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Abstract—While several techniques exist today to build high-
capacity web servers, little attention is paid to the fact that
servers often crash when faced with transient overload, causing
user experience to degrade sharply when incoming load exceeds
capacity. Existing overload control mechanisms focus on some
form of admission control to protect the web server from
overload. However, all such techniques result in excess user
requests failing, and there is no feedback to the frustrated user
about when to retry again. This paper describes WebQ, a system
consisting of two web proxies, that together simulate a virtual
queue of web requests, and shape incoming load to match server
capacity. Users accessing a server protected by WebQ receive
a HTTP redirect response specifying a wait time in the virtual
queue, and are automatically redirected to the web server upon
expiration of the wait time. The wait times are calculated using an
estimate of the server’s capacity that is computed by WebQ. Users
in the virtual queue are provided with a secure cryptographic
token, which is checked to guarantee that the user has waited his
prescribed time in the queue, without having to maintain per-user
state. The design of the WebQ proxies lends itself to a distributed
implementation, making the system itself scalable and robust to
overload. Our experiments with our WebQ prototype show that,
with WebQ in place, users experience zero server failures and
significantly better response times from a web server, even when
the peak load is several times its capacity.

I. INTRODUCTION

The problem of websites “crashing” due to server overload
persists to date, despite huge advances in server technologies.
Some recent examples include the crash of AT&T’s servers
due to simultaneous activations from iPhones in 2011 [4],
the overload of the U.S. government healthcare website in
2014 [35], and a recent crash of the Indian e-commerce
website Flipkart’s servers on a sale day [15]. Server crashes
can happen even when the website capacity has been planned
well, because websites may sometimes receive an unexpected
peak load that significantly exceeds capacity (e.g., when a
website is “slashdotted”). Further, even if the peak load can be
anticipated, it may be expensive and impractical to provision
a website for peak load that occurs only for a short period
of time. For example, the online ticketing portal of the Indian
Railways is provisioned to serve a few thousand users a minute.
However, for a short period everyday when a block of last-
minute tickets go up for sale, about a million users visit the
website [10]. In such cases, unless an explicit overload control
mechanism is in place that protects the servers, a crash is nearly
certain, resulting in website unavailability.

While several solutions have been proposed to address the
problem of web server overload, most solutions use some form

of traffic policing and admission control to protect the web
server itself, and do not aim to ensure that user requests are
eventually served. Requests coming in during the overload
period are simply dropped, and the user receives some form of
a “service unavailable” error message or his connection times
out. It is up to the user then to retry such a request, which
the user does arbitrarily, further amplifying the load on the
server. The end result from the user’s perspective is a non-
deterministic wait time with no guarantee of eventual service.

Our previous work proposed WebQ [6], a system to im-
prove user experience when accessing overloaded web servers.
While the earlier work only described the basic idea, this paper
provides a detailed description of the design, implementation,
and evaluation of WebQ. The goal of WebQ is to ensure that
every request to an overloaded server is eventually served,
without the user having to resort to adhoc retrying. Our
solution consists of two front-end web proxies, TokenGen
and TokenCheck, that together shape incoming load to match
server capacity. New requests coming to the website first arrive
at TokenGen. This proxy computes a wait time for every
request, proportional to the amount of overload at the server.
TokenGen replies to every request with a HTTP “redirect
after timeout” response, that redirects the user to the website
after the wait time. TokenCheck is an inline web proxy that
intercepts and forwards this request to the web server. The
TokenGen proxy also generates a cryptographic token that
can be checked by TokenCheck to verify that the client did
wait its prescribed duration. Together, the two proxies simulate
a “virtual queue” of web requests to an overloaded web
server. The proxies do not maintain any per-user state, and
rely on aggregate statistics and cryptographic mechanisms to
compute and enforce wait times. Further, both TokenGen and
TokenCheck lend themselves to a distributed design, where
multiple replicas of the proxy can be used to handle incoming
load. This stateless queuing of users, along with a design that
lends itself to horizontal scaling, make the proxies themselves
scalable and robust to overload.

The ability of WebQ to shape incoming traffic significantly
depends on it having a correct estimate of the server capacity.
To this end, TokenGen and TokenCheck implement a capacity
estimation algorithm. The capacity estimation algorithm in
WebQ treats the server as a “black box”, and does not require
any metrics, measurements, or instrumentation at the server
to estimate capacity. Instead, the proxies monitor the server’s
response time and goodput while being on the access path
the server, and use these passive measurements to accurately
estimate the server’s capacity. The server capacity is calculated



as the load level that maximizes the ratio of its observed
goodput to the observed average response time (also called the
power ratio). WebQ’s capacity estimation algorithm can accu-
rately estimate capacity across a wide variety of workloads,
e.g., when the workload to the server consists of different
types of requests with unknown service times in varying
relative proportions. Further, the algorithm can detect changes
in server capacity from the change in the server’s response time
and goodput, and use this trigger to periodically re-estimate
capacity. Note that WebQ can also work with other capacity
estimation algorithms or a manual capacity configuration by
the website administrator.

WebQ improves user experience by making response times
more predictable, and by eliminating server crashes that occur
due to transient overload. When the web server is not over-
loaded, users are immediately redirected to the server with
negligible overhead. During periods of overload, users are
informed of their wait time in the queue, are automatically
redirected to the web server after the wait time expires, and
receive predictable service from the web server once their
turn comes up. All this improvement in user experience is
achieved without modifying the clients or the server. Note
that our solution is complementary to numerous techniques
that increase the capacity of the web server itself, e.g., load
balancing traffic over several replicas. While such techniques
improve the capacity of the server itself, our solution improves
user experience during those times when the incoming load
exceeds server capacity for various reasons.

We have implemented the WebQ proxies by extending
existing web servers and proxies. Experiments with our WebQ
prototype show that a web server protected by WebQ can
easily handle a peak load that is several times its capacity,
with 100% of the arriving requests eventually getting served.
Further, after the users wait for a known duration prescribed
by WebQ, subsequent server response times are significantly
lower and have low variability. Our experiments also show that
our capacity estimation algorithm estimates server capacity
with over 90% accuracy, leading to good traffic shaping by
the WebQ proxies.

The contributions of this paper are:

• A novel idea focusing on improving user experience
during web server overload. Our idea of shaping
user arrivals to match server capacity, by providing a
known wait time feedback to users, complements prior
work on managing web server overload by increasing
server capacity or by performing admission control on
the excess traffic.

• A complete design and implementation of WebQ. This
paper significantly improves on our prior work [6] that
proposed the initial idea, and describes a system that
is practical to deploy, robust, and scalable.

• A thorough evaluation demonstrating the efficacy and
scalability of our system, under a variety of traffic
conditions. Once again, the results in this paper signifi-
cantly improve upon the basic experiments provided in
our previous publication, and show that WebQ works
well under a variety of traffic scenarios.

The rest of the paper is organized as follows. Section II

describes the high level architecture and design of WebQ.
Sections III describes the distributed scalable design and
wait time computation in the TokenGen proxy. Section IV
describes the capacity estimation algorithm implemented by
the TokenGen and TokenCheck proxies. Section V describes
our prototype implementation, and Section VI describes our
experimental results with this prototype. Section VII discusses
related work, and compares our work to prior research. Finally,
we conclude the paper in Section VIII.

II. OVERVIEW OF WEBQ

We now describe the architecture of WebQ, and a high-
level overview of its various components. We begin with a
description of the setup where WebQ is likely to be used, and
the assumptions we make about the ecosystem.

A. Setup and Assumptions

Use cases. The goal of WebQ is to improve user experience
when accessing overloaded web servers. Our solution is par-
ticularly useful in the case of multi-tier application servers that
serve dynamic HTTP content in response to user requests. In
such cases, each user request consumes finite and measurable
computational (or other) resources at the web server and at
the other tiers (e.g., database server). For example, consider
the case of a travel portal that lets users check the availability
of travel tickets and make reservations. Servers hosting such
requests perform significant computation for every user request
(e.g., computing the lowest cost schedule across multiple legs
of a journey). Therefore, when offered load exceeds capacity,
the response time of the server increases, queued-up requests
take longer to complete, causing the server to eventually run
out of resources (e.g., socket descriptors) and turn down new
user requests with a “service unavailable” message.

Our solution is deployed as a pair of transparent mid-
dleboxes between clients and servers, and does not require
modifications to either. During periods of overload, WebQ
makes clients wait for a predetermined amount of time and
shapes incoming traffic to the server, so that clients arrive at
the server at a rate that it can handle. WebQ is only useful
when server overloads are transient, and average incoming
load is below provisioned capacity. In this sense, WebQ allows
web servers to be provisioned for average load instead of
peak load, and insulates them from the consequences of bursty
traffic patterns. Note that WebQ does not fully solve the
overload problem when the incoming load always exceeds
server capacity, and can only help delay (but not eliminate)
the need for upgrading server capacity. As such, our work is
complementary to techniques that scale server capacity, which
are more suitable to alleviate persistent overload.

User Acceptance. We assume that users prefer a known
wait time in WebQ’s virtual queue to non-deterministic wait
times, server crashes, and adhoc retrying. Our assumption
is grounded in user studies such as [16] that highlight the
importance of feedback during long periods of waiting.

Deployment. We envision the WebQ proxies to be de-
ployed as a third party service (in the cloud, perhaps) to
which requests are redirected. If desired, WebQ can also be
integrated more closely with the server infrastructure itself.
The functionality of the TokenGen module can be integrated



into reverse proxies, load balancers, application layer firewalls,
or other middleboxes that vet requests coming to a web server.
Similarly, TokenCheck performs some simple checks before
serving every incoming request, and this functionality can
be easily integrated with the web server itself. For ease of
exposition, we describe both proxies as separate entities.

We assume that HTTP requests are redirected through
WebQ by the web site designer using techniques like DNS
redirection, much like how some parts of web pages are
redirected to and fetched via CDNs. Note that it is not
necessary for all web requests to pass through WebQ; the
server can choose to redirect only the most resource-intensive
ones. For example, a travel portal can host the landing web
page that collects information about the planned trip from the
user on its regular server farm. Now, after the user fills up his
requirements and hits the “Submit” button, only the subsequent
computationally intensive web request can be redirected via
WebQ. Note that servers need not commit to using WebQ at
all times as well. Servers can choose to redirect requests to our
system only during periods of expected overload, e.g., when
a travel portal releases a block of deeply discounted tickets or
when a university web site releases examination results.

We assume that the WebQ proxies are allowed a small
“warm-up” training period before they are expected to be
operational. WebQ uses this training period to estimate server
capacity and get itself ready to shape traffic. Our capacity
estimation algorithm can obtain reasonably accurate capacity
estimates within a few minutes (14 minutes as per our evalu-
ation in Section VI) of passively observing traffic to and from
the server, without requiring any other information from the
server administrator. Web sites using WebQ can plan for this
training well before the expected overload. We assume that the
training period sees a fairly representative traffic that the web
server would see during regular operation.

Workload. We assume that the workload to the web server
is heterogeneous, i.e., different types of requests consume
different resources at the web server. The mix of the traffic (i.e.,
the relative proportions of the different request types) is also
assumed to be dynamic. We assume that the relative hardness
of the requests and the capacity of the server are not known;
WebQ estimates these from passive measurements. However,
we assume that a request can be classified into one of the
few types easily, say, by inspecting its payload or URL. For
example, we assume that the WebQ proxies are given enough
information to be able to look at a URL and determine if
it is a (probably less computationally intensive) request for
viewing the availability of tickets on a travel portal, or a (more
intensive) request of making the ticket booking, even though
the resources consumed by each request are not known. We
also assume that the number of different types of requests is
finite and not very large (say, of the order of a few tens).
During the training period, the capacity estimation algorithm
in WebQ tags each request by its type, observes its response
time, and uses this information to estimate both the relative
hardness of the various requests, and the server capacity.

Note that any change in the resources provisioned at the
server, or any change in the server logic to handle a type of
request will manifest itself as a change in relative hardness of
the requests, and hence a change in server capacity. WebQ’s
capacity estimation algorithm periodically re-estimates server

Fig. 1: Architecture of WebQ.

capacity when it discovers any change. However, because the
capacity estimation algorithm takes a few hundreds of seconds
to estimate capacity, we assume that the server capacity
changes relatively infrequently. Specifically, we assume that
the server capacity does not change during the training period.

Overhead. WebQ proxies add a cost overhead to the web
server infrastructure. However, if deployed as a third-party
service in the cloud with a pay-as-you-go model, website
administrators can redirect traffic through WebQ only during
periods of expected overload, thereby incurring the cost of the
virtual queue infrastructure only when required. Redirection
via WebQ will also add an additional network round-trip time
to the request completion time. The processing overhead at the
proxies itself should be negligible, since the proxies do very
little beyond simply redirecting the requests back to the client
(when the server is overloaded) or to the server. WebQ shall be
deployed when the benefit of improved user experience (during
transient overloads) outweighs these costs.

B. Architecture

The WebQ system comprises two entities that work to-
gether to simulate a virtual queue: a HTTP proxy server
TokenGen that assigns wait times to users, and an inline
HTTP proxy TokenCheck that forwards user requests to the
web server after the users have waited for the specified time.
Figure 1 shows the architecture of our system. Note that
there can exist multiple instances of both TokenGen and
TokenCheck, i.e., the designs of the proxies lend themselves
to horizontal scaling. However, for ease of exposition, we will
first describe the system assuming one instance of each.

User requests that are destined to the web server being
protected by WebQ are redirected to TokenGen by the web site
designer. TokenGen computes a wait time for requests based
on the extent of overload at the server (0 if no overload), and
returns a HTTP redirect page to the user that redirects to the
web server after the wait time expires. While WebQ uses the
HTTP redirect mechanism to make web clients wait, our idea
can work with any other mechanism (e.g., a Javascript timer)



that can temporarily stall a user from accessing the server.
When the user is eventually redirected to the website after the
wait time, the user’s request is intercepted by the TokenCheck
inline proxy, and forwarded to the server.

In addition to bridging the HTTP connections between
the client and the server, TokenCheck also computes statistics
about server response time and goodput, and communicates
them to TokenGen periodically. The capacity estimation mod-
ule at TokenGen uses this feedback from TokenCheck to
estimate server capacity (Section IV), which in turn feeds
into the wait time calculation. Assuming TokenGen calculates
server capacity and wait times correctly, the eventual load at
the TokenCheck proxy and the web server (after users have
waited their prescribed durations) will never exceed the server
capacity, even under overload, guaranteeing good quality of
experience to the end user.

Note that TokenCheck is protected from overload by To-
kenGen’s traffic shaping, much like how the original web
server is protected. Therefore, it suffices for TokenCheck to
handle a load equal to the server capacity and not any more.
As such, any techniques used to scale server capacity can
be applied to scale TokenCheck as well. Each TokenCheck
instance is stateless, and only relays measurements about
server response time to the capacity estimator. Therefore, one
can easily have multiple replicas of TokenCheck on the path to
the server, balance user traffic across them by directing users
to different replicas at TokenGen, and have all replicas com-
municate with the capacity estimation module independently.
Thus the design of TokenCheck is easily scalable and robust
to overload.

Achieving a scalable design for TokenGen takes a little
more work. The TokenGen proxy consists of two logical
components: the forwarding plane that performs traffic shaping
and returns a wait time to users, and a capacity estimator that
estimates the capacity to shape to. The capacity estimation
module only communicates periodically with TokenCheck,
and is unlikely to be overloaded. The forwarding plane in
TokenGen, however, bears the brunt of the high incoming load
to the server, since it is the first point of contact between the
heavy user request flow and the web server. Now, TokenGen
immediately returns a response to every request, and unlike a
traditional inline proxy, does not need to maintain any client
sockets open during the duration of the client’s interaction
with the web server. Also, TokenGen does not maintain any
per client state beyond aggregate traffic statistics. Therefore,
TokenGen can scale to handle a much larger incoming load
than the actual web server. However, a very high incoming load
can still overwhelm a single TokenGen instance. Therefore, the
forwarding plane of TokenGen is designed to be horizontally
scalable (Section III). Multiple TokenGen replicas divide up
the server capacity amongst themselves and shape traffic based
on their share of capacity, while ensuring that the wait time
that a user sees remains similar no matter which replica the
user goes to. This distributed design of TokenGen ensures that
WebQ is scalable and robust to overload itself, while ensuring
good user experience under overload.

C. Token Generation and Verification

A fundamental question still remains: how do we ensure
that the user does not “jump the queue”? For example, the

user (or the user’s browser) can modify the wait time in the
HTTP response from TokenGen, and attempt to access the
server sooner than its rightful turn. WebQ must disincentivize
such behaviors, while not maintaining significant per-user state
(e.g., the wait times allocated to each user) itself. WebQ
uses simple cryptographic mechanisms to solve this problem.
TokenGen and TokenCheck share a cryptographic secret key
K during setup. When a user arrives at TokenGen, the proxy
returns a cryptographic token to the user in addition to the
wait time. The token is simply the HMAC (hashed message
authentication code, computed using the shared secret key) of
the user IP address IP, the timestamp TS when the user checked
in at TokenGen, and the wait time w relative to this current
timestamp. This token, along with TS and w, is embedded in
the redirect URL and returned to the client.

When the user arrives at TokenCheck, the proxy extracts
the values of TS, w, and the token from the redirect URL. The
proxy first verifies that the current time matches the sum of
the timestamp of the user at TokenGen TS and the wait time w
prescribed by TokenGen, proving that the user waited exactly
for the prescribed time. To verify the authenticity of TS and w
themselves, the proxy recomputes the HMAC token using the
reported values of IP, TS, and w, and verifies that it matches
with the token presented by the user. If the user did tamper with
TS or w to show up earlier (or later) than his designated time,
the HMAC computed by TokenCheck would not match that
given to the user by TokenGen. Such non-conforming requests
can be dropped by TokenCheck. Note that for the timestamp
checks to work as described above, TokenGen and TokenCheck
should be time-synchronized. Alternatively, the timestamps can
be rounded off to a coarser time granularity to accommodate
time drift, without compromising safety.

Note that the timestamp check at TokenCheck also guards
against potential replay attacks, where a user reuses old tokens
to gain access to the server at a future time. Because the
timestamp check verifies that the user has arrived at exactly his
designated time, a user that tries to reuse the same token in the
future will not be allowed by TokenCheck. It is theoretically
possible for a user to reuse his token to gain access to the
server multiple times in the short period before the next tick
of the timestamp. For example, if timestamps are rounded
off to a second, it is possible for the user to reuse the same
token multiple times within the one-second interval that was
assigned to him for accessing the server. Because TokenGen
and TokenCheck do not keep any per-user or per-request state
for scalability, such an attack is a possibility. However, because
the window of vulnerability is so small (e.g., one second if
timestamps are rounded off to a second), we believe allowing
a small number of such malicious requests is a reasonable
tradeoff for simplicity and scalability of our design.

III. WAIT TIME COMPUTATION IN TOKENGEN

We now describe the design of the forwarding plane of
the TokenGen proxy of WebQ, which assigns wait times to
incoming user requests in order to shape traffic to server
capacity. We begin with a simple description assuming a
single instance, then generalize our approach to the distributed,
scalable design. For ease of exposition, we first assume that all
requests to the server are homogeneous, and consume similar
resources at the server. We will generalize to the case of



heterogeneous workloads after describing how WebQ handles
heterogeneous requests in Section IV.

A. Strawman Approach

Let us begin by assuming that a single instance of Token-
Gen suffices to handle the entire incoming load to a website.
Let C denote the server capacity estimated by the capacity
estimation module of TokenGen (described next in Section IV).
The capacity C is a measure of the request-processing capa-
bility of the web server, and is measured as the maximum
number of requests/sec that the server can successfully handle
(assuming a homogeneous workload). The wait time returned
to a user by TokenGen indicates the number of seconds the
user has to wait before accessing the web server, such that
the load to the server never exceeds its capacity. We only
assign wait times in units of seconds (and not milliseconds,
for example) for several reasons: (i) the HTTP refresh header
supports redirection after an integer number of seconds; (ii)
a finer granularity of scheduling is harder to enforce strictly
due to network latencies and other delays beyond our control.
From now on, we assume that the wait time w returned by
TokenGen is an integer and is in units of seconds. However,
our design works for any other granularity of wait time that
can be reliably enforced.

TokenGen maintains a long circular array of numbers N ,
where N [k] denotes the number of requests that have been
scheduled by WebQ so far to arrive at the web server at a
time k seconds into the future. For example, N [0] denotes
the number of requests that will be reaching the server in
the current second. WebQ can limit the maximum wait time
assigned to a client to some large value (say, based on what is
considered reasonable from a user’s perspective), and the array
N can be sized accordingly. Whenever a user request arrives
at TokenGen, it finds the earliest timeslot in the future that
can accommodate the user, subject to the capacity constraint
at the server. That is, it computes the smallest index k such that
N [k] < C, and assigns the wait time to the user as w = k. It
also increments the count of requests N [w] by one to account
for this user’s arrival in the future. Note that if the incoming
load is less than server capacity, the wait time will work out
to be zero, because N [0] < C always holds. The list N is
also updated every second to shift out the previous second’s
entries.

WebQ also tracks server capacity, and adjusts its capacity
estimate from time to time. Changes in server capacity can lead
to transient periods where the wait time assignment algorithm
deviates from the one described above. Consider the case
where TokenGen has scheduled C requests each for the next
T > 0 seconds into the future, and is currently assigning a
wait time of T + 1 to new requests. At this time, it discovers
that the server capacity has increased, and updates its capacity
estimate to C ′ > C . After this update, the wait time assigned
to new requests will no longer be T + 1, but can be as low
as 0, because N [0] = C < C ′. That is, new requests will
be assigned shorter wait times to fill up the newly discovered
server capacity in the near future. As a side effect, requests
may not always be served on a first-come-first-serve basis
during the transient period when capacity is being updated.

Let us now consider the case where the server capacity
has reduced and the new capacity estimate C ′ < C. Again,

assume that we have already scheduled C requests per second
to the server for the next T seconds before we discover the
capacity change. Here, we have unwittingly forced the server
into an overloaded situation, by scheduling more requests (C)
than it can handle (C ′) for the next T seconds. As a result,
the C ∗T requests scheduled in the future will actually take at
least T ′ = C ∗ T/C ′ seconds to complete, with T ′ > T .
Therefore, new requests that arrive at TokenGen after the
capacity reduction are assigned a wait time of T ′ + 1, and
no requests are scheduled to the server between T and T ′.

B. Distributed Design

A design based on a single TokenGen instance detailed
above works fine for moderate incoming load, but can quickly
turn infeasible if the server is being flooded with enough traffic
to overwhelm TokenGen itself. To prevent TokenGen from
crashing under overload, we extend the design of TokenGen
to be horizontally scalable. That is, TokenGen will consist of
multiple instances, and the user can approach any of them
to obtain a suitable wait time when the server is overloaded.
The design goal of the distributed TokenGen is that all the
replicas together should emulate a single “fat” instance of
TokenGen. More specifically, the wait time assigned to each
incoming request should be the same, no matter which replica
the user request arrives at. Note that we only distribute the
forwarding plane of TokenGen that replies to user requests with
a wait time; we assume that a single capacity estimator suffices
to execute the low-overhead capacity estimation algorithm
occasionally.

Each distributed TokenGen replica periodically calculates
the share of capacity Si that it is entitled to. A simple approach
to calculating a replica’s share of capacity would be to divide
up the total server capacity equally amongst all replicas.
Assuming different replicas can receive different amounts of
incoming load, such a simple calculation of Si would result in
overloaded replicas assigning longer wait times than under-
loaded ones, violating our design goal of being as true as
possible to the case of a single TokenGen instance. In order
to avoid this problem, the total capacity C is divided amongst
the replicas in the ratio of their incoming load. Each replica
periodically (every second in our implementation) shares with
the other replicas its current incoming load Li (in terms of
requests/sec over the past second). Then the share of capacity
Si at each TokenGen is calculated as

Si =
Li∑
j Lj

∗ C (1)

As an implementation detail, our system reserves a certain
minimum capacity at each replica, even if the replica isn’t re-
ceiving any load currently, in order to let the replica gracefully
ramp up when it does start receiving load. Thus the share of
capacity Si is never zero, and never falls below a minimum
reserved amount for each replica.

Now, each TokenGen schedules requests at a future time
instance using its share of capacity at that point of time.
But its share of capacity may come down in the future
due to a redistribution of incoming load amongst replicas.
Given that a TokenGen cannot “cancel” the requests it has
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Fig. 2: Power ratio (ratio of goodput to average response time)
of a web server, as a function of offered load.

scheduled at some time in the future, all other replicas must
honor this excess allocation and allow certain replicas to use
more than their share of capacity in a transient period. To
enable this, replicas also share with each other the array Ni

indicating number of requests each has scheduled to the server
in the immediate future. That is, Ni[k] denotes the number of
requests the i-th replica has scheduled to the server k seconds
into the future. Once all replicas exchange this information
with each other, the i-th replica computes the excess allocations
for the k-th second into the future Ei[k] as the difference
between the actual requests scheduled for the k-th second by
all the other replicas and their net share of capacity. Note that
the sum of the shares of capacity of all other replicas can be
obtained as (C − Si) at the i-th replica.

Ei[k] =
∑
j 6=i

Nj [k]− (C − Si) (2)

If this excess is positive, the i-th TokenGen replica must
accordingly schedule fewer requests than its fair share Si, to
honor the allocations made by the other replicas. Therefore, the
i-th replica calculates its usable capacity for the k-th second
into the future Ci[k] as follows.

Ci[k] = min(Si, Si − Ei[k]) (3)

Note that, if multiple replicas notice any excess allocation,
all of them will reduce their usable capacity by the excess
amount, to ensure that the server is not inadvertently over-
loaded. While this approach is a bit more conservative in its
usable capacity estimates than required, it avoids extra commu-
nication between the replicas to decide who will accommodate
how much of the excess.

Once usable capacity is computed as above, this value (and
not the total capacity C) is used to assign wait times to incom-
ing requests as per the algorithm described in Section III-A.
That is, when the i-th replica gets a request to access an
overloaded server, it computes the smallest index k such that
Ni[k] < Ci[k], assigns the wait time to the user as w = k,
and increments Ni[k] by one to account for this request.

IV. CAPACITY ESTIMATION

The effectiveness of WebQ crucially depends on assigning
appropriate wait times to requests at TokenGen, which in turn
depends on knowing the correct capacity C of the web server.
We now describe how WebQ estimates this capacity. We begin
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by describing the key idea intuitively, before proceeding to the
formal description of the algorithm.

A. Key Idea

It is well known that the performance of a web server, as
measured by its goodput and response time, degrades signif-
icantly when the incoming load is greater than its capacity.
For example, consider a simple web server that is configured
to have a capacity of 100 req/s (see Section V for details
of our setup). For now, assume all requests are of similar
hardness, i.e., the workload is homogeneous. As the incoming
load exceeds capacity, the goodput plateaus off (and eventually
drops) and the response time increases sharply. Therefore, the
power ratio, defined as the ratio of goodput to average response
time, attains its maximum value around the server capacity, as
shown in Figure 2. The peak of the power ratio occurs a little
below the configured server capacity because response times
of the server start to increase due to queuing even before its
configured capacity is reached. We define the true capacity (as
opposed to the configured capacity) of a server as the offered
load (in req/s) that maximizes its power ratio. Our capacity
discovery algorithm aims to discover this true capacity, and
WebQ shapes incoming traffic to match this capacity in order
to keep response times low.

If the workload were homogeneous, the capacity discovery
algorithm at WebQ is fairly simple. TokenGen, by virtue of
being an inline proxy, observes the requests and their response
times at the server. The WebQ proxies could then note the
incoming load, goodput, and average response time of the
server over some duration of time, plot the power ratio as
a function of incoming load, and find the load level that
maximizes the power ratio (possibly, by interpolating to unseen
load levels by fitting a curve over the power ratio samples).

The above idea of identifying capacity as the incoming
load that maximizes power ratio holds only when the workload
to the server is homogeneous. What would happen if there
were multiple types of requests coming in to the server, each
with different service demands at the server? Figure 3 shows
a plot of the power ratio in an experiment where a web server
was serving two types of requests with different hardness
values, i.e., the service demands of the two requests were
very different. Each point in the plot shows the ratio of the
goodput of the server to the average response time (averaged



over an epoch of duration 10 seconds) on the y-axis, and the
corresponding incoming load (in req/s) on the x-axis. Why
does this power ratio plot not have a clean maximum as in
the homogeneous case? Consider points 1 and 2 shown in the
graph. Both epochs corresponding to these points had the same
incoming load (value on x-axis). However, because the mix of
traffic (i.e., ratio of different types of requests) was different,
both epochs saw very different response times from the server,
and hence different power ratios. For example, one can infer
that the mix in the epoch of point 2 had a greater proportion
of “harder” requests than the mix in epoch 1, as seen by the
lower power ratio in epoch 2. Because our plot considers each
request as one unit, irrespective of its hardness, the goodput
and response times of the server will bear no simple relation
to the incoming load.

Now, in the figure above, suppose we are told that the
second type of request is four times as hard as the first type
of request, i.e., if a request of type 1 is equivalent to one
“subunit” of work at the server, then a request of type 2 is
equivalent to four subunits of work. If this relative hardness
of the various requests is known, we could plot the power ratio
samples a bit differently: we could count the requests not as
one unit each, but as a certain number of subunits in proportion
to their hardness. If we scaled the incoming load, goodput, and
response time calculations accordingly, we obtain the plot in
Figure 4. In this figure, each point corresponds to the scaled
power ratio of the server over one epoch. That is, all counts
of requests have been scaled by their relative hardness, so that
the x-axis indicates the incoming load in subunits, and not
just in terms of req/s. Now, from this figure, it is easy to find
the number of subunits that maximize the power ratio of the
server, and hence its capacity in subunits.
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Fig. 4: A scaled plot of the average power ratio of the server,
with two different types of requests.

Now, we scaled the plot to make sense by having knowl-
edge of the relative hardness of the various requests to
the server. This knowledge is hard to come by in practice.
Therefore, WebQ aims to calculate the relative hardness of
the various requests itself. How do we calculate the relative
hardness? We use the intuition that a correct value of relative
hardness will give us a “cleaner” power ratio curve. If relative
hardness is correctly estimated, a scaled power ratio plot would
have all power ratio samples lying neatly on a polynomial-
shaped curve, as in Figure 4. And if the relative hardness were
incorrectly estimated, the power ratio curve would be very
noisy, like Figure 3. WebQ uses this intuition to search over the
space of relative hardness values. Thus, the capacity estimation

problem essentially boils down to correctly estimating the
relative hardness of various requests to the server, using which
the server capacity can be estimated in the subunits that were
used to calculate the relative hardness of the requests.

Having described the intuition behind the capacity estima-
tion algorithm, we proceed to describe it informally, followed
by a formal description in the next subsection. The capacity
estimation algorithm in WebQ runs as part of the TokenGen
proxy, at designated training periods, either at the start of the
deployment, or when changes in capacity have been detected
(see Section IV-C). Our evaluation (Section VI) shows that a
training period of 14 minutes is enough to obtain reasonably
accurate capacity estimates. During the training period, WebQ
does not shape traffic, and lets all traffic pass through to
TokenCheck with zero wait time. For every request seen at
TokenCheck, the proxy relays the request type and its observed
response time to the capacity estimation module. (We are
assuming that it is possible to easily identify the type of
request from its payload, see assumptions in Section II-A).
If WebQ uses multiple TokenCheck proxies for scalability, the
capacity estimation module will aggregate the feedback from
the multiple replicas. Using this training data of request types
and response times, the capacity estimation algorithm first tries
to estimate the relative hardness of requests. In order to do so,
it guesses a value of relative hardness, and scales all observed
data by this value of relative hardness. Next, it plots a curve
of the scaled power ratio vs. the scaled load using the training
data, and fits a polynomial curve over this scaled scatter plot.
Using the regression error of this curve fitting as a guide, the
capacity estimation algorithm searches over all possible values
of relative hardness using gradient descent techniques, to find
a value of relative hardness that minimizes the regression error
and makes the scaled values fit a curve neatly. Once the relative
hardness of all requests has been estimated in some subunits,
the capacity of the server (in subunits) is calculated as the
value of scaled load that maximizes the scaled power ratio.

Note that the capacity estimation algorithm only estimates
capacity and service demands of requests in relative, and
not absolute, units. However, this estimation suffices for the
purpose of traffic shaping: TokenGen uses this capacity in
subunits to shape traffic to the server. Further, every incoming
request scheduled by TokenGen would reserve subunits of
server capacity proportional to its relative hardness in the
future, and this relative hardness of scheduled requests is
accounted for by TokenGen in assigning wait times. That is,
the variables share of capacity Si, incoming load Li, total
server capacity C, usable capacity at a replica Ci, and array of
requests scheduled Ni would all be accounted for in subunits,
and not in req/s as described earlier. With this simple change,
the description of the TokenGen wait time calculation holds
for the case of heterogeneous workload as well.

Finally, we note that most application web servers in the
industry today are multi-tiered, to increase the scalability and
reusability of the application architecture. How does WebQ’s
capacity estimation algorithm apply to a multi-tier server?
For a single-tier application, the service time of a request
is simply the execution time in a single tier. But in case of
multi-tier applications, a request can have different service
times in different tiers and it might have conditional jumps that
make it traverse different tiers. For example, in a multi-tiered



online retailing application, a browsing request (displaying
items in a certain price range) will visit the database tier only
once whereas a shopping request (add/remove items from the
cart) might have to visit the database tier multiple times with
certain visiting probability. However, the basic intuition of our
capacity estimation algorithm still holds. In such scenarios, if
a request has different service demands by virtue of visiting
different tiers probabilistically, the hardness ratios estimated by
our algorithm will be the ratios of the expected service time
of the requests, because we use the average response times in
our calculations.

B. Capacity Estimation Algorithm

We now describe our capacity estimation algorithm for-
mally. The input to WebQ’s capacity estimation algorithm
consists of power ratio samples collected during the training
period. We assume that the training period is divided into
epochs of duration τ (10 seconds in our implementation). For
each epoch, the capacity estimation algorithm accumulates a
sample (x, y) on the power ratio plot, where y is the incoming
load during the epoch, and y denotes the average power ratio
in that epoch.

Let n denote the total number of request types. Let the
vector H = [H1, H2, . . . ,Hn] denote the vector of relative
hardness of the various requests (the exact units of measuring
hardness does not matter). That is, let Hi denote the hardness
of request of type i (this is assumed to be the constant across all
epochs in a given training period). For each epoch, let gi denote
the goodput of the requests of type i, and let mi denote the
relative fraction of requests of type i in the total incoming load
of that epoch. Further, let ri denote the sum of the response
times of requests of type i in that epoch. We now calculate the
scaled sample (xs, ys) for each epoch as follows. The scaled
incoming load xs in the epoch is obtained by summing over
all request types, weighing each by its relative hardness and
frequency of occurrence in the total traffic:

xs = x ∗
∑
i

(mi ∗Hi) (4)

Similarly, the scaled goodput for the epoch is obtained as:

gs =
∑
i

(gi ∗Hi) (5)

The scaled average response time is obtained as:

rs =

∑
i ri∑

i(mi ∗Hi)
(6)

The scaled power ratio ys is thus calculated as:

ys =
gs
rs

(7)

Given a training data set, we can scale each point with a
guessed value of relative hardness as described above. What
values of relative hardness do we use? We guess a value
of relative hardness, scale the input data with this relative

hardness, fit a degree 3 polynomial curve over the scaled power
ratio points, and use the regression error of this curve fitting as
a guide to pick the next hardness value. That is, we formulate
the relative hardness estimation problem as a constrained
optimization problem. We search over the space of all relative
hardness values using a gradient descent algorithm. While
we use the CMA-ES algorithm [9], any other good gradient
descent algorithm should work as well. The gradient descent
algorithm tries to pick relative hardness vectors that minimize
the regression error of the curve fit. Once the regression error
falls below a threshold, we declare that a suitable relative
hardness has been found. We then plot the scaled power ratio
curve using the final hardness estimate for scaling, and identify
the value of scaled input load for which this curve attains a
maximum value as the scaled capacity of the server.

See Algorithm 1 for a complete description of our al-
gorithm. We set the initial relative hardness to be 1 for all
the requests. We also set the minimum hardness to be 1
and maximum hardness to be 100, in order to constrain the
search space and improve running time. Also, we discard
scaled power ratio samples that lie below a threshold to obtain
a smoother regression curve. To collect input data for the
algorithm during the initial training period, we set the server
capacity to a very high value, so that the wait time assigned
by TokenGen during this period remains zero. During this
training period, we assume that web server will observe a
representative input load, and WebQ collects several goodput
and response time values over several epochs. At the end of
the training period, we invoke Algorithm 1 with the collected
power ratio samples to estimate relative hardness and capacity
(in subunits) of the system. Section VI evaluates the accuracy
of this capacity estimation algorithm.

Algorithm 1 Relative hardness and capacity estimation algo-
rithm

1: Input: load vs. average power ratio samples (x, y) for each
epoch

2: set minimum value of relative hardness to 1 and max. value
to 100. . define the search space

3: set initial hardness ratio to be [1,1,...]. . initialize
4: regression error←∞
5: while regression error is not minimized do
6: Scale each input point (x, y) with current hardness

estimate to get scaled (xs, ys)
7: Remove the scaled points for which scaled power ratio

value is below threshold.
8: Fit a polynomial curve (degree 3) to these points using

polynomial regression.
9: Compute regression error as sum of squared differ-

ence between the actual values and the predicted output.
10: Make next choice of hardness ratio using CMA-ES.
11: Plot scaled power ratio curve using optimal hardness

ratio. Find the value of input load for which it attains
the maximum value. This is our estimated capacity (in
subunits) of the system.

12: Return hardness ratio and capacity estimate.

C. Handling Capacity Changes

Discovering the capacity only once at the beginning of
WebQ deployment may not be enough always. Server capacity



can change for several reasons, including changes in the server
application logic or a change in the resource provisioning
of the server infrastructure. To detect such capacity changes,
WebQ continuously monitors the power ratio samples during
the regular run of the system, even after training ends. WebQ
then scales these new samples using the previously estimated
hardness ratios, and checks if the scaled power ratio values
still lie on (or close to) the regression curve obtained dur-
ing training. WebQ calculates the distance between the new
scaled samples and the regression curve, and assumes that the
capacity has changed if the distance exceeds a threshold. In
our implementation, we set the threshold to be twice the least
square regression error of the power ratio curve fitting. Once
any capacity change is detected, WebQ starts a training period
and reruns its capacity estimation algorithm.

V. IMPLEMENTATION

We begin with a description of our WebQ prototype. We
then describe our custom web server load generator we built
to evaluate WebQ.

A. TokenGen and TokenCheck

The implementation of TokenGen consists of two parts:
the request scheduling logic (or the forwarding plane) and
the capacity estimation module. The wait time calculation and
request scheduling logic of TokenGen is implemented as a
FastCGI extension [12] to the popular Apache web server. We
chose the FastCGI option of Apache as it provides ease of
implementation without compromising on performance. Every
incoming request at the Apache server running on TokenGen
is handed over to the FastCGI module. Apache also passes on
additional context about the request via environment variables.
The main thread in the FastCGI module then computes the
wait time for the request, and returns the appropriate HTTP
response to the client. The HTTP response contains the meta
HTTP “refresh” header, that automatically redirects the client
to the original web server (via TokenCheck) after the pre-
scribed wait time. The redirect URL contains the original
URL that the client requested from the application server,
along with the following information embedded in the URL
string: the current timestamp, the wait time relative to the
current timestamp, and a HMAC token that is used to check
the authenticity of the reported wait time. The entire logic of
TokenGen scheduling is under 1200 lines of code.

Each replica of TokenGen is identical, and is configured
with the addresses of all the other replicas in the system, in
order to communicate and exchange information for distributed
traffic shaping. The TokenCheck address to which TokenGen
should ask the client to redirect is also configurable. Every
TokenGen FastCGI module has n+3 running threads. Where
n is the number of peer proxies. One thread is used to print
debug logs periodically. Another thread is a listening thread
which listens to all the inbound communication towards the
TokenGen replica. Inbound communication contains of data
from other peer TokenGen replicas and capacity updates from
the capacity estimation module. The main thread is responsible
for assigning wait times to user requests. The remaining n
threads communicate the current wait time data and current
incoming load with all other peer TokenGen replicas periodi-
cally. Finally, one of the replicas runs the capacity estimation

module that provides the total server capacity estimates to all
other replicas.

The capacity estimation part of TokenGen is implemented
as a separate Java and Matlab module that keeps listening
to the response time and goodput information sent from
all TokenCheck replicas, and runs the capacity estimation
algorithm at the end of the training period. Upon detecting
a change of capacity, it runs the capacity estimation again
and communicates the new capacity estimate to the FastCGI
module for scheduling. The capacity estimation Java module
is about 300 lines of code and Matlab module is about 50 lines
of code. Note that the decoupled capacity estimation algorithm
makes it possible to put a better capacity estimation algorithm
or plug a stub that feeds the externally configured values of
capacity to the token generation logic in the FastCGI module.

TokenCheck runs the lighttpd proxy [22]. We modified
the proxy code to intercept every request to the web server.
TokenCheck first strips the timestamp, wait time, and HMAC
token information from the requested URL and verifies that
the user has arrived at his designated time. If the user’s token
checks out, TokenCheck makes a request to the web server
on behalf of the client, and streams the response back to the
client. TokenCheck also has a communication socket open with
the TokenGen capacity estimation module. TokenCheck detects
the type of the request from its URL, and sends a notification
to TokenGen about arrivals and departures of various type of
requests (including the server’s response time for completed
requests), using which TokenGen can calculate the server’s
average response time and goodput. We added about 200 lines
of code to lighttpd to implement the above changes.

The two proxies in our implementation share a 128-bit
secret key. The HMAC token is a 128-bit keyed hash (we
use MD5, but any other hash function like SHA-2 can also
be used). Both proxies use OpenSSL libraries to compute and
verify the HMAC token.

B. Load Generator Implementation

To test WebQ, we simulate clients sending requests to a
server via WebQ, overload the server, and measure the impact
of our virtual queue. Since we cannot test with real clients, we
must necessarily simulate multiple clients using a web server
load generator. When the server is overloaded, the simulated
clients must parse the response from TokenGen, extract the
wait time and TokenCheck URL from the response, wait for
the prescribed wait time, and then issue a request to the web
server via TokenCheck. Several existing load generators were
found to be inadequate to simulate this test scenario for several
reasons, as we describe below, leading us to design and build
our own load generator for WebQ.

Multi-threaded load generators like Jmeter [3] spawn a
new thread for every client request, and keep the thread alive
during the waiting period, unlike a real user who would
hopefully do some other useful work during the known wait
period. Therefore, simulating an overload situation with non-
zero wait times ends up consuming significant resources (CPU
and memory) at the load generator, to manage the large number
of concurrent live threads. Note that such load generators were
primarily built to overload the server with a large number of re-
quests, each of which finished quickly, resulting in a relatively



smaller number of live threads at any point of time. Therefore,
several multi-threaded load generators were found unsuitable
for our purpose, and could not satisfactorily overload our test
web server. Other load generators like Httperf [13] that are
single-threaded and use mechanisms like the select system
call (and not multi-threading) to multiplex various simulated
clients were able to sustain enough load. However, such load
generators were not rich enough in features (e.g., parsing a
HTTP redirect message) for our purpose. Therefore, we have
built a custom load generator for WebQ, in order to enable
rigorous testing of our prototype.

Our load generator uses light-weight user level threads
called fibers from the Quasar core [25] Java library. Our load
generator spawns a new user-level thread for each request,
which handles the request through its entire lifecycle. How-
ever, because multiple user-level threads can be multiplexed
on a small number of kernel threads, the actual number of
live kernel threads will still be small, because most requests
would be in the waiting stage in an overload situation. This
design keeps the resource consumption of our load generator
much lower than comparable multi-threaded implementations,
making it possible to evaluate WebQ under severely overloaded
traffic conditions.

Our custom load generator also has several useful features
to generate load effectively in our WebQ setup (as well as
in other situations where load generators are needed). For
example, one feature is a regular expression extractor, which
helps in parsing the HTTP response and extracting patterns,
which can then be used to create dynamic URLs. Another
is a timer which helps in adding delay between requests.
In the case of WebQ, the regular expression extractor was
useful in extracting out the wait time and TokenCheck URL
from the TokenGen response. The constant timer helped in
making the simulated user wait before sending the request to
TokenCheck. In order to be portable across systems, our load
generator is designed and implemented as a web application,
using the Spring MVC framework [30]. The user interacts with
a front-end web page, which can be used to create and execute
complex test plans. A test plan specifies, among other things,
the rate at which load to the server must be generated. This
request rate in turn controls the rate at which user-level threads
are spawned to simulate load in the backend.

VI. EVALUATION

We now evaluate WebQ to demonstrate the efficacy of our
idea as well as the robustness of our design. We begin with a
description of our experimental setup in Section VI-A. Next,
we evaluate each component of our system separately. Sec-
tion VI-B evaluates our distributed traffic shaping mechanism,
and shows that a distributed TokenGen system can effectively
emulate a single big rate limiter by distributing server capacity
in the ratio of the incoming load at each replica. Section VI-C
shows that our capacity estimation module can accurately
estimate server capacity using only passive measurements,
within a few tens of minutes, and with over 90% accuracy.
Finally, we put all the components together and evaluate the
benefits of the complete system in Section VI-D. We show that
a web server protected by WebQ can easily handle incoming
load that is several times its provisioned capacity without
suffering any crashes. Further, we also show that the response

Load generator

distributed TokenGen

Web ServerToken Check

Fig. 5: WebQ evaluation setup.

time of the server is significantly lower with WebQ once the
user eventually gets served.

A. Setup

Our evaluation setup consists of multiple machines running
the WebQ proxies, a web server, and a machine running
our custom load generator, all connected via a high-speed
LAN, as shown in Figure 5. All experiments are run over 3
TokenGen replicas and 1 TokenCheck replica in our distributed
WebQ setup, unless otherwise specified. All TokenGen and
TokenCheck replicas run on separate 4-core Intel i7 desktop
systems with 4GB RAM. Our web server is an Apache
installation that runs on a 4-core Intel i7 desktop machine with
4 GB RAM. The Apache installation supports an instantiation
of the Moodle [24] course management software, with dummy
student and course data. Different client requests to the web
server trigger computationally intensive PHP scripts, which
query the Moodle database multiple times, simulating CPU-
bound backend processing in a multi-tier application. The
capacity of the server and the relative hardness of the various
requests to the server can be varied by suitably adjusting the
number of database operations performed on each request.

We simulate client load using our custom load generator,
running on a 40-core Intel server with 128GB RAM. We
carefully verified that our client load generation was never the
bottleneck in all our experiments. For example, we tested that
our load generator can sustain a request rate of 3000 reqs/sec
for 60 seconds, even when the the server has a much lower
capacity of around 700 reqs/sec. Table I shows the resource
consumption by the load generator during this load test. The
average CPU and memory utilisations were found to be low,
as were the number of live threads.

We also evaluated that the WebQ proxies did not cause
a performance bottleneck in any of our experiments. We
found that our unoptimized implementations of TokenGen
and TokenCheck are capable of handling over 7000 req/sec
each, without any degradation in goodput. We believe that
an optimized implementation can do much better. Further, we
found that each proxy added under 1-2 milliseconds latency to
the request processing, an acceptable overhead in our opinion.



CPU usage(%) Memory
usage(MB)

Number of live
threads

Maximum 2.29 1400 86
Minimum 0.0025 105 48
Average 0.15 799 71

TABLE I: Resource Usage by Load Generator.
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Fig. 6: Load Profile at TokenGen0.
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Fig. 7: Load Profile at TokenGen1.
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Fig. 8: Load Profile at TokenGen2.

B. Distributed Traffic Shaping

We now evaluate the correctness of our distributed traffic
shaping. We configure our web server to have a capacity of
720 req/s. We use a homogeneous workload consisting of
requests of a single type in this experiment. We use the load
generator to generate an average load of around 2400 req/s for
a duration of 10 seconds, followed by a load of 10 request/sec
for the next 40 seconds, such that the average load to the
server is below its capacity, but the peak load is much above
capacity. The load of 2400req/sec is distributed among three
TokenGen replicas: TokenGen[0,1,2]. Figures 6, 7, and 8 show
the incoming load to each TokenGen, the share of capacity
computed by each replica, and the server load contributed by
that replica. We see from the figures that the peak incoming
load is split as 800 req/s, 1200 req/s, and 400 req/s among
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samples.
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Fig. 10: Squared error in estimated capacity vs. number of
training samples.

the three TokenGen replicas in the first 10 seconds of the
experiment. From 50sec to 60sec, the load pattern is changed
to 800 req/s, 400 req/s, and 1200 req/s respectively. Our results
show that the distributed replicas successfully allocate capacity
in proportion to the incoming load across the entire experiment.
TokenGen[0,1,2] schedule approximately 200 req/s, 400 req/s,
and 100 req/s respectively in the first 10seconds, approximately
adding up to the configured server capacity of 720 req/s. It can
also be noticed from the graphs that the distributed replicas
automatically adjust their shares of capacity from 50 sec to 60
sec, in response to the changed input load pattern.

C. Capacity Estimation

We now evaluate the accuracy and effectiveness of WebQ’s
relative hardness and capacity estimation algorithm. For the
experiments in this section, we use Moodle server as the
backend. First, we begin with two different types of requests
with service times 23ms and 97ms respectively. That is, the
“ground truth” relative hardness is 1:4.2 and the capacity of
the server is 140 subunits/sec. Now to test the performance of
the capacity estimator, we use our load generator to generate a
workload trace with random incoming load and changing mix
of requests for about 20 minutes. Each value of load lasted for
the duration of an epoch (10 seconds), resulting in around
120 power ratio samples over 20 minutes. After collecting
the trace, we ran the capacity estimation algorithm multiple
times, varying the number of training samples provided as
input, to find the optimal number of samples required for
an accurate capacity estimate. For each value of the number
of samples, we ran our estimation algorithm on 10 different
subsets from the collected trace and then computed average
squared error and standard deviation of the estimation. We
tried two different optimization algorithms—CMA-ES [9] and
simulated annealing [19]—in our algorithm, and compared
their performance in terms of number of samples required



to reach a certain accuracy. Figure 9 shows the average
squared error and standard deviation in the hardness estimate
with increasing number of samples for both the optimization
methods. Similarly, Figure 10 shows the average squared
error and standard deviation in the capacity estimate. From
these two figures, we can notice that CMA-ES requires lesser
number of samples than simulated annealing for the same
accuracy in capacity estimation. With 84 training samples,
CMA-ES estimates relative hardness as 1:4.4, and the capacity
as 149 subunits/sec. That is, the estimated capacity and relative
hardness values have an acceptable error of around 6% and
4.7% respectively. As each sample was collected over an epoch
of 10 seconds, this level of accuracy would have required a
training period of almost 14 minutes. We believe that training
periods of a few tens of minutes would work in most cases.

Next, we evaluated the accuracy of WebQ’s estimation
algorithm using three different types of requests with service
times of 23ms, 50ms, and 97ms respectively. We found that,
with 89 training examples, CMA-ES estimates capacity with
an error of 7.24%. Results with larger number of request types
were similar.

Finally, to test our algorithm in a bigger multi-tier server
setup, we enhanced our backend Moodle server to add an extra
PHP-based middle tier between the Apache web server tier and
the MySQL database tier. We installed the different tiers on
different machines. We generated a heterogeneous workload to
the server, comprising of two different types of requests that
visited the different tiers probabilistically, to emulate a realistic
scenario. Finally, we ran the capacity estimation algorithm on
the collected power ratio samples. We found that the relative
error in hardness estimation was around 4% and the error in the
capacity estimate was around 6%, proving that our algorithm
can work in a realistic multi-tier setting as well.

D. Impact on User Experience

Having evaluated the individual components of WebQ,
we now present results showing the benefits of the complete
system. We run an experiment where the web server receives
(through a system of three TokenGen proxies) a net load of
2400 req/s for 10 seconds, followed by 10 req/s for 40 seconds
and this cycle is repeated. The server has a capacity of 720
req/sec, which is much lower than the peak load. Figure 11
shows how WebQ smooths out incoming load to the server. We
can see from the figure that the incoming load at TokenGen
is highly bursty. However, due to appropriate scheduling of
client arrivals by TokenGen, the load at TokenCheck (and
hence at the web server) is much smoother. Slight fluctuation
in the incoming load at TokenCheck is due to the scheduling
behavior of various client threads at the client load generator,
and is representative of a real deployment where user arrival
times may deviate slightly from the assigned wait times due
to network delays.

Figure 12 shows the wait times assigned to clients during
this experiment. We see that the wait times increase steeply
during the burst, forcing clients that arrive during the peak
load to wait for longer periods of time. As the incoming traffic
burst tapers off, we see that the wait times assigned to clients
also become lower. It can also be noticed from the graph that
all the distributed TokenGen replicas assign similar wait times,
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Fig. 13: A comparison of response time of the server with and
without WebQ.

realizing our design goal of wait time not depending on which
replica a user is redirected to.

Figure 13 shows the average HTTP response time recorded
by clients for their transaction with the web server, with and
without WebQ. This experiment used a lower peak load (400
req/s) and proportionally lower capacity than what was used
in the previous experiments, because the previous value of
peak load caused the server to crash in the experiment without
WebQ. (The experiment with WebQ ran fine even with the
higher load, as expected.) Note that the response time in this
figure only counts the time from the moment the redirected
request is made to TokenCheck to the time when the server
response is returned; it does not include the initial wait time
assigned by TokenGen (which was shown in Figure 12). We
see that the server response time with WebQ is fairly low
(around 5 second) and predictable. That is, once users wait out
their time in the virtual queue of WebQ, they can be assured
of good service at the server. On the other hand, the response
time without WebQ can even go over 60 seconds, and is highly
volatile, leading to bad user experience.



VII. RELATED WORK

Web server technologies have matured significantly in the
past decade. Elson and Howell [11] provide an overview of
several techniques that can be used to handle overload at a web
server, e.g., Content Distribution Networks (CDNs), or load
balancing across replicas. Researchers have also proposed web
service architectures that enable effective overload control. For
example, SEDA [39] proposes that web servers should be
designed as multiple event-driven stages connected by queues,
with rate limiters at each stage to manage overload. Our work
is complementary to such techniques. Even the most well
provisioned servers can face peak load that exceeds capacity,
and WebQ helps web servers deal with this overload gracefully
without compromising on user quality of experience.

Various admission control based solutions [37], [18], [36],
[39], [8] have been proposed for controlling overload on web
servers, where some form of policing of incoming load is used,
and excess requests are dropped. While the above systems try
to protect the server from overload and guarantee QoS to the
admitted requests, the users that are not admitted are not given
feedback as to when to retry. Some capacity planning and
scheduling based overload control mechanisms [7] have also
been proposed, where a historical trace of requests is used
to plan the available capacity. The work in [7] also gives
importance to sessions than requests, and is a good design
choice as the number of successful sessions completed deter-
mines the revenue of a website. Various content adaptation
based overload control mechanisms [1], [2] have been pro-
posed, where the quality of the content is degraded to accept
more requests under overload. Such content adaptation based
methods are less relevant today, with most websites already
using optimized content based on load. While all the above
solutions are focused on better serving users that are admitted
during overload, WebQ’s goal is somewhat complementary:
to improve user experience for those requests that cannot be
served immediately, by providing a deterministic wait time and
a guarantee of eventual service.

The distributed TokenGen implementation of WebQ builds
upon extensive literature on distributed traffic shaping. The
guiding principle for a good distributed traffic shaping mech-
anism was put forward by Raghavan et al. [26] as “ Flows
arriving at different limiters should achieve the same rates as
they would if they all were traversing a single, shared rate
limiter.” This principle was closely adhered to in this work.
Our work is closest in spirit to the idea of Global Random
Drop [26], where the authors use distributed limiters to emulate
a central rate limiter. In this work, each limiter estimates the
traffic demand locally and later updates a certain number of
randomly chosen limiters with their local rates. The number
of other limiters to talk to is determined by the branching
factor of the gossip protocol. Each limiter keeps track of
global demand by aggregating the updates received from the
individual limiters. If the estimated global limit exceeds the
limit specified, the packets are dropped at a rate proportional
to the excess global demand. Several other solutions [31],
[27], [5], [23], [21], [17] have also been proposed for the
problem of distributed resource limiting. Stanojevic et al.
propose C3P [31] where the metric that governs the capacity
allocation among the distributed limiters is the loss rate. Some
proposals [27], [5] make use of a Token Ring based mechanism

to find and assign capacity to each limiter, with the excess
requests being dropped or queued with no guarantee on the
waiting time. The currency based method presented in [41]
deals with distributed rate limiting of static service agreements.
WebQ differs from this prior line of work in the sense that
it does not deal with rate limiting or dropping of requests;
instead it seeks to assign a suitable wait time to requests to
shape traffic.

The capacity estimation algorithm of WebQ is also built
upon a long line of research on estimating the capacity of web
servers and provisioning for it. The method described in [40]
gathers CPU utilization at different workload mixes, and then
uses least square regression to estimate service demands of
different requests. [14] works similarly, but employs Kalman
filter instead of regression for estimating the service time of
requests. [33] uses low load response time as the service time
estimate and then applies Little’s law to obtain the capacity
of the server. But this model works only for homogeneous
workloads. [34] models each tier as G/G/1 queue and the whole
system as a closed queuing network, and then estimates the
lower bound of capacity for each tier using queuing theory
analysis of a G/G/1 queue. [29] uses the same model, but
unlike [34], it handles a heterogeneous and changing workload
mix. Both [34] and [29] assume that service times of requests
are already known to us. WebQ’s capacity estimation algorithm
differs significantly from all the above, because it is a “black
box” method that does not rely on instrumentation at the server
to obtain any metrics like CPU utilization or service demands.
Instead, server capacity is estimated at the WebQ proxies only
based on passive measurements of the server goodput and
response time. That said, WebQ can work with any of these
methods, and is complementary to this body of work.

While some techniques for blackbox capacity estimation
exist, they are not directly applicable in the case of WebQ.
The work in [20] uses only server queue length and response
time data to estimate capacity. But the underlying assumption
in this approach is that service demand distribution is phase-
typed and the queuing strategy is FCFS, which is not the case
for WebQ. [38] uses Monte Carlo Markov chain method to
estimate service demand from queue length samples. But this
idea works only for a special type of network called BCMP
network. The blackbox server capacity estimation technique in
WebQ is different from prior approaches in that it makes no as-
sumptions on the workload or queuing model at the server. The
idea of automatically discovering server capacity by probing
the server’s behavior at various load levels has also been used
by systems that automate offline server benchmarking [28],
[32]. Unlike these systems, WebQ probes for and discovers
capacity online.

VIII. CONCLUSION AND FUTURE WORK

This paper presented WebQ, a system to improve user
experience with overloaded web servers. WebQ consists of
two proxies, TokenGen and TokenCheck, that together shape
incoming load to match server capacity. While most server
technologies today focus on improving server capacity, and
dropping excess load beyond the capacity, the problem of poor
user experience when offered load exceeds this capacity, even
for brief periods, hasn’t received much attention. Users today
face server crashes and connection timeouts when accessing



overloaded servers, and resort to adhoc retrying to gain access.
In contrast, users of WebQ-protected overloaded servers are
presented with a known wait time in a virtual queue of the
overloaded server, and are guaranteed service after the wait
time expires. With a system like WebQ in place, servers no
longer need to be provisioned to handle transient peaks in
incoming traffic, eventually leading to cost savings during
server provisioning as well. Our design of WebQ is scalable
and robust to overload. Our system can be easily deployed as
a third party service, and requires no modifications to clients
or servers, beyond a simple redirection of computationally
intensive requests via our system under overload by the web
server administrator. Experiments with WebQ show that it
can correctly shape traffic to match capacity, and significantly
improve user experience in the process.

We are in the process of exploring several improvements
to WebQ as part of future work. We would like to understand
the scalability limits of TokenGen’s distributed design, and
try to reduce the overhead of communication between the
replicas for the purpose of determining their individual shares
of capacity. We are also exploring the possibility of integrating
and testing WebQ with production-quality web servers with
capacities of several thousands of req/sec, and under real-life
transient overload scenarios.
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