraceReplay and OnOff, with
suitable parameter setting for OnOff. We find that the inter-
packet delays produced by TraceReplay match the real trace
more closely, as TraceReplay can generate variable inter-
packet gaps, while OnOff can only model fixed inter-packet
gaps. Figure 7 shows the CDF of the difference in inter-
packet gaps in the experiments, for TraceReplay and OnOff
simulations. We can see that while the difference in inter-
packet gaps is always close to 0 for OnOff, the CDF of
TraceReplay closely matches that of the experiment. Next,
we run simulations with varying number of SSH clients.
Figure 8 shows the average jitter observed by the SSH
clients as a function of number of clients in the wireless
network, for both TraceReplay and OnOff. We find that
clients suffer higher jitter on an average with TraceReplay,
due to its ability to accurately model variable packet gaps
caused by user think times and wireless contention.

6. Conclusion

Our work described an application layer packet genera-
tion model for ns-3, that uses an experimental pcap trace file
to generate realistic traffic for simulations. Our TraceReplay
application layer model is easy to use, and can be used
to generate traffic of a large variety of application layer
protocols. TraceReplay uses heuristics to identify applica-
tion layer delays and causal relationships between packet
flows, and carefully replays these in simulation, while letting
the simulator dictate the lower layer behavior. Simulations
using TraceReplay show markedly different results from
simulations using other ns-3 application layer models, and
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Figure 7. CDF of difference in inter-packet delay for a single SSH client.
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Figure 8. Average jitter with varying number of SSH clients.

are closer to experimental results. TraceReplay is particu-
larly useful in simulating wireless networks, because traffic
characteristics have a significant impact on wireless channel
contention, and small improvements in traffic models can
greatly enhance the realistic nature of simulation results.
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