
DiME: A Performance Emulator for Disaggregated
Memory Architectures

Dhantu Buragohain, Abhishek Ghogare, Trishal Patel, Mythili Vutukuru,
Purusho�am Kulkarni

Department of Computer Science and Engineering, Indian Institute of Technology Bombay, India
dhantu,abhishekvg,trishal,mythili,puru@cse.iitb.ac.in

ABSTRACT
Resource disaggregation is a new design paradigm for data
center servers, where the compute, memory, storage, and
I/O resources of servers are disaggregated and connected
by a high-speed interconnect network. Resource disaggre-
gation, and memory disaggregation in particular, can have
signi�cant impact on application performance, due to the
increased latency in accessing a portion of the system’s mem-
ory remotely. While applications need to be redesigned and
optimized to work well on these new architectures, the un-
availability of commodity disaggregated memory hardware
makes it di�cult to evaluate any such optimizations. To
address this issue, our work develops DiME, an emulator
for disaggregated memory systems. Our tool can emulate
di�erent access latencies over di�erent parts of an applica-
tion’s memory image as speci�ed by the user. We evaluate
our tool extensively using popular datacenter workloads
to demonstrate its e�cacy and usefulness, and show that
it outperforms previous emulators in its ability to emulate
di�erent access delays at a �ne per-page granularity.
ACM Reference format:
Dhantu Buragohain, Abhishek Ghogare, Trishal Patel, Mythili Vu-
tukuru, Purusho�am Kulkarni.2017. DiME: A Performance Emu-
lator for Disaggregated Memory Architectures. In Proceedings of
APSys ’17, Mumbai, India, September 2, 2017, 8 pages.
DOI: 10.1145/3124680.3124731

1 INTRODUCTION
Resource disaggregation is a new server architecture design
paradigm that has recently been gaining a�ention both in
academia [11, 15] and industry [4–6, 9]. Traditional servers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permi�ed. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’17, Mumbai, India
© 2017 ACM. 978-1-4503-5197-3/17/09. . .$15.00
DOI: 10.1145/3124680.3124731

consist of a �xed set of resources—compute, memory, I/O
and storage—tightly integrated into a single box. �is tight
integration makes it di�cult for applications to share re-
sources across multiple servers, leading to a fragmentation
of resources and ine�cient utilization of some resources.
For example, most of the memory on a server running a
CPU-intensive application may be unutilized, as no new ap-
plication can be provisioned to consume the free memory
due to the unavailability of CPU cycles. Resource disaggrega-
tion breaks this limitation by disaggregating server resources
into separate components. Each resource can be made avail-
able as a global pool of independent resource containers, and
the physical containers are all connected by a high-speed
backplane network. A disaggregated architecture can enable
�ne-grained resource provisioning and independent scaling
of resources, leading to be�er resource utilization and even-
tually, lower costs of data center infrastructure. Figure 1
shows a high-level overview of a futuristic disaggregated
data center.

Figure 1: Resource Disaggregated Architecture.

Of all resources, storage has been one of the �rst ones
to be disaggregated. A few recent papers [19, 20] looked
at the disaggregation of �ash storage. �eir �ndings show
that, with some system so�ware support, disaggregation
of �ash storage is possible using the existing networking
technologies for the interconnection backplane, without any
performance degradation to applications. However, disag-
gregation of memory is much more challenging—memory
access latencies being at least two orders of magnitude faster

APSys ’17, September 2, 2017, Mumbai, India Dhantu Buragohain et al.

than storage. Further, memory disaggregation is particu-
larly important since the performance of memory-intensive
applications depend on having access to larger amounts of
disaggregated memory which can enable the working set
size of these applications to reside fully in memory. However,
the main challenge of memory disaggregation comes from
the fact that, while memory access latency is in the order
of few nanoseconds in traditional servers, disaggregating
memory from compute will increase this latency to a few mi-
croseconds using existing modern networking technologies
(e.g., RDMA). �is increased access latency from compute to
memory can signi�cantly impact application performance.
To alleviate this problem, a partial memory disaggregation
model is considered a reasonable middleground [21]. Instead
of completely disaggregating the memory from the CPU, a
small portion of memory is kept local to each compute node.
We will refer to the memory collocated with the compute
as local memory, and the accessible memory from the dis-
aggregated pool as remote memory. Prior work [16] has
shown that with a 25% of local memory and 5µs end-to-end
latency, memory disaggregation degrades application per-
formance by only 5% for certain class of application(e.g.,
Hadoop, Graphlab, Memcached), even when using existing
networking technologies in the interconnect.
In a disaggregated memory architecture, application per-

formance will depend on the access latency of remote mem-
ory, the bandwidth of the interconnection network, the frac-
tion of memory available locally, and on the placement of
application data across local and remote memory, among
other things. Prior work [16] has primarily studied how the
characteristics of the interconnect and the amount of local
memory available impact application performance. How-
ever, questions such as how applications must be designed to
leverage this new architecture, and how an application must
partition its data structures between local and remote mem-
ory (for a given access latency and interconnect bandwidth)
to optimize performance, have received li�le a�ention. Note
that applications can in�uence data placement in one of two
ways. One option is to make the applications aware of the
disaggregated nature of the memory hardware, and expose
APIs to place code and data in local or remote memories. �is
option allows applications to be redesigned to e�ciently use
the disaggregated memory setup, and intelligently partition
data between local and remote memories in a way that the
overhead of remote memory access is reduced. For exam-
ple, [14] optimizes data placement for applications over a
tiered memory hierarchy with di�erent access latencies (e.g.,
DRAM and NVRAM), and similar solutions can be developed
for disaggregated memory as well. Alternately, memory dis-
aggregation can be made transparent to the applications with
the help of operating system and system so�ware support.
In this case, applications are not aware of the disaggregated

architecture, and a system so�ware stack performs the nec-
essary optimizations to manage the disaggregated resources.
In either option, data placement signi�cantly impacts ap-
plication performance. However, in the absence of a hard-
ware prototype of disaggregated memory, solutions to such
problems are hard to implement and validate. While prior
work [16] has developed tools to emulate remote memory,
such tools only work to emulate di�erential access latencies
over a part of the memory of an entire system and do not pro-
vide �ne-grained control at the process or application level.
�erefore, it becomes di�cult to implement or evaluate ap-
plication design ideas that require �ne-grained control over
access latency of di�erent parts of an application memory
using such coarse grained emulators.
Our work describes the design and implementation of

DiME, an emulator for disaggregated memory architectures.
DiME works at the granularity of individual pages of pro-
cesses and can emulate di�erent access latencies for di�erent
parts of an application’s memory image. A certain user-
speci�ed fraction of the application’s memory can be ac-
cessed normally as local memory, while the rest is accessed
with an added delay. �e remote access delay is modeled
as a function of the access latency of the remote memory
and the interconnect bandwidth. Remote memory emulation
in DiME is done completely in so�ware. Our tool works
as a Linux kernel module, protects and traps page accesses
of applications under emulation, and injects delays as ap-
propriate. We ran extensive experiments with our emulator
using simple micro-benchmarks and data center application
workloads [7, 8]. Our results show that DiME can accurately
inject the speci�ed delay over memory accesses with li�le
extra overhead, and the results of application performance
degradation observed with remote memory emulation match
what is to be expected. We also demonstrate that DiME pro-
vides �ne-grained control over injecting delays on speci�c
pages of applications and can provide more deterministic
results than previous coarse grained emulators.
Note that our emulator is generic enough to study ap-

plication performance over any system with di�erentiated
access latencies for di�erent parts of memory (e.g., systems
with a hierarchy of heterogeneous memories), beyond just
disaggregated memory architectures. We believe that tools
such as DiME will spur research into new designs for applica-
tions and system so�ware that can e�ciently leverage newer
memory architectures. �e rest of the paper is organized as
follows. Section 2 explains the design and implementation of
DiME. Section 3 evaluates our emulator. Section 4 discusses
related work, and Section 5 concludes the paper.

2 DESIGN AND IMPLEMENTATION
We now describe the design and implementation of DiME.
We begin with the assumptions we make in our work.

DiME: A Performance Emulator for Disaggregated Memory Architectures APSys ’17, September 2, 2017, Mumbai, India

2.1 Assumptions
Given the absence of a widely available prototype for mem-
ory disaggregation, we make a few assumptions about the
hardware and system architecture in our work, much like
those made in prior work [16]. We assume that there will be
partial CPU-memory disaggregation, where a small portion
of memory will be kept local to each compute node. Access
to this local memory will not incur any extra delay, and
user-speci�ed delays will only be added on access to the re-
mote disaggregated memory. �e disaggregation of memory
can either be at a rack scale (with di�erent resource blades
placed in the same rack), or across the entire data center,
and our emulator is agnostic to the scope of disaggregation.
We assume that the memory access between the CPU and
remote memory is at the granularity of pages, and we do not
consider the details of the virtual memory design that can
enable the addressing of this remote memory. Our emulator
injects a delay corresponding to the user-speci�ed access
delay and transmission bandwidth over the interconnect be-
tween CPU and memory. We do not consider queuing delays
over the interconnect since there is not enough literature
about the type of networking technologies that will be used
and the interconnect network architecture. Prior work [22]
has proposed queuing models for rack scale data serving
systems. We propose to incorporate such models to emulate
queueing delay of the interconnect in the future.

2.2 Emulating Remote Memory
�e key idea of our emulator is to protect portions of the
virtual address space of processes under emulation that cor-
respond to remote disaggregated memory, and inject delays
when the protected pages are accessed and trapped to the
kernel. Note that emulation is done on a per-process basis for
�ne-grained control, and multiple processes can be emulated
simultaneously. �e address space of processes correspond-
ing to local memory is accessed normally without traps. �e
user of the emulator speci�es the amount of memory to be
kept local, and pages allocated beyond this limit are consid-
ered to be served from remote memory. We implement our
emulator as a loadable Linux kernel module, with a few lines
of kernel code modi�cation. �e basic architecture of our
emulator is shown in Figure 2. We now describe the design
and implementation of our module in more detail.
Inducing a page fault. In Linux, a page fault can be in-
duced for any future access to a page by using the page
protection bits of each page table entry. Se�ing the �ag
PAGE PRESENT to 0, and the �ag PAGE PROTNONE to 1
in the page table entry (PTE) of a page induces a page fault.
We will refer to se�ing this combination of �ags as protect-
ing a page and se�ing the �ags PAGE PRESENT to 1 and
PAGE PROTNONE to 0 as unprotecting the corresponding
page. In DiME, we protect a portion of the virtual address

space of a process that corresponds to remote memory, so
that any memory access to these pages will raise a page fault.
A modi�ed page fault routine helps the kernel module take
necessary actions, such as evicting a local page, emulating
delay, and so on. No page faults are generated for accesses
to local memory pages.

Figure 2: Flowchart of operations within DiME.

Page fault hooks. �e Linux kernel function
do_page_fault handles a raised page fault. do_page_fault
in turn calls __do_page_fault, which is the actual page
fault handler. Linux kernel provides the kprobe [1]
mechanism to intercept an exported kernel function from a
kernel module without modi�cation to the kernel source.
�e do_page_fault function is protected from kprobe to
avoid recursive calls from the probe handler. �erefore,
we used two callback functions in the linux fault handler
fault.c �le to inject so�ware created delay, one just before
__do_page_fault and one just a�er it. �ese callback
functions are de�ned in the kernel module of DiME. �e �rst
callback function performs bookkeeping of the local memory
pages and also stores the start timer value start_time using
inbuilt kernel sched_clock function. �e second callback
function injects the remaining delay a�er __do_page_fault
function returns. �e second callback function calculates
the remaining delay by subtracting start_time from the
emulated_latency where emulated_latency denotes
the remote memory access latency that the user wants to
emulate.
Delay injection. Linux kernel provides di�erent ways to
introduce a delay in an execution �ow, viz. delay and sleep
function families [2]. �e sleep function family is backed by
high-resolution kernel timers subsystem. �e usleep_range
function takes a time range and schedules a wakeup event
anywhere in the range before sleeping. As an optimization,

APSys ’17, September 2, 2017, Mumbai, India Dhantu Buragohain et al.

it looks for an existing event scheduled in a given range and
uses it to schedule a wakeup. If an existing wakeup event is
not found, a new wakeup event is scheduled at the upper
bound of the time range. Due to this involvement of the
wakeup scheduling and interrupt mechanism, it cannot be
used for injecting small delays (e.g., a few hundred nanosec-
onds) precisely. �e delay function family is backed by a
busy-wait loop which executes the desired delay by iterating
a single instruction which approximately takes 1µs. Since
the execution time of this instruction is not exactly 1µs, but
has some positive error, the error gets accumulated for a
large number of iterations. �erefore, the delay injection
error is less for delays close to 1µs, but increases linearly
for higher delays. Because of the limitations of the above
two techniques, DiME uses a custom busy-wait implementa-
tion backed by sched_clock function to enforce delays. �e
sched_clock function uses the system ji�y counter inter-
nally. �e module checks the timestamp using sched_clock
function and iterates in a loop until the elapsed time is less
than the delay to be executed. We used a custom busy-wait
loop as our delay injection method since it provides the high-
est accuracy with a constant small error for a broad range
of delays. We compare the accuracy of all delay injection
methods in Section 3.
Page allocation. DiME maintains a list of pages of a pro-
cess that are considered local and keeps track of the local
memory usage. When the application process requests a
page allocation, the kernel modules �rst checks whether the
request can be served from the emulated local memory. If
there is enough space le� in local memory then the operat-
ing system will allocate a page and return to the application.
If our module deems that there is no space le� in the emu-
lated local memory, then a page has to be replaced from the
emulated local memory to create an empty slot for the new
page allocation. We are currently using a �rst-in-�rst-out
(FIFO) replacement policy to evict a page from local memory
and tag it as a remote page using page protection bits for
future accesses. �e newly requested page is then allocated
as a local page. We are working on the implementation of
additional page replacement policies(e.g., LRU) which will
give the users the �exibility to choose among the di�erent
replacement policies.
Processing Read/Write requests. Whenever a process ac-
cesses a memory location that is protected and emulated as
remote memory, the MMU raises a page fault and traps to the
OS. We treat all page faults as an access to remote memory.
�e page fault handler then unprotects the page, evicts a page
from the local page list based on the FIFO eviction policy (if
the local memory is full), and adds the faulted page to the
local page list. �e page fault handler then injects additional
so�ware delay to emulate the remote memory access latency
(propagation and transmission delay). To maintain the size

of the local memory constant, we protect the evicted page by
se�ing the PTE �ags. �is operation mimics the swapping
of pages between local and remote memory. Note that the
MMU will not raise a page fault for local memory access
since all local memory pages are unprotected. �erefore, the
performance of local memory access will not be a�ected by
our kernel module in any way.
Delay model. DiME takes as inputs the one-way remote
memory access latency δ , the network bandwidth B of the
interconnect between the compute nodes and remote mem-
ory, and page size P used in the system. Since we assume
a page-level remote memory access and no queuing delays,
the delay injected on every remote page access is computed
as

delay “ 2 ˆ δ `
P

B
(1)

We assume that the eviction of the local page and the
fetching of the remote page happen in parallel. Due to the
previously mentioned constraints, we are unable to model
the queuing delay on the network. Once a queuing delay
model is formulated for such architectures, it can be very
easily integrated with our emulator.

2.3 User Interface of DiME
We have released our source code of DiME in order to enable
other researchers to use and extend our work [3]. Our tool
currently takes a con�guration �le as input, which contains
the following parameters that the user can modify: remote
memory access latency, interconnect bandwidth, and local
memory size. DiME internally calculates the emulated delay
using these parameters. We are in the process of modifying
DiME to provide a be�er interface for the users. We are
designing an abstract interface layer for DiME similar to
some of the Linux kernel interface (e.g., VFS layer), where
a few function pointers will be exposed to the users. �e
abstract interface will provide the �exibility to the users to
implement their own replacement policy and delay functions
using the function pointers to test their workloads.

3 EVALUATION
In this section, we evaluate our emulator to answer the fol-
lowing questions:

‚ How accurately can DiME emulate remote memory
access latency, and what is the overhead of this em-
ulation?

‚ Can DiME be used to emulate real applications in
realistic scenarios?

‚ How does DiME compare with other emulators in
terms of accuracy and feature set?

We designed custom microbenchmarks to evaluate the accu-
racy and overhead of our emulator and used a set of popular
real world applications (Memcached [7] and Redis [8]) for

DiME: A Performance Emulator for Disaggregated Memory Architectures APSys ’17, September 2, 2017, Mumbai, India

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

M
e

a
s
u

re
d

 L
a

te
n

c
y
 (

n
a

n
o

s
e

c
o

n
d

s
)

Emulated Latency (nanoseconds)

Ideal Delay
Custom busy loop

usleep_range
ndelay

Figure 3: Accuracy of delay injection methods.

Without DiME With DiME
Protected page 160 ns 241 ns
Demand paging 704 ns 780 ns
Table 1: Time required to handle page faults.

performance characterization and comparisons. All experi-
ments were performed on an Intel Xeon CPU E5-2650 server
with 16 hyper-threaded and CPUs operating at 2.60 GHz.
Each application was executed from within a Linux/KVM
virtual machine with 6 vCPUs and 6 GB RAM running Linux
kernel 4.4.70.

3.1 Accuracy and Overhead of DiME
Accuracy. We now compare the various delay injection
methods we considered in the design of DiME: the ndelay
and usleep_range methods in the Linux kernel, and our
custom busy-wait function, as described in Section 2.

We used linux Read Time-Stamp Counter(rdtsc) func-
tion to measure the actual delay that DiME has emulated.
Figure 3 shows the various methods of delay emulation that
we considered. �e x-axis plots the delay to be emulated
and the y-axis shows the actual delay measured in the page
fault handler. From the graph, it can be seen that custom
busy-wait loop provides the highest accuracy and the mean
error is 68 nanoseconds. �erefore, we use our custom busy-
wait loop for injecting delays for remote memory access
emulation in DiME.
Overhead. To measure the page fault handling overhead
of DiME , we ran a program to allocate and access pages
with and without DiME and measured the time required
to handle page faults. To measure the execution time of
a single page fault on the x86 architecture, we used the
Time Stamp Counter(TSC) [10]. Page faults can occur either
due to demand paging or our page protection mechanism
required for emulation. Table 1 shows the measured page

fault handling durations for both these cases. We see from
the table that DiME has a mean overhead of 78 nanoseconds
per page fault, which is quite small compared to remote
memory access latencies.

3.2 Performance of real applications
We executed two popular key-value stores, Memcached [7]
and Redis [8] with DiME to study their performances in
various latency, bandwidth, and local memory size con�gu-
rations. We used the YCSB [12] benchmark for measuring
the performance of these key-value stores. In all experiments,
we use a key-value dataset of size 2 GB at the server, and
performed a series of read and write operations on this data.
Figure 4 shows how the throughput of an application

changes with emulated memory parameters like access la-
tency and interconnect bandwidth. We can see from the �g-
ure that the throughput of both applications (Redis and Mem-
cached) degrades monotonically as we increase the remote
memory access latency and decrease in network bandwidth.
We also see from the �gure that, for a �xed network band-
width, the increase in local memory has a greater positive
impact on performance in setups with lower interconnect
bandwidths. For example, for a 1µs remote access delay, the
Redis throughput changed from 20000 ops/sec (for 20% local
memory) to 25000 ops/sec (for 40% local memory) on a 10
Gbps interconnect. �e corresponding numbers for 100 Gbps
did not change by the same factor. �ese evaluations prove
that our emulator is capable of executing large applications
in realistic scenarios and that the performance of emulated
applications changes as expected with changes in emulated
parameters.

3.3 Comparison with other emulators
Existing emulators for disaggregated memory (e.g., the one
developed in [16]) emulate memory disaggregation at the sys-
tem granularity. In other words, the entire systemmemory is
partitioned into local and emulated remote memory, and an
application has no control over which portions of its address
space are emulated as remote. In contrast, DiME emulates
remote memory at the granularity of individual applications.
We now compare DiME with a system-wide emulator used
in [16] to contrast the di�erences in the two types of emula-
tion.
Our experimental setup consists of two applications, Re-

dis and Memcached, running together on the same machine.
When running with DiME, we emulated remote memory in
Redis by varying the local memory size, and Memcached
ran as a separate application outside our emulator. �ere
was enough RAM to satisfy the local memory requirements
of both applications. When using the system-wide emula-
tor, both the Redis and Memcached applications shared the
emulated local memory. To make the comparison fair, the

APSys ’17, September 2, 2017, Mumbai, India Dhantu Buragohain et al.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1us 5us 10us

T
h

ro
u

g
h

p
u

t
(o

p
e

ra
ti
o

n
s
/s

e
c
)

Latency (microseconds)

10Gbps
40Gbps

100Gbps

(a) Redis with 20% Local Memory .

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1us 5us 10us

T
h

ro
u

g
h

p
u

t
(o

p
e

ra
ti
o

n
s
/s

e
c
)

Latency (microseconds)

10Gbps
40Gbps

100Gbps

(b) Redis with 40% Local Memory.

 0

 2000

 4000

 6000

 8000

 10000

1us 5us 10us

T
h

ro
u

g
h

p
u

t
(o

p
e

ra
ti
o

n
s
/s

e
c
)

Latency (microseconds)

1Gbps
5Gbps

10Gbps

(c) Memcached with 30% Local
Memory.

Figure 4: Evaluation of Redis and Memcached with varying latency and bandwidth.

local memory allocated in the system-wide emulator test was
twice of that used in the experiment with DiME, to account
for the fact that two applications were now using the local
memory. With the system-wide emulator, both the applica-
tions �rst used the common local memory and the memory
pressure resulted in using the emulated remote memory. �e
total memory available in the system was 8 GB, the remote
access latency was set to 5µs and the network bandwidth
was emulated to be 100 Gbps. We vary the fraction of local
memory available in the emulator from 10% to 60% of the
workload size and measure the performance of the Redis
application, both when Redis was running in isolation and
when it was run together with Memcached. �e results of
the comparison are shown in Figure 5.
We see from Figure 5a that the Redis application has a

higher absolute throughput when emulated with DiME as
compared to when using the system-wide emulator, both
when running in isolation and when running with Mem-
cached. We a�ribute the primary reason for this to be the
overhead of using the swapping mechanism to emulate re-
mote memory accesses in the system-wide emulator. On
the other hand, DiME only needs to toggle bits in the page
table entries to move a page from emulated remote memory
to local memory, which is much faster than executing the
swap related operations, even if the swap device itself is
emulated in memory. We measured the average overhead of
tagging local and remote memory pages to be around 240 ns,
while the reported overhead of swapping-related operations
is 2.46µs [16]. It is worth mentioning that it is important to
emulate the swapping overhead only if we are interested in
the absolute value of the application performance. But since
we are more interested in the relative performance of the
applications under di�erent con�gurations, we can achieve
a lower overhead of emulation in DiME.

We now study the impact of running multiple applications
together in DiME and the system-wide emulator. Figure 5b
shows the relative performance degradation of Redis when

another application, Memcached, was running simultane-
ously on the same machine, as compared to when it was run-
ning in isolation. Ideally, we expect the performance of an ap-
plication to only depend on the fraction of its local memory,
and not on whether another application is running on the
same machine. �at is, we expect the relative performance
degradation to be always zero. Redis su�ers an approxi-
mately 10% degradation in performance with DiME when
the Memcached application was collocated, possible due to
some interference when sharing CPU resources. On the
other hand, the impact of a collocated application is much
more in the case of the system-wide emulator, and the per-
formance of Redis degrades by as much as 50% when another
application starts to share the emulated memory. �is can be
explained by the fact that with the system-wide emulator, all
applications contend for the local memory and deterministic
provisioning of local memory is not possible. On the other
hand, DiME allows per-application con�guration of local
memory and provides a much be�er isolation of the same
across applications. �is experiment highlights the fact that
DiME can be used to model application behavior more accu-
rately with memory disaggregation, due to its �ne-grained,
per-process, and low overhead emulation of remote memory.

4 RELATEDWORK
Memory Disaggregation. Among the recent research in
the area of memory disaggregation [11, 16–18, 23], Gao et
al. [16] and Han et al. [18] developed performance emulators
to study application performance on memory disaggregated
architectures. To emulate the remote memory, they divide
the physical memory into two parts using an in memory
swap partition. A special swap device driver intercepts ev-
ery swap request and adds arti�cial delay to emulate remote
memory latency. While the basic concept of DiME is similar,
we dividememory into local and remote at the level of the vir-
tual address space of individual processes. �is allows us to
control the page replacement policy at the application level,

DiME: A Performance Emulator for Disaggregated Memory Architectures APSys ’17, September 2, 2017, Mumbai, India

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t(

o
p
e
ra

ti
o
n
s
/s

e
c
)

Local Memory(%)

system-wide emulator: single app
system-wide emulator: multiple app

DiME: single app
DiME: multiple app

(a) �roughput of Redis.

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n
(%

)

Local Memory(%)

system-wide emulator
DiME

(b) Performance degradation of Redis when
collocated with Memcached.

Figure 5: Comparison of application throughput of Redis with DiME and a system-wide emulator.

rather than leaving it to the operating system to identify
and handle remote memory delay emulation. Also, unlike
previous memory disaggregated emulators, our emulator
provides be�er programmability and can be easily extended
to provide di�erent APIs to the user for data placement.
Persistent Memory Emulation. Some recent work on
NVM emulation is also similar in functionality to our emula-
tor, and NVM is emulated over DRAM by injecting additional
so�ware delays. Dulloor et al. [13] developed an NVM em-
ulator by injecting delays on memory access using special
hardware support. Similarly, Volos et al. [24, 25] also devel-
oped a persistent memory emulator which uses hardware
performance counters to accurately inject delays on every
memory access. However, both these emulators require spe-
cial hardware (multi-socket processors) for emulating hybrid
memory (DRAM and NVM) on the same system. In contrast,
our emulator does not need hardware support for emulation
and hence can be used on any machine.

5 CONCLUSION
In this paper, we presented DiME , a performance emulator
for disaggregated memory architectures. We showed that
DiME provides good accuracy and low overhead in remote
memory emulation and that it is capable of emulating a range
of remote memory access latencies. We also show that it
is capable of emulating large real applications in the disag-
gregated memory architectures, and can be used to draw
accurate conclusions on how these applications would be
e�ected by memory disaggregation. DiME allows for �ne-
grained partitioning and provisioning of emulated memory
at a process granularity, and provides memory isolation be-
tween emulated applications.
DiME is a work in progress and our present implementa-

tion has a few limitations that we are addressing as part of
ongoing work. �e current version of DiME is capable of sup-
porting emulation for only one application at a time. We are
updating DiME to enable supporting multiple applications

that share the emulated and local memories. We are also
updating our code to support other replacement algorithms
like LRU, in addition to the existing FIFO algorithm swap out
local memory. Because the disaggregated memory architec-
ture is still in its infancy, we have made several assumptions
in the design and implementation of our system, and we will
continue to add more features as the architecture evolves.

REFERENCES
[1] An introduction to KProbes. h�ps://lwn.net/Articles/132196/.
[2] delays - information on the various kernel delay / sleep mecha-

nism. h�ps://www.kernel.org/doc/documentation/timers/timers-
howto.txt.

[3] DiME source code repository: h�ps://github.com/networkedsystemsIITB/DiME.
[4] Facebook Disaggregated Rack. h�ps://goo.gl/WQcg15.
[5] HP �e Machine. h�ps://goo.gl/ugImWf.
[6] Intel Rack Scale Architecture: Faster Service Delivery and Lower TCO.

h�p://intel.ly/1SUMgP1.
[7] memcached - a distributed memory object caching system.

h�ps://memcached.org/.
[8] Redis - an in-memory data structure store. h�ps://redis.io/.
[9] seamicro technology overview. h�ps://goo.gl/bePyYT.
[10] Time stamp counter. h�ps://goo.gl/v5gprq.
[11] K. Asanovic and D. Pa�erson. FireBox: A Hardware Building Block

for 2020 Warehouse-Scale Computers. In USENIX FAST(2014).
[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with ycsb. In Proc. of the SoCC
’10.

[13] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson. System so�ware for persistent mem-
ory. In Proc. of the EuroSys ’14.

[14] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan. Data tiering in heterogeneous memory
systems. In Proc. of the EuroSys ’16.

[15] K. K. et al. Rack-scale Disaggregated cloud data centers: �e dReDBox
project vision. In DATE(2016).

[16] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker. Network requirements for resource
disaggregation. In Proc. of the OSDI’16.

[17] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. E�cient
memory disaggregation with in�niswap. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).

APSys ’17, September 2, 2017, Mumbai, India Dhantu Buragohain et al.

[18] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker. Network
support for resource disaggregation in next-generation datacenters.
In Proc. of the HotNets-XII.

[19] A. Klimovic, C. Kozyrakis, E. �ereska, B. John, and S. Kumar. Flash
storage disaggregation. In Proc. of the EuroSys ’16.

[20] A. Klimovic, H. Litz, and C. Kozyrakis. Re�ex: Remote �ash « Local
Flash. In Proc. of the ASPLOS ’17.

[21] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch. Disaggregated memory for expansion and sharing in blade
servers. In Proc. of the ISCA ’09.

[22] S. Novakovic, A. Daglis, E. Bugnion, B. Falsa�, and B. Grot. �e case
for rackout: Scalable data serving using rack-scale systems. In Proc.
of the SoCC ’16.

[23] P. S. Rao and G. Porter. Is memory disaggregation feasible?: A case
study with spark sql. In Proc. of the ANCS ’16.

[24] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li. �artz: A lightweight
performance emulator for persistent memory so�ware. In Proc. of the
Middleware ’15.

[25] H. Volos, A. J. Tack, and M. M. Swi�. Mnemosyne: Lightweight
persistent memory. In Proc. of the ASPLOS XVI.

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 Assumptions
	2.2 Emulating Remote Memory
	2.3 User Interface of DiME

	3 Evaluation
	3.1 Accuracy and Overhead of DiME
	3.2 Performance of real applications
	3.3 Comparison with other emulators

	4 Related Work
	5 Conclusion
	References

