Performance Comparison of State Synchronization
Techniques in a Distributed LTE EPC

Pratik Satapathy, Jash Dave, Priyanka Naik, Mythili Vutukuru
Department of Computer Science and Engineering, Indian Institute of Technology, Bombay
Email: {pratik,jashdave,ppnaik,mythili} @cse.iitb.ac.in

Abstract—With Network Function Virtualization (NFV) gen-
erating significant interest in the network operator community,
many network functions, including the LTE EPC, are being
built as virtualized software appliances running on commodity
hardware, as opposed to custom hardware. To provide fault
tolerance and scalable performance, the virtualized network
functions are typically built in a clustered architecture, with
a front-end load balancer distributing incoming traffic across
multiple replicas, and the replicas synchronizing shared state with
each other for resilience and consistency. Our work compares
several distributed designs of the LTE EPC along the axis of
the frequency of state synchronization across the replicas, and
quantifies the performance overhead of state synchronization for
control plane and data plane operations. Using experiments with
our distributed EPC prototypes, we show that synchronizing
state for every message incurs a prohibitive performance penalty
(over 70% reduction in throughput as compared to the case
of no synchronization). On the other hand, synchronizing state
at session boundaries, while providing lower fault tolerance
guarantees, imposes a smaller performance penalty. We believe
that our open-source prototypes and experimental results will
guide future distributed EPC designs, and help operators pick
the right design that is appropriate for their fault tolerance and
performance requirements.

I. INTRODUCTION

The recent proliferation of mobile devices has resulted
in a significant rise in mobile data traffic in cellular data
networks, placing enormous stress on existing network ar-
chitectures. Network Function Virtualization (NFV) is one of
the design paradigms to improve the performance of future
cellular networks. With NFV, the various components of a
cellular network are built as software modules running on an
elastic commodity server platform, as opposed to custom-built
hardware. In addition to lower cost of developing software,
NFV also enables easier scaling of network components with
increasing load as compared to a custom hardware-based
design. There has been significant interest in NFV within the
telecom network operator community, with components like
the LTE Evolved Packet Core (EPC) being actively considered
for virtualization.

For NFV to be really useful, the various Virtual Network
Functions (VNFs) in a network must be built, not as monolithic
pieces of software, but as horizontally scalable clustered
components. While a clustered VNF may appear as a single
logical entity to other network components, it is internally
implemented as multiple replicas, with the number of replicas
scaling according to load. Any clustered VNF design typically

has a front end or a load balancer to distribute incoming traffic
amongst the various replicas, and a data store of some kind to
synchronize state amongst the replicas. The multiple replicas
must synchronize state for various reasons like fault tolerance
(e.g., when one of the replicas goes down) and consistency
(e.g., when one replica must access the state being used by
another replica). This state synchronization can be done at
various time granularities, and in general, higher the frequency
of synchronization, better the fault tolerance and consistency
benefits, but also greater the performance overhead. Therefore,
a VNF designer must weigh these competing concerns in the
context of a given VNF to make a suitable state synchroniza-
tion design choice.

MME

J —®

()

<> Data Plane
<> Control Plane

'VNF Replica

[€>|
D Load Balancer

Data Store
UE

Fig. 1: Distributed LTE-EPC

SGW i

eNodeB

In our paper, we compare the performance overhead of vari-
ous state synchronization options in the design of a distributed
LTE EPC. The LTE EPC connects the Radio Access Network
(RAN) of a cellular data network to various external networks.
The EPC primarily consists of the Mobility Management
Entity (MME) and the Home Subscriber Server (HSS) in the
control plane, and the Serving and Packet Gateways (S/P-
GWs) in the data plane. The MME, in consultation with the
HSS database, handles various signaling messages (e.g., the
attach request when a user initiates data traffic) and sets up
packet forwarding state for the user in the gateways, while
the gateways use this state to correctly forward user traffic
through the cellular core. In a virtualized EPC, each of these
EPC components will likely be built as distributed scalable
software running on commodity hardware, as illustrated in
Figure 1. In this context, we compare the performance of the
following state synchronization choices in the LTE EPC VNFs:
(i) Always sync, where each replica of a VNF synchronizes

state with other replicas, or with a state database, before/after
every message, (ii) Session sync, where a replica synchronizes
state once for a session, defined as a coherent group of
messages that arrive in quick succession (e.g., the many steps
that comprise the attach procedure, or the multiple packets
in one TCP flow of a user), and (iii) No sync, where the
replicas hold all state locally without incurring any state
synchronization overhead.

While prior work (§II) has proposed several distributed
designs for the MME, each system makes only one particular
choice with respect to state management. To the best of our
knowledge, there has been no performance comparison across
the spectrum of state synchronization design choices in the
control plane (MME) and data plane (S/P-GW) components of
the EPC. To this end, we propose several distributed designs
of the EPC components (§III), with varying frequencies of
state synchronization between the replicas. We implement
these designs (§IV) over an existing NFV-based LTE EPC
codebase [1]. Our code is available as open-source for other
researchers to experiment with.

Our experiments (§V) show that state synchronization be-
fore/after every session has 51% lower throughput and doing
so with every message has 71% lower throughput, as compared
to the base case of no synchronization in the control plane.
Similarly, synchronization before/after every packet has 76%
lower throughput as compared to synchronization once per
user flow in the data plane. We see from our results that,
while synchronizing state with every message provides the best
fault tolerance guarantees, it also suffers a high performance
penalty. Synchronizing state at the granularity of sessions
provides a reasonable middle ground with respect to both
performance and fault tolerance. We believe that research such
as ours provides useful guidelines to designers of virtualized
EPCs. Network operators deploying clustered EPC compo-
nents can weigh the fault tolerance requirements against their
performance requirements for various classes of traffic to adopt
suitable state synchronization strategies. While the absolute
values of performance reported in our work can change with
implementation choices and the functionalities of the VNFs,
we believe that the broad conclusions drawn in our study
would hold across other NFV systems as well.

II. RELATED WORK

Most related work in the area of distributed EPC designs
has dealt with proposing distributed architectures for the MME
component of the EPC. DMME [2] proposes a geographically
distributed architecture for the LTE control plane, where
smaller MMEs are collocated with every eNodeB to serve
users locally. The various distributed MME replicas store state
locally and synchronize with an object store at the end of the
user’s activity, or when the user moves to the region covered
by another MME replica. The clustered LTE EPC architectures
evaluated in our work do not consider the case of geographic
distribution, but only cover the case where multiple VNF repli-
cas are spawned to scale performance. SCALE [3] proposes
a scalable distributed architecture for the MME, where users

are partitioned among replicas using consistent hashing. MME
replicas that perform computations store state locally, and
synchronize their state with a small number of other replicas
at session boundaries for fault tolerance and load balancing.
Takano et al. [4] and Gopika et al. [5] also provide similar
distributed MME designs, where the replicas synchronize state
using a common data store at session boundaries. While all of
these papers propose various distributed MME designs, none
compares the entire spectrum of possible designs. Basta et
al. [6] proposes a model for placement of virtualized S/P-GW
in multiple data centres but does not consider distributing the
S/P-GW components of the EPC, as we do in our work.

Prior works like split-merge [7], pico-replication [8] and,
FTMB [9] provide a generic framework for building fault-
tolerant and scalable VNFs. Kablan et al. [10] propose and
evaluate a generic VNF architecture where replicas keep no
state and always synchronize with a datastore. Our work,
on the other hand, explores all possible state synchronization
choices, for the specific case of EPC VNFs.

III. DESIGN

We now discuss the different distributed EPC designs we
compare, focusing on their state synchronization aspects. We
begin with a brief overview of the LTE EPC.

A. Background: LTE EPC

A typical 4G LTE network consists of two components: a
RAN (Radio Access Network) and an EPC (Evolved packet
core) that connects the RAN to various other networks. The
RAN consists of eNodeBs, which are mobile towers respon-
sible for serving the UE (user equipment) over the wireless
channel. The EPC consists of control plane elements such
as MME, HSS, and an optional PCRF (Policy and Charging
Rules Function), and data plane elements such as SGW and
PGW. When a device powers on and connects to an LTE
network, it sends an attach request to the EPC via the eNodeB.
The attach request involves mutual authentication between the
UE and the network, primarily performed by the MME in
consultation with the HSS database. At the end of the attach
procedure, a tunnel or a forwarding path is setup for the user’s
data via the LTE gateways (the SGW serving the user’s area,
and the PGW that connects to the user’s desired destination) by
the MME. All subsequent data sent by the user are forwarded
via the chosen gateways using this forwarding state. The MME
also processes other control plane requests like disconnecting
an idle user from the network, and handling user mobility via
handovers between components.

B. Distributed LTE EPC

In an NFV-based implementation of the LTE EPC, a single
software instance (hosted on a virtual or physical machine)
of any EPC component like the MME or SGW can quickly
become a bottleneck under high load, and the underlying
hardware limitations may not allow provisioning the software
instance beyond a limit. Therefore, any reasonable virtualized
EPC deployment would consist of distributed or clustered

UEI State local
at MME1

UE1

UEI Attach and Attach

Detach

Load
Balancer

UE3 Attach and
Detach

E2 Attach and

Load
Balancer

(b) Always sync

(a) No sync

Step 1 @ Stepl
State
UE1 Step 1
Attach State
e

UEI Attach UE1 Attach

State
: UEI Attach
UEI Detach /\ State
MME2
vum Detach

State

Data Store

(c) Session sync

Fig. 2: Distributed EPC Designs with Varying State Synchronization.

EPC components, where a single logical EPC component is
implemented as multiple replicas sharing the incoming load.
With such a design, extra software instances of a component
can be spawned or taken down according to the offered load,
making the NFV-based EPC much more elastic to varying
demands than a traditional hardware implementation. Figure 1
shows our reference design of a distributed LTE EPC, where
each of MME, SGW and PGW are implemented as clusters of
replicas. We omit the PCRF in our design for simplicity. We
believe that this simple reference design suffices to evaluate
the performance overheads of state synchronization in the LTE
EPC, across a range of design choices.

Each clustered component internally consists of a load
balancer that distributes incoming load across one or more
replicas, which perform the actual processing of user requests.
The replicas can synchronize state either using a common
data store, or by replicating their local state at other replicas.
Without loss of generality, we assume that the replicas use
a common data store to synchronize state; our discussion
holds for when other replicas are used instead of a common
data store. Our inspection of shared state at EPC components
shows that all shared state is UE-centric, e.g., user context,
forwarding state, location updates, and so on. While some
of this state is persistent (e.g., user’s subscriber information),
most state only lasts for the duration that the user is connected
to the network. Therefore, all shared state in the EPC can
be represented as key-value pairs, keyed by a unique user
identifier, and a key-value store could serve as the data store.

Note that state synchronization primarily involves creating
or updating state in the control plane components, while it in-
volves fetching or reading state in the data plane components.
For example, during an attach procedure, the MME creates and
stores forwarding state for the user at the gateways. When the
gateways must forward a user’s data packet, they must fetch
this forwarding state from their local memory or a common
data store. We use the term ‘“‘state synchronization” to mean
both writing as well as reading shared UE state.

Let us now consider the different design options with respect
to synchronizing UE state across replicas. At one extreme
is a design that completely eschews state synchronization
across replicas. Each replica stores its state locally. Users are
partitioned to replicas either statically, or dynamically (e.g.,
based on load or other factors), and requests of a certain user
are always handled by the same MME or S/P-GW replica.

The load balancer or the front end to these replicas must be
aware of this mapping of users to replicas, and must correctly
redirect traffic belonging to a certain user to the correct replica.
This redirection can be accomplished in many ways in the load
balancer, e.g., consistently hashing a user identifier to obtain
a replica identifier (as done in SCALE [3]). Note that while
this design incurs no state synchronization overhead, it has
very low fault tolerance, and failure of a replica could result in
complete loss of state of a user, forcing the user to reconnect to
the network and re-establish state. As an example, Figure 2(a)
shows a clustered MME without any state synchronization,
and all signaling messages from the user would be handled
by the same replica.

At the other extreme is a design where replicas are com-
pletely stateless and always synchronize state at the end of
every packet. For example, Figure 2(b) shows a stateless MME
implementation, where various authentication steps of a single
attach request of a user can go to different MME replicas, and
the replicas must get (put) the updated state of a user before
(after) processing every packet. An example in the data plane
would be an SGW replica fetching forwarding state of the user
from a common data store or from another replica, for every
packet of the user’s flow. The load balancer is very simple in
this design, as any incoming packet can be redirected to any
replica. While this design obviously has a high synchronization
overhead, it also has very high fault tolerance: the failure
of a replica even in the middle of a multi-step user request
will be tolerated well, and another replica can continue where
the previous one left out. The underlying reliable transport
protocols like TCP and SCTP over which most signaling
messages or user data are sent can easily mask the loss of
a small number of packets that happen during the transition
from one replica to the other.

The middle-ground between both of these designs is one in
which state is synchronized at the granularity of a session.
That is, shared state is fetched from the data store at the
start of the session, stored back at the end of the session, and
maintained locally for the duration of a session. We define a
session as series of logically related consecutive packets from a
user. For example, the various authentication steps of an attach
request can constitute a session in the control plane, while all
packets of a given TCP connection can be considered as a
session in the data plane. In such a design, the load balancer
must maintain affinity and direct packets of a given session

to the same replica, but packets of the same user that belong
to different sessions, can be served by different replicas. For
example, Figure 2(c) illustrates a clustered MME with session-
level synchronization, where one MME replica processes all
packets of an attach request, while another may process the
detach request from the same user. An analogous example in
the data plane would be the gateways fetching user forwarding
state from the data store only once at the start of a user flow,
and caching it locally for the rest of the packets of the flow. If
a replica fails in the middle of a session, the user will perceive
the failure, and will have to retry from the beginning of the
session at another replica. For example, the user may have to
restart the handover procedure if an MME replica fails in the
middle of the request. However, the user will not face major
disruptions, e.g., he will not have to reattach, as the attach
context will have been saved in the data store and can be
retrieved by the new MME replica.

It is easy to see that different state synchronization choices
result in different performance overheads at the VNF replicas,
the load balancer, and the common data store, and provide very
different fault tolerance properties. While it is intuitive that
more frequent synchronization will lead to lower performance,
we aim to quantify this performance penalty, so that operators
can make an informed choice on how much performance to
trade off for a desired level of fault tolerance.

IV. IMPLEMENTATION

In this section we describe our implementations of various
distributed EPC candidates. Our implementations are exten-
sions of our in-house monolithic NFV-based LTE EPC [1]. Our
NFV-based EPC consists of multi-threaded high performance
implementations of the MME, SGW, and PGW, along with
a RAN simulator and sink. The RAN simulator is a multi-
threaded client that emulates multiple UEs, which perform
simple signaling procedures like attach and detach, and trans-
fer data through the EPC for specified durations. The RAN
module connects to the MME over the S1AP interface, which
runs on SCTP. Therefore, the RAN simulator acts as an SCTP
client while the MME acts as an SCTP server. The MME also
connects over GTP-C on UDP to the SGW and PGW to setup
and modify forwarding state during signaling procedures. The
RAN simulator sends GTP data over UDP via the gateways
in the data plane. Our EPC implementation implements only
a subset of the LTE signaling protocols, and is not fully
standards compliant. However, it captures the computational
complexities of the important LTE procedures, and is suitable
for modification into a clustered implementation.

A. Load Balancer

We first modified each of the EPC components to have a
load balancer as the front end. All traffic from a downstream
EPC component in a service chain passes through the load
balancer before being processed by a replica of the com-
ponent. We had two design choices in implementing a load
balancer: a network layer load balancer that simply rewrites
the destination IP address of packets to that of the replica,

RAMCloud
9159

LevelDB
20616

Redis
23667

Memcached
22747

Throughput

TABLE I: Performance (req/s) of the key-value store client
library.

or an application layer load balancer that performs protocol
processing as well. A network layer load balancer imposes a
lower performance overhead, whereas an application layer load
balancer provides more functionality (e.g., selecting replicas
based on application layer semantics) at a higher processing
cost. While most prior work (e.g., SCALE [3]) has used an
application layer load balancer in their designs, we chose a
network layer load balancer as it suffices for our goal of
comparing state synchronization options.

We developed two network layer load balancers to use in
our prototype implementation. The first one is based on the
Linux Virtual Server (LVS) [11] framework. LVS is an open
source kernel module based network load balancer with some
preset load distribution algorithms. The kernel module rewrites
the destination IP address of incoming traffic to that of one
of the chosen VNF replicas, in a manner that is transparent to
the peers of a VNF component. The LVS framework comes
with simple algorithms for selecting one of the replicas for
any given packet: a simple round-robin policy picks replicas
in a round robin fashion on incoming packets, while a source-
hash based policy uses the hash of the source IP and port
of the TCP/UDP header to pick a replica (ensuring packets
from the same source IP and port reach the same replica).
We use the LVS module in the “direct server return” mode,
where the reply from the replicas are sent directly to the
source without going through the load balancer again, for
performance reasons.

The LVS based framework does not provide enough flexi-
bility to pick replicas based on application layer information
like user identifiers. Therefore, we also implemented a custom
load balancer as a Linux kernel module to redirect packets
based on user identifier information that is often embedded
inside the payload of transport layer packets. Our kernel
module uses Netfilter hooks to intercept packets before they
reach the replica. The module takes as inputs (via sysfs)
the various message types processed by the VNF, and the
location of the application layer key in each packet type,
and uses this information to extract the application layer key
from packets. The hash of the application layer key (when
available and applicable) is then used to assign packets to
replicas. The module also takes an input information about
session boundaries of various messages in order to maintain
session-level affinity to replicas. This custom kernel module
can pick a replica IP to rewrite the destination IP field of
a packet using much richer semantics than what is possible
by the LVS server. We evaluate both load balancers for their
performance in §V.

B. Shared Data store

Clustered EPC components in our implementation synchro-
nize state either by storing state at other replicas, or by storing

300000 Redis (YCSB-A) =<3

Redis (YCSB-
| Memcached (YCSB-.
Memcached (YCSB-B) ¢

250000
200000 [
N L.
150000 [

100000 [

50000 [

Throughput (in operations per second)

0 2 VMs 4 VMs 6 VMs

Fig. 3: Performance comparison of Redis v/s Memcached.

it in a common shared data store. We find that all shared state
in the EPC components can be represented as key-value pairs,
and the EPC procedures require simple operations like get,
put, multi-get, multi-put, and delete on these key-value pairs,
and do not require any transaction processing support. We
also find that all the components, except for the HSS, do not
need to store any shared state persistently. Therefore, when
replicas use a common data store for synchronization, we use
in-memory key value stores to synchronize data. Our EPC
components were modified to make all state access operations
to pass through a simple multi-threaded client library devel-
oped by us, which simply acts as a wrapper around get/put
operations and in turn performs get/put operations on a back-
end high performance key-value store.

We ran simple benchmarking experiments on existing high
performance in-memory key-value stores to pick a suitable
candidate. We compared the following data stores: Lev-
elDB [12], Memcached [13], RAMCloud [14] and Redis [15].
We tested the key-value stores with simulated LTE EPC data
(30 bytes key and 2000 bytes value), with a YCSB-A or
YCSB-B [16] type workload. The client and server VMs were
hosted on single server with 24 CPU cores (Intel(R) Xeon(R)
CPU E5-2670 v3 @ 2.30GHz) and 64GB RAM.

We first evaluate the performance impact of accessing the
key-value store at the VNF replicas, which act as clients to
store data in the key-value stores. The client program was
hosted on single VM with single CPU core and 4GB of
RAM. Server VMs were configured differently for different
data stores, to ensure that they were well provisioned, to
isolate only the performance impact at the client side. Table I
shows the throughput of our client library (in terms of aver-
age number of get/put operations performed by the library)
when accessing different key-value stores in the backend. Our
results show that the RAMCloud client is the most CPU-
intensive, while the Redis and Memcached clients give the
highest throughput, and hence impose the lowest performance
overhead at our VNF replicas.

Next, we evaluate the performance of the Redis and Mem-
cached key-value stores at the server side by provisioning
comparable resources to both. We used 2 client VMs each
with 8 CPU cores and 4GB of RAM to load a varying number
of server VMs. Each server VM hosted a single instance of
the Redis or Memcached server, and was configured with 1

CPU core and 4GB RAM. We turned off the disk writes
for Redis to keep it comparable to Memcached. Figure 3
shows the performance comparison of Redis vs. Memcached
under YCSB-A and YCSB-B workloads. We see from the
figure that while Redis and Memcached perform comparably,
Redis performs slightly better. Further, Redis also provides
persistence as a feature. Therefore, we choose Redis as the

common data store in the rest of our experiments.
C. VNF Replicas

We now describes changes made to the VNF components
of our monolithic NFV EPC [1]. We first modified all com-
ponents to use our wrapper client library when accessing any
shared state, to enable a quick switch between various syn-
chronization options in our experiments. When using a shared
data store for state synchronization, all EPC components use
the same data store: the MME pushes forwarding state to the
data store during signaling, and the gateways pull the state
from the same data store during forwarding in the data plane.

We also integrated all EPC components to work with a load
balancer. We modified our RAN simulator slightly to work
correctly with our load balancer across various designs as
follows. When evaluating the design where the MME replicas
store state locally and do not synchronize, the MME load
balancer needs to ensure UE-level affinity and direct all traffic
from a UE to the MME replica that has its state. To enable
this in our LVS load balancer that cannot use UE information
to pick replicas, we modified our load generator to send all
signaling messages from the same user over the same SCTP
connection. With this modification, the source hash mode of
the LVS automatically ensures that traffic of the same UE
lands up at the same MME replica. We did not place any such
restriction when this affinity was not required, ensuring that
different sessions of a UE, or different packets of one session
of a UE go to different replicas. A similar modification was
also required at the MME, when it communicates with the
SGW and PGW to setup user state at the end of signaling
procedures. To ensure that the forwarding state of the same
user reaches the same SGW replica (when the SGW load
balancer only uses source hash to decide replicas), we picked
the source port of the UDP socket at the MME replica based
on a hash of the user forwarding state information (the user
tunnel identifier, to be precise). This ensured that forwarding
state setup messages of a particular user from the MME
to the SGW always reached the same SGW replica when
such affinity was desired, even though the simple LVS load
balancer had no visibility into user identifier information. All
of these changes ensured that we could direct traffic correctly
to replicas in different clustered designs, in order to correctly
evaluate the state synchronization overhead, without adding
extra complexity to the load balancer.

V. EVALUATION

We now evaluate the performance of various distributed
EPC designs and their state synchronization overheads using
our prototype implementation. Our experimental setup consists
of the various EPC components, along with the RAN simulator

Mode LVS Custom
UDP (UE affinity) 18.1 18.8
UDP (Session affinity) 18.1 19
UDP (No affinity) 19.1 19.6
TCP (No affinity) 17.7 19.2

TABLE II: Throughput (Gbps) of LVS and custom load
balancer.

and sink, hosted as VMs on physical servers with 24 CPU
cores (Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz) and
64GB RAM. The hypervisor used is KVM and the VMs are
connected using virtio over KVM bridge. The RAN and the
sink are assigned 8 cores and 4GB RAM each, while the
MME, SGW, and PGW replicas are assigned 1 core and 2GB
RAM each. The load balancer modules are assigned 2 cores
each with 4GB RAM. All VMs run on Ubuntu 14.04. The
datastore consists of a Redis 3.4 cluster running on 3 VMs
with 4 cores and 4GB RAM each. Each VM run 4 Redis
servers (2 masters, 2 slaves) with a replication factor of 1.

A. Load Balancer Benchmarking

We begin with measuring the performance of our load
balancers. Because the eventual goal of our evaluation is
to quantify the performance of the EPC components, we
benchmark our load balancers to ensure that their capacity
is higher than that of the EPC components, so that our
experiments are not bottlenecked at the load balancer. We
use multiple iperf [17] clients and servers to generate traffic
to saturate our load balancer. The load balancers rewrite the
destination IP address of the packets in various modes of
operation (ensuring affinity to a replica, or round robin across
replicas) for both UDP and TCP over the iperf traffic. This
rewriting simulates the load balancer rewriting headers within
the EPC components, by inspecting the TCP/IP headers and
payload. The load balanced throughput at the iperf receivers is
shown in Table II. Note that UE-level affinity for TCP flows is
infeasible to evaluate in our network layer load balancer with
iperf, because the payload which contains the UE identifier
is not available at the time the TCP handshake messages are
being assigned a replica. In all modes, we find that the load
balancer is able to handle over 18 Gbps of traffic while running
on one core, and is limited by the network throughput of the
vhost-daemon of the load balancer VM. Since the throughput
of our EPC components is lower in comparison, both load
balancers were not the performance bottlenecks in all further
experiments.

B. EPC Control Plane

We now evaluate the performance of the distributed EPC
control plane under various modes of state synchronization.
Our RAN simulator simulates multiple concurrent users per-
forming attach and detach requests in a closed loop for the
duration of the experiment, and we measure the number of
successful registrations completed per second (throughput)
and the average latency of the registrations as metrics of the
control plane performance. We use a distributed MME with
3 replicas. Figure 4 shows the throughput of the clustered

10000 f T T BEELAEEIT YT TELE TR
.c
o 8000 ‘
£
8 L
2 6000] ’ T T |
é OO e T
F 4000 |
&2000 |) No sync - @ |
Session sync replica - -
Session sync redis %
) . __Always sync -4
20 40 60 80 100

Number of concurrent UE

Fig. 4: Control plane throughput of the distributed LTE EPC
with increasing load.
0.035

No sync -
0.03 | Session sync replica -
7T Session sync redis

Always sync -
, 0.025 |

rxme
»

o
<)
S
»
¥

in seconds

0.015 |

Latency

o
=)

0.005%""
E

0 ,
10 20 30 40 50 60 70 80 90 100
Number of concurrent UE

Fig. 5: Control plane latency of the distributed LTE EPC
with increasing load.

MME in the following modes: the MME replicas performing
no synchronization (no sync), the replicas performing synchro-
nization once at the end of attach and detach sessions to the
Redis data store (session sync redis), replicas synchronizing
at session boundaries by replicating state at the other two
replicas (session sync replica), and the replicas synchronizing
with the Redis data store after every step/message of the
attach and detach procedures (always sync). Figure 5 shows
the latency of the attach request in the same modes, as a
function of increasing number of concurrent UEs in the RAN
simulator. We observe that the performance of the distributed
MME is the highest (close to 10K registrations/sec) when the
replicas perform no synchronization, and progressively falls
with increasing synchronization overhead. The throughput is
51% lower when synchronizing with the Redis data store
at session boundaries, 38% lower when synchronizing with
other replicas, and 71% lower when synchronizing at every
message. The replicas were limited by the CPU processing
in all experiments, and we verified that the load balancer and
data store components were not the bottleneck. The latency
also shows a similar trend. The reduction in throughput can
be explained by the time spent blocking for I/O operations
to the data store and other replicas during synchronization.
From these results, we see that synchronization across replicas
for fault tolerance and consistency incurs a steep performance
penalty in the EPC control plane, though synchronizing at
session boundaries presents a good middle-ground.

Next, we look at how the performance of the various designs
scales with increasing number of replicas. Figure 6 presents

10000 [1 Replica =3

3 2 Replica

S 8000 L 3 Replica |
2

3 6000} |
S

S 4000 | |
b=}

52000 |]
2

0

No sync Session sync Always sync
redis

Fig. 6: Control plane throughput of distributed LTE EPC.

[‘ " 1 Replica

5 200 2 Replica

& 3 Replica

S 400 [1
5

3 300 1
(=9

=)

3 200 [1
E

=100 ; 1

j ANN|
0 Session sync redis Always sync

Fig. 7: Data plane throughput of distributed LTE EPC.

the saturation throughput of the three distributed designs with
1, 2, and 3 MME replicas. We find that all designs scale
reasonably well with increasing number of replicas, with the
session based synchronization providing the best scaling (1.8
with 2 replicas, and 2.5x with 3 replicas).

C. EPC Data plane

We now evaluate the performance of the EPC data plane
under various state synchronization modes. We generate data
through the EPC by spawning iperf processes in the simulated
UE threads in the RAN simulator. We measure the amount of
data traffic reaching the sink through the SGW and PGW. All
simulated UEs attach before start of the experiment, to ensure
no interference from control plane traffic.

Figure 7 shows the saturation throughput of the three
distributed designs with 1, 2, and 3 S/P-GW replicas, in the
session sync and always sync modes. In the session sync
mode, the SGW and PGW replicas incur state synchronization
overhead only at the start of a TCP flow to fetch forwarding
state from the data store, but cache the result locally at the
replica for the duration of the TCP session. In always sync
mode, the replicas are stateless and fetch forwarding state for
every data packet of the user’s TCP flow. One can see from the
figure that stateless replicas (and a simple load balancer that
ensures no session-level affinity) imposes a huge performance
penalty in the data plane performance, resulting in 76% lower
saturation throughput in the case of 3 SGW/PGW replicas.
Therefore, caching forwarding state at data plane gateway
replicas is hugely beneficial for performance. The gateway
replicas were limited by CPU in all experiments. The results
for when the replicas incurred no synchronization overhead
were similar to the case when synchronization was done once
at the start of the session.

VI. CONCLUSION

Our work compared the performance of several designs of
a clustered LTE EPC, where the different designs differed in
the frequency of state synchronization across the various VNF
replicas. Our results show that frequent state synchronization
and checkpointing using a high performance datastore imposes
a huge performance penalty (71% in the control plane, and
76% in the data plane, as compared to no synchronization),
though it provides the best possible fault tolerance guarantees.
Maintaining all user connection state locally, while providing
the highest performance, will result in significant disruptions
when replicas of the distributed system fail. A reasonable
middle-ground seems to be to fetch and store shared state
at session boundaries (e.g., end of attach procedure in the
control plane, and beginning of TCP flow in the data plane),
which incurs a somewhat lower performance penalty (51%
lower throughput), and somewhat weaker fault tolerance guar-
antees (replica failure requires restarting the ongoing session),
but balances both performance and fault tolerance concerns.
We have released the source code of our distributed EPC
designs [18], in the hope of furthering research on distributed
virtualized network appliances for telecom networks.

REFERENCES

[1] OTB, “Nfv_lte_epc_1.0,”
NFV_LTE_EPC, 2016.

[2] X. An, F. Pianese, I. Widjaja, and U. Gunay Acer, “Dmme: A distributed
Ite mobility management entity,” Bell Lab. Tech. J., vol. 17, no. 2, pp.
97-120, Sep. 2012.

[3] A. Banerjee, R. Mahindra, K. Sundaresan, S. Kasera, and J. Van der
Merwe and Sampath Rangarajan, “Scaling the Ite control-plane for future
mobile access,” in Proc. of CONEXT’15.

[4] Y. Takano, A. Khan, M. Tamura, S. Iwashina, and T. Shimizu,
“Virtualization-based scaling methods for stateful cellular network nodes
using elastic core architecture,” in Proc. of CloudCom’14.

[5] G. Premsankar, K. Ahokas, and S. Luukkainen, “Design and implemen-
tation of a distributed mobility management entity on openstack,” in
Proc. of CloudCom’15.

[6] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,
“Applying nfv and sdn to lte mobile core gateways, the functions
placement problem,” in Proc. of AllThingsCellular’14.

[71 S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Proc. of NSDI'13.

[8] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high
availability framework for middleboxes,” in Proc. of SoCC’13.

[9] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,

M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,

“Rollback-recovery for middleboxes,” in Proc. of SIGCOMM’15.

M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network

functions: Breaking the tight coupling of state and processing,” in Proc.

of NSDI'17.

“Linux virtual server,” http://www.linuxvirtualserver.org/.

“LevelDB,” http://leveldb.org/.

B. Fitzpatrick, “Distributed caching with memcached,” Linux J., vol.

2004, no. 124, pp. 5—, Aug. 2004.

J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,

D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,

and S. Yang, “The ramcloud storage system,” ACM Trans. Comput. Syst.,

vol. 33, no. 3, pp. 7:1-7:55, Aug. 2015.

“Redis,” http://redis.io/.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proc. of SoCC’10.

“Iperf,” https://iperf.fr/.

IITB, “Nfv_Ite_epc_1.1,” https://github.com/networkedsystemsIITB/

NFV_LTE_EPC/tree/master/NFV_LTE_EPC-1.1, 2016.

https://github.com/networkedsystemsIITB/

(10]

(11]
[12]
[13]

[14]

[15]
[16]

(17]
[18]

