
Devolve-Redeem: Hierarchical SDN Controllers with
Adaptive Offloading

Rinku Shah
Indian Institute of Technology

Bombay, India
rinku@cse.iitb.ac.in

Mythili Vutukuru
Indian Institute of Technology

Bombay, India
mythili@cse.iitb.ac.in

Purushottam Kulkarni
Indian Institute of Technology

Bombay, India
puru@cse.iitb.ac.in

ABSTRACT
Towards improving SDN control plane scalability, past work
has proposed SDN controller frameworks that offload com-
putation which depends on local state to controllers residing
on the switches. Our work identifies another type of compu-
tation that can be offloaded to local controllers: that which
depends on state that is generated globally but can be used
within local controllers with loose synchronization. Because
using such state locally incurs a synchronization cost, such
offload makes sense only when the benefits of the offload
out-weigh the synchronization cost. We present the design
and implementation of Devolve-Redeem, an SDN controller
framework that can offload computation to local controllers
depending on the mix of various control messages in the
incoming traffic. The offload decision in our framework is
made by computing a cost metric that captures the relative
costs of processing every control message at the central and
local controllers, taking into account synchronization costs.
The SDN application developer using our framework writes
a single application that runs at both the central and local
controllers, using our state management API to access of-
floadable state. Our framework migrates between various
offload modes using the computed cost metric, by manipu-
lating the rules in the SDN switches that forward control
messages to the controllers. Our framework also transpar-
ently handles state synchronization between central and
local controllers in a manner that is consistent with the of-
fload mode. We have implemented the SDN-based LTE EPC
application in our framework, and experiments with our pro-
totype demonstrate the effectiveness of our adaptive offload
framework.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNET ’17, August 3–4, 2017, Hong Kong, China
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5244-4/17/08. . . $15.00
https://doi.org/10.1145/3106989.3107001

CCS CONCEPTS
• Networks→Middle boxes / network appliances; Pro-
gramming interfaces;

KEYWORDS
software-defined networking, scalability
ACM Reference format:
Rinku Shah, Mythili Vutukuru, and Purushottam Kulkarni. 2017.
Devolve-Redeem: Hierarchical SDN Controllers with Adaptive Of-
floading. In Proceedings of APNET ’17, Hong Kong, China, August
3–4, 2017, 7 pages.
https://doi.org/10.1145/3106989.3107001

1 INTRODUCTION
Software Defined Networking (SDN), a design paradigm for
separating the control and data plane in networking ele-
ments, consists of a software-managed logically centralized
controller and light-weight switches for data forwarding.
Using its network-wide view, the controller installs rules
on switches to handle packet forwarding. Any traffic for
which rules do not exist, or signaling messages that require
control plane processing, are directed to the controller by
the switches. Prior research (§4) has identified several scala-
bility problems with centralized SDN controllers, and with
the communication path between the data plane switches
and controllers, and has proposed solutions to fix the same.
One set of solutions [6, 8] develop horizontally scalable SDN
controllers that spawn multiple replicas with increasing load.
Other solutions [3, 4, 9] propose hierarchical SDN controller
frameworks which offload computation that does not re-
quire network-wide view to local controllers running on
(or close to) the switches. For example, traffic engineering
applications that detect flows with large number of packets
(elephant flows) can maintain local state of flow statistics at
the switches, and offload the task of detecting large flows
to local controllers. The centralized controller can only run
route computations that require global view, thereby reduc-
ing its computation load.
Our observation is that the domain of possible state and

computation offloads has not been sufficiently explored. Be-
yond the simple taxonomy of global network-wide state and

https://doi.org/10.1145/3106989.3107001
https://doi.org/10.1145/3106989.3107001

APNET ’17, August 3–4, 2017, Hong Kong, China R. Shah et al.

Figure 1: Design options for SDN controllers.

local switch-specific state,there is application state may de-
pend on a global network-wide view occasionally (e.g., dur-
ing creation), but can be used locally at the switches for the
most part, with only loose synchronization with the central-
ized global state. We refer to such state as globally writeable
but locally readable, or GWLR state. Thus all internal state
in an application can be classified as GWLR state, local state
(switch-specific), and global state (network-wide state that
is not GWLR). While prior work has only considered offload-
ing computations that rely on local state, we believe that
computations that rely on GWLR state can also be safely
offloaded to local controllers, easing the bottleneck on the
control plane further. Our work proposes a new hierarchical
SDN controller framework, which we call the GWLR State
based Compute Offload (GSCO), where computations that de-
pend on GWLR state are offloaded to local controllers. On the
other hand, the SDN controller frameworks that only offload
computation that depends on local state will be referred to as
Local State based Compute Offload (LSCO) frameworks. Note
that some prior research (Beehive [10]) does enable offload-
ing computation that depends on any application state to
any one of a set of distributed controllers, by moving around
the state stored in a distributed data store. However, such
dynamic placement of state incurs overheads like running
a consensus algorithm across controllers to determine state
placement, thereby impacting performance. In contrast, our
work proposes offloading only application-specific state that
requires loose synchronization with centralized state (and
the computation that depends on it) to local controllers.
We now illustrate this key idea of our work with a mo-

tivating example. One of the network components being
considered for control-data plane decomposition in telecom
networks is the mobile cellular packet core, also called the
LTE EPC (Long Term Evolution Evolved Packet Core). The
EPC is part of the 4G LTE network that connects the wire-
less side of the network (the user and the base stations) to

the rest of the Internet (refer Figure 3). The main network
elements in the EPC are the Mobility Management Entity
(MME) in the control plane, and the Serving and Packet Gate-
ways (SGW and PGW) that forward user traffic in the data
plane. Recent proposals to redesign the EPC using SDN prin-
ciples [2] propose decomposing the control and data plane
logic in the EPC gateways, and running the control parts of
the gateways along with the MME in an SDN controller.
When a user equipment (UE) connects to a LTE network

for the first time, the MME processes a control plane attach
request to register the user, and sets up corresponding for-
warding state for the users in the SGW and PGW. When the
UE becomes active after an idle period, it generates a service
request to restore the previous forwarding state that was
released in the idle period. In a traditional SDN architecture
of the EPC, all signaling messages, including the attach re-
quest and service request, are forwarded to the centralized
controller. Now, most of the processing of an attach request
must necessarily be done in the centralized controller be-
cause it requires global state to authenticate the user and
create forwarding state that relies on the global network
topology. However, processing the service request requires
only the forwarding state that was already created during
the attach procedure, and can be entirely offloaded to a local
controller, provided the globally created forwarding state is
made available locally. A GSCO SDN controller framework
with local controllers at EPC gateway switches can thus effi-
ciently offload computations like service request processing.
While the GSCO controller design decreases load on the

central controller, it also incurs the cost of synchronizing
GWLR state from the centralized to the local controllers.
Therefore, in traffic mixes that require very little computa-
tion on GWLR state, this synchronization cost outweighs
the benefit of compute offload, and a traditional centralized
controller design might work better. The LSCO controller
design offloads only a subset of computation as compared to
the GSCO design, but does not carry any synchronization
costs. Therefore, for any networking application, the right
amount of offload that is optimal (Centralized or LSCO or
GSCO) depends on the traffic characteristics, among other
things. With traffic characteristics being dynamic in nature,
an SDN controller framework that supports offloading must
adaptively manage the amount of traffic offloaded to local
controllers in order to optimize overall system performance.
Figure 1 illustrates the various offload design options de-
scribed here. Each offload mode (Centralized, LSCO, GSCO)
differs in the placement of the global, local, and GWLR state,
and hence in the computation that works on such state.

This paper proposes Devolve-Redeem, a hierarchical SDN
controller framework that adaptively offloads computation
to local controllers on dataplane switches to improve SDN
control plane scalability (§2). SDN application developers

Devolve-Redeem: Hierarchical SDN Controllers with Adaptive Offloading APNET ’17, August 3–4, 2017, Hong Kong, China

Figure 2: Devolve-Redeem Architecture.

using our framework onlywrite a single application that runs
both at the central and local controllers. The application
developer provides our framework with inputs about the
different control plane messages in the traffic that require
processing at the SDN controller, and information about
the kind of state (global, local, GWLR) accessed during the
processing of each message. With this input, our framework
computes the relative costs of processing each message at
the central controller and at the local controller. Using these
costs, and information about the traffic mix, our framework
computes the optimal operating mode (Centralized, LSCO,
GSCO) for the SDN controller. The framework decides a
suitable controller (central or local) that is best suited to
process each type of message, and pushes rules into the SDN
switches to enforce this decision; we assume that control
message types can be identified from packet headers by SDN
switches. We also provide a state management API to write
applications, which automatically synchronizes GWLR state
at the central controller with local controllers when in GSCO
mode, enabling state synchronization in a manner that is
transparent to the application developer.
We evaluate our adaptive hierarchical SDN controller

framework using the SDN-based LTE EPC as the example
SDN application (§3) to highlight the effectiveness of the
LSCO and GSCO modes, and the need to adapt the offload
mode based on the traffic mix.

2 DESIGN AND IMPLEMENTATION
We now present the design of our Devolve-Redeem SDN con-
troller framework, the main components of which are shown
in Figure 2. We begin with a description of the LTE EPC con-
trol plane application used as an example to illustrate our
system (§2.1). We then describe the user inputs required and
the API available to application developers (§2.2), followed by
a discussion on the cost metric that decides the offload mode
suitable for a given traffic mix (§2.3). Finally, we describe
the changes to the SDN controllers and switches required

Figure 3: SDN-based LTE EPC Architecture.

to enforce our state and compute placement in accordance
with the selected offload mode (§2.4).

2.1 LTE EPC Control Plane Application
Towards a flexible and scalable LTE packet core, several
researchers have proposed a redesign based on SDN princi-
ples [2]. We use this application as the running example to
illustrate our system, primarily because of the rich complex-
ity of the application, and the large amount of control and
signaling messages involved (that is typical of telecom archi-
tectures, in contrast with enterprise IP networks). Figure 3
shows the SDN-based architecture of the LTE EPC, where
components like the Mobility Management Entity (MME),
Home Subscriber Server (HSS), Policy and Charging Rules
Function (PCRF) that deal with control message processing
are implemented as SDN applications in an SDN controller.
In addition, the Serving and Packet Gateways (SGW and
PGW) that forward user traffic through the mobile core are
decomposed to move their control sub-components to the
SDN controller. In this architecture, control plane messages
are redirected to and processed at the SDN controller, and
rules to forward user data are installed in the LTE gateways,
which are built as SDN switches. In our paper, we primarily
deal with two types of control messages: the attach request
that is sent when a user wishes to initiate a mobile data con-
nection, and a service request that is sent after an idle period
to reactivate the data connection. While our design extends
to other types of control messages, we restrict our discussion
to these message types for ease of exposition.

Our implementation of Devolve-Redeem extends an open-
source SDN-based EPC code base [5], which uses the Flood-
light SDN controller and Open vSwitch (OVS) SDN switches.
A multithreaded load generator (part of the original code
base) simulates multiple concurrent users generating vari-
ous control and data messages to the packet core. While the

APNET ’17, August 3–4, 2017, Hong Kong, China R. Shah et al.

initial implementation represents a centralized SDN archi-
tecture, we modified it to implement the LSCO and GSCO
modes. We have extended the load generator to tag packets
with message types in the IP ToS field, as required by our
framework. We also made changes to the LTE EPC applica-
tion to use our state management API.

2.2 User inputs and API
User input forms an important aspect of the design of Devolve-
Redeem, and distinguishes it significantly from prior work.
We use hints about the application and the nature of com-
putation of various control plane messages to make optimal
offload decisions. We assume that the control plane traf-
fic to the application (which is of interest to us, given that
we are dealing with an SDN controller framework) has a
discrete, known number of message types, which can be
identified by inspecting packets in the SDN switches. Note
that the attach and service requests are composed of sev-
eral messages. The application programmer provides to our
framework input in the form of tuples: (Msg-id, <N LR , N LW ,
NXR , NXW , NGR , NGW >, N R) Msg-id is the unique identi-
fier for each message type. N R denotes the number of rules
installed/removed/modified on the switch, by the processing
of a certain message. NK denotes the number of units of
type K , where K is one of: LR—Local Read, LW—Local Write,
XR—GWLRRead, XW—GWLRWrite, GR—Global Read, GW—
GlobalWrite.We expect that application developers will have
sufficient knowledge about the state access patterns of their
application to be able to provide such an input. A sample
user input for Devolve-Redeem is shown in Table 1. This
table shows the control message types that are exchanged
during the attach and service request processing, and their
corresponding input tuple

Message type Input tuple
Auth_Step_1 1,< 0,0,0,0,1,2 >,0
Auth_Step_3 2,< 0,0,0,0,3,2 >,0
NAS_Step_2 3,< 0,0,0,0,1,0 >,0
Send_APN 4,< 0,0,0,5,1,1 >,4
Send_UE_TEID 5,< 0,0,2,1,0,0 >,2
UE Context Release 6,< 2,0,0,1,0,0 >,3
UE Service Req 7,< 0,0,0,1,0,0 >,1
Context Setup Resp 8,< 0,0,1,1,0,0 >,2

Table 1: Sample user input.

In addition to providing input about the various control
messages, developers must also use our state management
API to access control plane state. We assume that all GWLR
state is stored as key-value pairs, and the key can be used
to identify the local switch/controller to which that state be-
longs. Our API provides get/put/delete functions, which are
invoked when accessing the GWLR state in the application

code. The state management logic in the controllers is aware
of the offload mode being used, and synchronizes GWLR
state across the central and local controllers using Flood-
light’s synchronization service [7], only when functioning in
GSCO mode. As a result, the application developer does not
have to write separate applications at the central and local
controllers, and for different offload modes. Note that our
framework does not maintain any versioning of the state,
and does not guard against application errors that happen
due to reading stale state. We expect that the application
code will track the freshness of the state using techniques
like version numbers that can be updated by both the cen-
tralized and local controllers. For example, if the application
finds from the version number that the state has not yet
been synchronized from the global controller, it must wait
suitably till the desired state is updated.

2.3 Offload cost metric
We now describe a metric that computes the cost of pro-
cessing a certain message type in a certain offload mode,
based on user input provided in §2.2. We then compute the
weighted cost of a traffic mix for each offload mode by taking
a weighted average of the costs of the constituent messages
in the mix. By comparing the relative costs of handling a traf-
fic mix in various offload modes, our framework can decide
on the optimal offload configuration for a given traffic mix.
In our current design, this cost computation is done offline
to choose an offload mode, but our design is easily amenable
to dynamically computing this cost (§5).

In addition to the user provided input, we use the follow-
ing parameters obtained from empirical measurements: CK

is the cost of accessing state of type K from a switch (K is
one of LR, LW, XR, XW, GR, GW), DC is the communication
cost between the central controller and the switch, DL is
the communication cost between the local controller and
the switch , and CS is the cost of synchronizing GWLR state
across controllers. All costs are in relative units to denote pro-
cessing/network delays or any other cost. ∃(x) is a boolean
variable that is 1 if x > 0 and 0 otherwise. As part of future
work, we are working on how the framework can derive
these parameters automatically.

The cost of processing a message in the centralized mode
consists of the cost of accessing all state from the central
controller, the RTT of communicating the message from the
switch to the controller, and the cost of installing rules from
the central controller at the switch, as shown below.

CCENT = (N LR + NXR + NGR) ∗CGR+

(N LW + NXW + NGW) ∗CGW + 2 ∗ DC + (NR ∗ DC)
(1)

Devolve-Redeem: Hierarchical SDN Controllers with Adaptive Offloading APNET ’17, August 3–4, 2017, Hong Kong, China

LTE Procedure CCENT
proc CLSCO

proc CGSCOproc

Attach 31.44 31.44 37.11
Service Request 39.56 34.79 25.64

Table 2: Relative cost of attach and service request pro-
cedures across all offload modes.

The cost of processing a message in the LSCO mode will
account for the fact that local state accesses incur a differ-
ent cost from global/GWLR state accesses, and processing
of a message requires communication with the central con-
troller only if the message accesses any global/GWLR state
(‘|’ indicates boolean OR).

CLSCO = (N LR ∗CLR) + (N LW ∗CLW)+

(NXR + NGR) ∗CGR + (NXW + NGW) ∗CGW +

(NXR | NXW | NGR | NGW) ∗ 2 ∗ DC + (NR ∗ DL)

(2)

The cost of processing a message in GSCO mode will
account for accessing both local and GWLR state locally, and
the cost of synchronizing GWLR state.

CGSCO = (N LR + NXR) ∗CLR + (N LW + NXW) ∗CLW +

(NGR ∗CGR) + (NGW ∗CGW) + (NGR | NGW) ∗ 2 ∗ DC+

(∃(NXR) + NXW) ∗CS + (NR ∗ DL/C)

(3)

Finally, we compute the weighted cost of processing a
traffic mix in a given mode as a weighted sum of, the relative
fraction of that message type in the traffic (wi), the relative
state access cost (Cmode

i) computed above, and the processing
costs of the messages in the procedure (CPUi). The CPUi
values would be dynamically computed by our framework.

Cmode
mix =

∑
i
wi ∗C

mode
i ∗CPUi (4)

We now illustrate our cost computation using the EPC
control plane example, with a mix of attach and service re-
quest procedures. We use input of the form shown in Table 1
for all the control messages that are exchanged during these
procedures. We then compute the cost of processing the var-
ious message types, and sum them up to compute the cost of
the attach and service request procedures in various offload
modes, as shown in Table 2. Finally, we use Equation 4 to
compute the cost for various mixes of attach and service
request procedures in the control traffic, the results of which
are shown in Table 3. Our empirical results in §3 agree with
our analytical computation of the best offload mode for each
traffic mix.

Attach:Service-Req (x:y) CCENT
x :y CLSCO

x :y CGSCOx :y

10:90 12.13 10.95 9.07
20:80 13.31 12.25 11.04
40:60 15.66 14.86 14.98
60:40 18 17.48 18.92
80:20 20.35 20.09 22.86
100:0 22.70 22.70 26.80

Table 3: Cost of traffic mixes across all offload modes.

2.4 Enforcing the offload mode
Once the cost metric is used to decide the offload mode and
hence the optimal location to handle a certain type of mes-
sage, our framework enforces this decision via OVS rules
installed at all switches to direct a message to a suitable
(central/local) controller. The Floodlight controller in our im-
plementation did not implement support to direct packets to
a specified controller. Therefore, we developed an extension
to the Floodlight controller by implementing the “NiciraSet-
ControllerId” feature in the Loxigen library, which lets us
specify rules to direct specific message types to specific con-
trollers. It was not required to make any additions to the OVS
code in the switches as the “NiciraSetControllerId” feature
was already supported. For each incoming control message
packet at the ingress SDN switch, the message type is in-
spected and the control message is directed to and processed
at the appropriate (centralized or local) controller.

3 EVALUATION
We now show the effectiveness of our Devolve-Redeem
framework with experiments using the EPC application.

3.1 Setup
We deployed the LTE EPC control plane application de-
scribed in §2.1 over our testbed. The Floodlight v1.2 con-
troller acts as a central controller and serves 3 sets of EPC
gateways along with a load generator and sink, to represent
a realistic scenario where multiple data plane switches are
served by the same controller. The EPC gateways run as
SDN switches on OVS v2.3.2. The SGW dataplane switch
also hosts a local controller. All components (controller and
switches) run Ubuntu 14.04, and are hosted over separate
LXC containers to ensure isolation. The containers are dis-
tributed amongst two Intel Xeon E312xx @2.6Ghz servers,
one with 16 CPU cores and the other with 8 cores. The con-
troller is allocated 1 CPU core and 4GB RAM, whereas the
gateways are allocated 2 cores and 4GB RAM each. The cen-
tralized controller is allocated fewer resources in comparison
to the switches to reflect real life where an MME controller
could be servings tens or hundreds of EPC gateways. Our

APNET ’17, August 3–4, 2017, Hong Kong, China R. Shah et al.

load generator generates traffic consisting of attach, detach,
and service request messages, separated by random delays,
to enforce a specific mix of attach and service request traf-
fic. All the experiments were carried out for the duration of
300 seconds. The metrics measured are average throughput
(number of requests completed/sec), average request comple-
tion latency, CPU utilization at all components, and network
traffic to the central controller. The throughput and latency
parameters are measured at the load generator, while the
CPU and network parameters are measured at the host and
the OVS switches.

3.2 Results
Figure 4 shows the average control plane throughput of var-
ious offload modes with varying mix of attach and service
request messages in the traffic, e.g., 10:90 represents 10%
attach requests and 90% service requests. The load generator
generated the specified fraction of requests per procedure
type every second using a uniform distribution. We con-
clude from the figure that when the ratio of attach requests
is much higher than service requests, the centralized and
LSCO modes worked similarly, and gave higher throughput
than the GSCO mode, because there was very little GWLR
computation to offload. On the other hand, when the ratio
of service requests was higher, more GWLR computation
could be offloaded, and the synchronization cost of GWLR
state was offset by the benefit of computation offload, result-
ing in higher throughput for the GSCO and LSCO modes.
For example, GSCO and LSCO provide 27% and 19% higher
throughput respectively, as compared to centralized, when
the input traffic mix is 20:80. LSCO provides 22% improve-
ment over centralized at a mix 40:60. The performance of
the GSCO design degraded when the percentage of attach
requests crossed 40%.
The latency measurements showed that the Centralized

mode always suffered high average request completion la-
tency, since the packets always travel to the centralized con-
troller, and the values range from 10.5 ms (10:90) to 15 ms
(60:40). The average request completion latency in LSCO
mode was lower than the Centralized mode, since certain
packets were serviced at the switch, and the values range
from 9 ms (10:90) to 12 ms (60:40). The average request com-
pletion latency in GSCO was lower than Centralized and
LSCO mode upto the 20:80 mix (8 ms), but increased there-
after upto 14 ms for 60:40 mix, due to synchronization over-
heads.
Table 4 shows the traffic received at the centralized con-

troller and the normalized CPU utilization at the local con-
trollers with varying traffic mix. We conclude that when
the ratio of attach requests was much higher than service

 0

 500

 1000

 1500

 2000

 2500

10:90 20:80 40:60 60:40

L
T

E
-E

P
C

 T
h
ro

u
g
h
p
u
t(

R
eq

u
es

ts
 p

er
 s

ec
)

Traffic Mix Ratios- Attach-request:Service-request

Centralized
LSCO
GSCO

Figure 4: Control throughput in offload modes as a
function of traffic mix.

Mix Network Overhead (Mbps) %CPU utilization at switch
x : y CENT LSCO GSCO CENT LSCO GSCO
10:90 21 20.4 11.7 33.5 43 53.2
20:80 19.2 17.1 14.6 33.7 40.9 53.7
40:60 17.5 17.6 17.3 34.5 47.3 47.1
60:40 16.7 15.3 21.4 35.8 41.2 45.5

Table 4: Network overhead and CPU utilization at the
switch across offload modes.

requests, GSCO imposes a significant synchronization over-
head. For example, GSCO had a 28% and 40% higher network
overhead compared to the centralized and LSCO designs
respectively at a mix of 60:40. We also see that the LSCO
and GSCO modes impose a higher CPU overhead at the local
switches as compared to the centralized mode, as expected.

4 RELATEDWORK
Towards realizing the applicability of software-defined net-
works, an important problem is that of control-plane scal-
ability. Horizontal scaling approaches [6, 8] scale the con-
troller by instantiating multiple homogeneous instances of
the centralized controller, and distributing the control load
with techniques like network topology partitioning. On the
other hand, hierarchical scaling techniques such as ours scale
controllers by offloading computation from the centralized
controller. We now compare our work to other hierarchical
controller frameworks.
Static state and computation offload: With a hierarchi-
cal SDN controller solution, one or both of computation and
state are distributed across the central root controller and
decentralized local controllers. Difane [11] offloads forward-
ing rules across a subset of local switches which serve as
local controllers for new flows with no forwarding rules. The

Devolve-Redeem: Hierarchical SDN Controllers with Adaptive Offloading APNET ’17, August 3–4, 2017, Hong Kong, China

availability of rules locally (state offload) avoids expensive
per-flow message transfers to the central controller. Other
approaches like Kandoo [4], FOCUS [9] offload computation
tasks like statistics gathering for elephant flow detection, or
node discovery via ARP flooding. Most of these optimizations
are related to computation tasks that do not affect global con-
troller state. Our proposed approach not only offloads local
computation, but also computation that depends on global
state that can be used locally in a read only fashion.

Eden [1] provides a framework for implementing the net-
work functions that do not require high network support at
the end hosts. They observe that a network function handles
as a set of application messages, and provide an application
library that tags packets according to the message type. The
tagged packets are then processed at the end hosts via a set
of match-action tables and a runtime. Devolve-Redeem also
works by identifying application message types. However,
while Eden requires changes to applications and the host
software stack to offload computation to the end hosts, our
framework does not require any significant changes to the
applications, and offloads computation to switches and not
the end hosts.
Adaptive offloading of state and computation: The hi-
erarchical controller frameworks described so far perform a
static offloading of state and/or computation to local switches
or end hosts, with the amount of computation to be offloaded
decided at design time. Beehive [10], on the other hand, en-
ables dynamic placement of computation by enabling the
dynamic placement and movement of state across a set of
distributed controllers. Application state in Beehive is stored
as key-value pairs in a shared distributed data store. Com-
putations in the application are mapped to the relevant con-
troller replica using an application-specific map function
that queries a globally synchronized index and maps com-
pute tasks to wherever data resides. Beehive requires writing
network applications to integrate the mapping functionality
(provided by the Go language). Further, the various Beehive
controllers must run an expensive synchronization protocol
to agree on the location of the distributed state. As compared
to Beehive, our approach trades off generality in favor of per-
formance: Devolve-Redeem does a more restricted placement
of data at local and centralized controllers, using hints from
the developer, unlike the generic distributed datastore of Bee-
hive. Further, our approach routes messgaes to controllers
by identifying message types from packet headers at the
switches itself, while Beehive routes packets to controllers
using the map function at the application layer.

5 DISCUSSION AND CONCLUSION
We presented the design and implementation of Devolve-
Redeem, a hierarchical SDN controller that can adaptively

change the amount of computation offloaded to local con-
trollers. Experiments with our implementation show that
the optimal amount of offload that gives the best application
performance depends on the mix of traffic in the network.
Offloading computation that depends on GWLR state incurs
a synchronization cost, and the decision of whether to offload
computation that depends on such state, or whether to only
offload computation that depends on local state (or even not
offload anything at all), depends on whether the traffic has
enough control message that can benefit from such an offload.
We proposed a simple cost metric that can help us decide the
relative costs of processing a message with and without of-
fload, and hence the optimal offload design for a given traffic
mix. Our current system performs this computation offline.
However, our design has all the ingredients in place to adapt
the offload mode in an online fashion, because the offload is
accomplished via two mechanisms (rules at switches to redi-
rect messages to the appropriate controller based on their
message type, and state synchronization across controllers
via our API) in a manner that is transparent to the applica-
tion developer. Therefore, applications need not change with
offload modes. A complete implementation and evaluation
of a hierarchical controller that can dynamically adapt the
amount of computation offloaded based on the traffic char-
acteristics, and even the resource utilization at controllers,
is part of our ongoing work.

REFERENCES
[1] Hitesh Ballani and others. Enabling End-host Network Functions. In

Proc of the SIGCOMM, 2015.
[2] Arsany Basta and others. A Virtual SDN-Enabled LTE EPC Archi-

tecture: A Case Study for S-/P-Gateways Functions. In Proc of IEEE
SDN4FNS, 2013.

[3] Andrew R. Curtis and others. DevoFlow: Scaling Flow Management
for High-performance Networks. In Proc of the SIGCOMM, 2011.

[4] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A Framework for
Efficient and Scalable Offloading of Control Applications. In Proc of
the Workshop on HoTSDN, 2012.

[5] Aman Jain, Sunny Lohani, and Mythili Vutukuru. 2016. Opensource
SDN LTE EPC. https://github.com/networkedsystemsIITB/SDN_LTE_
EPC. (2016).

[6] Teemu Koponen and others. Onix: A Distributed Control Platform for
Large-scale Production Networks. In Proc of the Conference on OSDI,
2010.

[7] Tulio Ribeiro. 2016. Floodlight. https://github.com/floodlight. (2016).
[8] Amin Tootoonchian and Yashar Ganjali. HyperFlow: A Distributed

Control Plane for OpenFlow. In Proc of the Internet Network Manage-
ment Conference on Research on Enterprise Networking, 2010.

[9] Ji Yang and others. FOCUS: Function Offloading from a Controller to
Utilize Switch Power. In Proc of IEEE Conference on NFV-SDN, 2016.

[10] Soheil Hassas Yeganeh and Yashar Ganjali. Beehive: Simple Distributed
Programming in Software-Defined Networks. In Proc of the SOSR, 2016.

[11] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scal-
able Flow-based Networking with DIFANE. In Proc of the SIGCOMM,
2010.

https://github.com/networkedsystemsIITB/SDN_LTE_EPC
https://github.com/networkedsystemsIITB/SDN_LTE_EPC
https://github.com/floodlight

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 LTE EPC Control Plane Application
	2.2 User inputs and API
	2.3 Offload cost metric
	2.4 Enforcing the offload mode

	3 Evaluation
	3.1 Setup
	3.2 Results

	4 Related Work
	5 Discussion and Conclusion
	References

