libVNF: A Framework for Building Scalable High
Performance Virtual Network Functions

Priyanka Naik, Mythili Vutukuru
Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, India
ppnaik,mythili@cse.iitb.ac.in

ABSTRACT

One of the benefits of Network Function Virtualization (NFV)
is the lower cost of building software appliances as compared
to custom hardware. The development of software Virtual
Network Functions (VNFs) can greatly benefit from a frame-
work to enable code reuse, but such a framework does not
exist today. This paper describes libVNF, an open-source
library to develop scalable and high performance VNFs. The
libVNF API provides high-level abstractions that lets a VNF
developer leverage high performance packet I/O mechanisms
without knowing the low level details of these optimizations.
Our API also provides functions to manage shared state and
frees the developer from the task of distributed state manage-
ment in a clustered implementation. We rewrite two existing
VNFs using our API and demonstrate its expressiveness and
utility. We believe that the widespread use of a library like
ours to build VNFs would significantly ease the burden of
VNF development and reduce the cost to NFV adoption.
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1 INTRODUCTION

Network Function Virtualization (NFV) [9] is a recent trend
in the networking and communications industry. NFV ad-
vocates moving network functions that were traditionally
implemented as custom hardware appliances to software
appliances running on commodity hardware, possibly on
virtual machines (VMs) or containers in a cloud. The net-
work functions being considered for virtualization include
middleboxes in enterprise networks, e.g., firewalls and load
balancers, and several appliances within telecommunication
operator networks, e.g., the LTE EPC (Long Term Evolution
Evolved Packet Core) [5]. There are several purported bene-
fits to virtualizing network functions. Software appliances
can be scaled horizontally by adding more replicas, making
it easy to expand networks for future demands. Building
software appliances is also expected to cost lesser time and
effort than developing custom hardware. While there have
been concerns about whether a software appliance can meet
the performance of hardware, rapid advances in commodity
hardware, coupled with frameworks like Data Plane Devel-
opment Kit (DPDK) [3] that promise good packet processing
performance in software, seem to alleviate these concerns.

For NFV to really take off, one needs an ample supply of
low cost and high performance virtual network functions
(VNFs). We note that several parts of the code of a VNF,
like the logic of scaling a network function horizontally
or the logic of communicating data via high performance
software stacks, are common to every network function.
Therefore, VNF development could consume lesser time and
cost if a library were to be available to provide this common
code. While some frameworks to build VNFs do exist in
the research literature [8, 10, 14, 19, 21, 24], we argue in §2
that no one framework is generic enough to enable easy
development of the many different kinds of VNFs in use
today. Without a mechanism for code reuse, and it is not clear
that building VNFs is going to be cost-effective as compared
to building hardware appliances, bringing into question one
of the main benefits of adopting NFV itself.

This paper introduces libVNF (§3), a reusable library for
building high performance and scalable network functions.
The most important contribution of our work is our libVNF
API, that cleanly separates the application-specific process-
ing of VNFs from the software stack that is reusable across
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VNFs, and is generic and expressive enough to build a wide
variety of VNFs across domains as varied as enterprise net-
works and telecommunication networks. We implement this
API in an open-source library that is under active devel-
opment. Our library is implemented atop the mTCP [13]
multi-core scalable network stack, which in turn uses high
performance packet I/O mechanisms like netmap [23] or the
DPDK [3] kernel bypass mechanism to efficiently send and
receive packets. Our API exposes a high level abstraction
over these lower layer optimizations to simplify VNF devel-
opment. Our API also provides a way for applications to
identify shared state, and the library takes care of synchro-
nizing this shared state across the distributed system using
a shared data store.

The library and API provide a wide variety of design
choices (e.g., with respect to shared state management in
the distributed implementation, or the depth of the network
stack processing in the VNF), giving developers the flexibility
to customize the VNF design to suit their needs. The VNF
application code written using libVNF will only contain the
application-specific processing logic, and calls to the libVNF
API function with suitable arguments for customization, sav-
ing developer effort. We attempt to build two VNFs from
very different domains using our API (§4): the VNFs that
make up the LTE packet core in telecom networks, and a
high-performance load balancer used in enterprise networks.
We show that refactoring existing code using our API can
result in around 50% reduction in the lines of code of the
VNFs, indicating significantly reduced development cost and
effort.

An open-source library such as ours serves to establish
a clear separation between the roles of a VNF domain ex-
pert and the systems expert. While the former would only
focus on the application-specific packet processing logic of
the VNF and easily build standards-compliant network func-
tions, the latter would only focus on building horizontally
scalable high-performance packet processing stacks without
worrying about the network functions they would be used
for. We hope that efforts such as ours will enable the VNF
development community to come together and build a high
performance software stack that is reusable across VNFs,
reducing the time and cost of VNF development.

2 BACKGROUND AND GOALS

We begin by describing the assumptions and goals of our
work (§2.1), and show how none of the existing frameworks
for VNF development satisfy all our goals (§2.2).

2.1 Assumptions and Goals

A typical NFV deployment consists of a chain of VNFs con-
nected in a service chain. At this point, our library does
not address optimizations that are possible by considering

Priyanka Naik, Mythili Vutukuru

all the VNFs in a chain holistically, e.g., optimizing packet
transfers between VNFs in a chain. The goal of our work is
to ease the development of a single VNF component, using
high performance packet I/O mechanisms and a clustered ar-
chitecture of multiple replicas for horizontal scalability. Our
library manages distributed shared state across the multiple
replicas of a VNF, but does not concern itself with questions
like the number of replicas to spawn, when to scale-up or
scale-down, or where to place the replicas in the underlying
physical infrastructure. Such questions have already been
investigated as part of management and orchestration frame-
works for NFV like E2 [18]. While the scope of our library
can expand to include such optimizations in the future, we
do not attempt to address them in our current work.

To enable a horizontally scalable implementation of a VNF
component, we assume that the processing and state of the
application are separable. Further, we assume that all ap-
plication state can be stored as key-value pairs, so that an
in-memory key-value store (e.g., [16, 17, 22]) can serve as the
shared data store. Our API provides mechanisms to get/put
state in the shared data store, at the frequency desired by
the VNF developer (e.g., once every packet, or once per “ses-
sion”). Upon a failure, our library does not attempt to recover
any local state beyond what is stored in the data store. We as-
sume that, upon a failure, the application handles any errors
resulting from local state that has not been synchronized
with the data store, e.g., by retrying the request. Finally, our
library runs over the mTCP [13] multicore scalable network
stack, which scales packet processing across multiple cores
by partitioning incoming traffic to cores. Therefore, we as-
sume that the processing of the VNF is parallelizable (and
not pipelined) across multiple cores.

The requirements below are desirable in any VNF devel-
opment framework, and serve as our design goals.

R1: High performance packet I/O. A VNF framework
must leverage recent high performance I/O mechanisms like
DPDK [3] and netmap [23] that significantly improve packet
I/O performance over the kernel stack. However, the frame-
work must abstract out the low-level details of using these
mechanisms via a high-level API that is stable across future
developments in high-performance packet I/O.

R2: High level abstractions for application develop-
ment. While some VNFs operate at the network layer, and
only modify headers of packets in transit (e.g., a Layer 3 load
balancer), some VNFs terminate transport layer connections
and operate at the application layer. For example, the Mobil-
ity and Management Entity (MME) VNF in the LTE packet
core receives requests from subscribers (e.g., to attach to the
network, to handover from one region to another) over a
transport layer SCTP connection, and communicates with
other VNFs in the packet core also at the application layer.
Similarly, a HTTP L7 load balancer acts as a TCP endpoint
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in order to parse the HTTP request before load balancing. A
general VNF development framework must enable the devel-
opment of such a variety of VNFs that operate at different
depths of the network stack. The API must support high-
level transport layer abstractions like sockets, connections,
or application-layer requests, and must leverage recent work
on multicore scalable transport layers like mTCP [13] to
provide a high performance network stack.

R3: Horizontal scalability. A VNF development frame-
work must easily enable a clustered implementation of a
component, with minimal effort from the VNF developer. It
must provide implementations of standard techniques for
horizontal scalability, like load balancing incoming traffic
across multiple replicas for scalability and the synchroniza-
tion of shared state across the replicas for consistency and
fault tolerance. Further, the API must be expressive enough
to let the developer trade-off performance for higher consis-
tency and fault tolerance or vice versa, without having to
implement the low level mechanisms of state management.

2.2 Related Work

There has been prior research on frameworks for building
middleboxes and VNFs. Split/Merge [21] and OpenNF [10]
enable development of stateful middleboxes, and manage the
migration of per-flow TCP state and across replicas during
scale-in and scale-out. Pico Replication [20] and FTMB [24]
provide frameworks to build fault tolerant network-layer
middleboxes, by replicating state at the granularity of TCP
flows in the former and by logging and replaying input pack-
ets in the case of the latter. To avoid the overhead of state mi-
gration and recovery of these mechanisms, StatelessNF [14]
assumes that the replicas of a component are stateless, and
uses a remote data store to synchronize shared state during
fail-over and scaling, much like in our work. StatelessNF
also runs on top of DPDK for high performance. However, it
does not provide a transport-level API required to develop
application-layer VNFs.

Netbricks [19] provides a DPDK-based framework to build
network functions, using a high-level API inspired by the
Click [15] framework. Flick [8] is another DPDK-based
framework to build application-layer NFs, that provides a cus-
tom programming language atop the mTCP network stack.
Both Netbricks and Flick do not enable a clustered VNF im-
plementation, and horizontal scalability should be managed
by the application developer. Table 1 summarizes how prior
work compares with libVNF with respect to our require-
ments (§2.1).

We now describe work that is complementary to ours.
mOS [12] is an extension of the mTCP stack used in our
work, and modifies the scalable mTCP network stack to
enable reconstruction of transport layer state even in middle-
boxes that are not transport layer endpoints. Our framework
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can leverage such work to provide an even richer API to
the library users. E2 [18] is a framework to manage and
orchestrate network functions, and to decide when to scale-
in or scale-out a VNF based on load. Our library can work
along with such a framework in the future to orchestrate
the multiple VNF replicas. OPNFV [7] is an industry effort
to build an open-source NFV platform for deploying VNFs;
our work is orthogonal to this effort and concerns itself with
developing VNFs to run on such platforms.
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Figure 1: VNF architecture with libVNF.

3 DESIGN

We now describe the design of our framework, and the API
exposed to VNF developers.

3.1 Architecture

An NFV system has several VNFs connected in a service
chain or processing graph, and each VNF can be indepen-
dently built using libVNF. Figure 1 shows the architecture of
a libVNF-based VNF. The VNF code written by a developer
using our API consists primarily of the VNF packet process-
ing logic, and is compiled and linked against our library
and run at one or more replicas in a clustered implementa-
tion. A load balancer takes care of splitting incoming traffic
to the replicas, and a data store is used to manage shared
state. The load balancer operates at the network layer, and
transparently rewrites packet headers without exposing the
internal clustered architecture of the VNF to upstream and
downstream components in the service chain.

Within each replica, the VNF application code runs over
the multicore scalable mTCP [13] network stack, which can
communicate with the NIC using either the DPDK [3] or the
netmap [23] I/O frameworks. The user code runs an initial-
ization function of the library, which spawns one application
thread per computing core, as is the norm with mTCP. The
libVNF API provides functions for the application to open
sockets (both as server and client) and communicate with the
upstream and downstream VNFs in the VNF graph. The API
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Framework Opt. packet I/O (R1) Transport stack (R2) Horizontal scaling (R3)
Split/Merge, OpenNF | no no yes

StatelessNF yes no yes

Netbricks yes no no

Flick yes yes no

libVNF yes yes yes

Table 1: Comparison of VNF development frameworks against the requirements of §2.1.

also has an option to directly receive packets coming over
an interface without going through the mTCP stack, in case
the VNF wants to operate at the network layer alone. The
application registers callback functions via our API, for the
events corresponding to packet reception, new connection
arrival (via accept), and successful packet transmission on
sockets (or interfaces, when bypassing the TCP stack). These
callback functions implement most of the processing logic
of the VNF, and would constitute the bulk of the code writ-
ten by the VNF developer. Upon occurrence of said events,
the library invokes the callback functions registered on that
connection, along with a pointer to the received packet. Our
library sends and receive packets using epoll style system
calls that are part of the mTCP event-driven I/O framework.
The VNF application thread on every core calls a library
function to enter the epoll wait loop after initializations.

The callback functions would also need to access application-
specific state, and the API provides functions to manage this
state. State is stored as key-value pairs in an in-memory data
store; we use the popular Redis cluster as our data store. The
API exports functions to create tables, and get/put key-value
pairs in specific tables. A VNF must use these functions to
access all state that it wishes to recover at any other replica,
say, after a failure, scale-out, or scale-in. The library main-
tains a connection to the Redis server from every core on
every replica, which is used to convey these get/put requests
and receive replies. The VNF developer provides a callback
function as part of the get/put API, and the library invokes
this callback upon completion of the request, passing the
result of the operation back to the VNF code.

Storing state in a key-value store can be an expensive
operation, and libVNF provides an option to VNF designers
to trade-off performance for fault tolerance by choosing the
frequency of state synchronization on a per-packet basis. The
library maintains a local cache of key-value pairs recently
fetched from the data store in local memory, and the get/put
API functions can choose to read from or write to this cache
instead of the remote data store. The library takes care to
ensure that key-value pairs modified locally are not evicted
from the local cache until the dirty entries have been stored
in the remote data store. This option of a variable granularity
of state synchronization gives the VNF developer flexibility

in tailoring the distributed VNF design to application needs.
For example, for state that is critical, the VNF can store state
in the remote data store always, incurring a performance
penalty. Application state that is not critical can be modified
locally in the cache, and check-pointed only periodically, say
once per application session. Failures resulting from the loss
of local state that has not yet been stored in the data store
must be recovered by the VNF application, say, by making
the downstream VNF retry requests.

The load balancer is implemented as a kernel module based
on Netfilter hooks, and transparently rewrites packet head-
ers to steer traffic to replicas using a provided list of VNF
replicas. In the future, this list of replicas can come from
the orchestration framework, based on the dynamic scaling
decisions made by the orchestrator. The current design of
our load balancer steers traffic based on the hash of the TCP
5-tuple. Now, if the application stores state at a granularity
other than a TCP flow, then a given application state can
be accessed concurrently from different cores or different
replicas. For example, in a telecom network function that
maintains per-subscriber state, the multiple flows of a sub-
scriber could end up at different replicas, forcing the replicas
to perform concurrent get/put operations on the same sub-
scriber’s state from different application layer threads on
different replicas. Our library handles these concurrent op-
erations, and serializes them for correct performance using
the distributed locking and transaction features provided by
key-value stores. As an alternative, our library can avoid this
concurrent state access by steering traffic at the granularity
at which application state is maintained, e.g., by ensuring
that traffic of one subscriber is always routed to the same
replica/core. We plan to enhance the traffic steering logic
in our load balancer and the network stack in the future, to
steer traffic based on any application-specific predicate by
taking suitable inputs from the VNF developer.

3.2 High-level Abstractions

The event-based architecture of mTCP, with a separate TCP
thread per core, is key to ensuring a scalable network stack.
However, the multiple callbacks required to finish processing
a given request at a VNF, and the need to maintain state
across these callbacks, can make VNF development tricky in
event-driven architectures. For example, consider a simple
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S. No. | Function Explanation
1 connlID = createServer(interface, localServerIP, | Create listening socket
localServerPort, protocol)
2 connID = createClient(interface, remoteServerIP, | Connect as client
remoteServerPort, protocol)
3 registerCallback(connID, event, callbackFnPtr) Register callbacks for packet events on a
connection
4 sendData(connID, packetToSend, size) Send data on a connection
5 getState(table, key, localOrRemote, callbackFnPtr,connID) | Get data from the data store
6 addReqCtxt(connID, requestObj) Associate a request context with a connec-
tion
7 ptr = getRefPtr(packet) Get a reference-counted pointer to a packet
to add to request context
8 startEventLoop() Start the main event loop

Table 2: The main libVNF API functions.

VNF chain of three VNFs A-B-C. VNF B receives a request
from VNF A (say, over TCP). In order to process this request,
B must open a connection to C, send data to C and obtain a
reply, and possibly get some shared application state (stored
by another replica of B) from the data store, before it can
generate a reply to write back on the connection to A. Thus
the state required to process A’s request to B is spread over
the data returned in callback functions invoked when data
is received from C and from the data store.

In order to ease the job of the VNF developer, the libVNF
framework provides an abstraction of a request context as
part of its APL The definition of what constitutes a request
is left to the VNF developer, and the developer can create
request objects using the API based on application semantics.
For example, a HTTP L7 load balancer can allocate a request
object for the duration of a HTTP request on a TCP connec-
tion. The API lets the VNF developer define the structure of
the request object, based on the state that the application
must store as part of the request. The API provides functions
to associate a request object with a socket or an interface,
and this request object is passed to callback functions in-
voked after events on that socket. For VNFs that do not
need to store state across callbacks (e.g., a Layer 3 NAT that
simply rewrites packet headers using simple rules), the VNF
developer can completely forgo using request objects.

To avoid the overhead of dynamic memory allocation, the
library preallocates memory for caches of recent packets
sent/received from mTCP, key-value pairs fetched from the
data store, and request objects associated with connections.
The packets are only copied once from mTCP, and a pointer
to the packet is passed to the callback function to avoid
further packet copies. Normally, the packet buffer would
be reused at the end of the callback to store other packets.
However, if a request requires access to the packet beyond

1 2
(2 == =] <]
4 3

request object

connlD A-B
packet from A
connlD B-C
packet from C
state of B

Figure 2: An illustration of request context.

the callback (say, until some state arrives from the data store),
the API provides a function to obtain a reference-counted
pointer to the packet to store in the request object. Packets
with a non-zero reference count are not recycled in the packet
cache, and the reference is decremented when a request
object is freed by the VNF. Similarly, request objects can also
store reference counted pointers to key-value pairs in the
cache. Finally, request objects can also store other state like
connection/socket identifiers (to reply to a request at a later
point). Figure 2 shows an example request object created at
VNF B to handle the request from VNF A, in the example
VNF service chain A-B-C discussed earlier.

3.3 The libVNF API

Table 2 summarizes the main API functions exposed by our
framework to VNF developers. API functions 1-2 setup
server or client sockets for application-layer VNFs. If null
IP address/port values are provided, the transport layer pro-
cessing is bypassed and all packets arriving on an interface
are considered part of the same “connection”. API function
3 is used to register a callback function on the occurrence of
a events defined by libVNF (e.g., a new connection accepted,
or data received) on a connection, and the callback function
is subsequently invoked with the connection identifier, the
request object, and the received packet as arguments by the
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library. API function 4 is used to send data on a connection.
API function 5 is used to fetch a key from a specified table,
either from the local cache of key-value pairs or from the
remote data store. Functions also exist to put/delete keys,
and create/delete tables. Function 6 shows how a request
object can be associated with a connection; functions also
exist to allocate/free request objects. Function 7 shows how
a request object can store a reference-counted pointer to a
packet. Function 8 is used to start the main event loop on
each application core, after all initializations. In the interest
of space, we omit listing other straightforward functions.

We illustrate the benefits of using our API by providing a
snippet of code from VNF B of the simple VNF chain shown
in Figure 2. Code snippets 1 and 2 show a part of the code of
VNF B written without using libVNF and with using libVNF
respectively. When not using the library, the user has to
explicitly store the different pieces of information belonging
to a request (e.g., A’s socket, C’s socket, data received from
A, and so on) in maps. On the other hand, the request object
abstraction provided by our library (see Figure 2) simplifies
this task, leading to a simpler code. This example illustrates
the complexity of writing event-driven code in the mTCP
framework, and how our API hides most of this complexity
from the VNF developer.

//Request object passed as a parameter to handle state
//User does not have to maintain a map

//handle function for reply from C

void handle_c_reply(conn_id, request, packet){
//store data
request.data=getRefPtr(packet);
sendData(request.serverID, id, request.data, 5);

//handle function for request from A

void handle_a_request(conn_id, request, packet){
//connect to C
int c_id = createClient(id, C_IP_ADDR, C_PORT, TCP);
registerCallback(c_id, "read", handle_c_reply);
addReqCtxt(c_id, request);
//map C's socket to A's socket
request.serverID = conn_id;
//store data which would be pointed by both A and C's socket
request.data = getRefPtr(packet);
//send request to C
sendData(c_id, id, data, len);

}

int main(int argc, char *argv[1){
int serverID = createServer(B_IP,B_PORT,TCP);
setRequest(serverID, sizeof(struct));
registerCallback(serverID, "read",handle_a_request);
startEventLoop();

Listing 2: VNF B written using libVNF

4 EXAMPLE VNFS

Our library development is a work in progress. We have
completed the definition of the API, and have implemented
the functionalities of the network stack, the load balancer,
and the data store interface. The optimizations correspond-
ing to maintaining request objects and packet caches are
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mctx_t mctx = mtcp_create_context();
int ep = mtcp_epoll_create(mctx, N);
mtcp_listen(mctx, listen_sockid, 4096);
while(1){
nev = mtcp_epoll_wait(mctx, ep, events, N, -1);
for(int i=0;i<nev;i++) {
if (events[i].data.sockid == listen_sockid){
//Accept connections from A
newsockfd = mtcp_accept(mctx, listen_sockid, NULL, NULL);
ev.events = MTCP_EPOLLIN;
ev.data.sockid = newsockfd;
mtcp_setsock_nonblock(mctx, newsockfd);
mtcp_epoll_ctl(mctx, ep, MTCP_EPOLL_CTL_ADD, newsockfd, &ev);
//store the socket of A in a map
a_conn_map. insert(newsockfd);
}
else if (events[i].events & MTCP_EPOLLIN) {
if(sockid in a_conn_map){
//read request from A
mtcp_read(mctx, sockid, data,LEN);
//connect to C
csockid = mtcp_socket(mctx);
c_conn_map.insert(csockid);
mtcp_connect(mctx, csockid, &daddr, size);

//associate C's socket to A's socket to send reply back to A later

conn_map[csockid] = sockid;
//associate data with A's socket
data_map[sockid]=data;
//associate data with C's socket
data_map[csockid]=data;
3
if(sockid in c_conn_map){
//read reply from C
mtcp_read(mctx, sockid, dataC,LEN);
//retrieve A's socket from the map
asocket = conn_map[sockid];
//update the data in map for socket of A and C
data_map[sockid]=dataC;
data_map[asocket]=dataC;
mtcp_write(mctx, asocket, dataC, len);
}

}
else if (events[i].events & MTCP_EPOLLOUT){

if(sockid in c_conn_map){
//connection to C done, send request to C
mtcp_write(mctx, sockid, data_map[sockid], len);
}
}
}

int main(){
run();

}

Listing 1: VNF B written without libVNF

part of ongoing work. We are unable to present a perfor-
mance evaluation of our library at this point. However, in
this section, we show how two very different VNFs—the LTE
packet core and the Galera load balancer [4] used in MySQL
clusters—can be implemented using our API, demonstrating
its expressiveness. We also show how using our library leads
to a significant reduction in the lines of code (LoC) of the
VNFs, indicating reduced effort for VNF development using
our framework. We hope to demonstrate end-to-end devel-
opment and execution of VNFs over our framework in the
near future.

4.1 The LTE packet core

The 4G LTE mobile data network consist of a radio access
network (comprising of mobile users and base stations) and
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a packet core called the Evolved Packet Core or LTE EPC.
Increase in mobile traffic, the pressure to lower costs, and
the desire to add new features easily are pushing telecom
operators to consider virtualizing the components of the LTE
EPC, and several industry players are actively developing
virtualized EPC network functions [1, 2, 6]. As shown in Fig-
ure 3, the LTE EPC consists of the Mobility and Management
Entity (MME) and the Home Subscriber Server (HSS) in the
control plane, and the Serving Gateway (SGW) and Packet
Data Network Gateway (PGW) in the data plane. The MME
processes control plane requests to connect a subscriber to
the network, release resources when the subscriber is idle,
handover the subscriber during mobility, and so on. The
MME consults with the HSS during such request processing,
and sets up or modifies forwarding state of the subscriber
in the dataplane SGW and PGW. Once forwarding state is
setup by the MME, subscriber traffic is forwarded via the
SGW and PGW to the external networks. The MME, SGW,
and PGW are all application-layer network functions that
communicate with each other, and with the upstream and
downstream components over transport layer connections.
We use an existing open-source EPC codebase [11] as an
example VNF. The implementation we started out consisted
of distributed implementations of the MME, SGW, and PGW,
built over the kernel stack (and not an optimized userspace
stack). We re-factored these VNFs to use our API, and added
support for high performance I/O in the process. In this ex-
ercise, we found that our API functions were sufficient to ab-
stract out all the VNF code that was not application-specific.
Table 3 shows the LoC in each of the EPC components in the
original implementation, and in the implementation using
our API. We can observe from the table that our API has re-
sulted in reduction of LoC in the range of 48% to 51%, which
amounts to a significant reduction in development effort.

Figure 3: A simplified LTE EPC Architecture.

MME 1 HSS

external
network

N SGW — PGW [

VNF | LoC w/o | LoC with | %reduction
library library in LoC
MME | 1956 1016 48.05%
SGW | 1600 775 51.56%
PGW | 1345 654 51.37%

Table 3: LoC reduction in LTE EPC using libVNF.
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4.2 The Galera load balancer

The next example VNF we consider is the Galera load bal-
ancer [4], which is used as a load balancer in MySQL cluster
deployments. The original code of the load balancer has a
polling based multi-threaded implementation over the kernel
stack written in C, but did not support a distributed imple-
mentation or a high-performance I/O stack. We started out
with this code and re-factored it to use our API, separating
out the application-specific logic (e.g., backend selection)
from the code dealing with packet I/O. Our refactoring led
to a 25% reduction in the LoC of the Galera implementation
(from 2279 to 1698). Further, this new code written using
our API can be run as a clustered implementation over a
high-performance I/O stack without requiring any further
developer effort.

5 CONCLUSION

This paper presented libVNF, a framework to develop scal-
able and high performance network functions. The main
contribution of our work is the identification of an API that
separates the application-specific logic of a VNF from the
application-agnostic software stack, and is versatile enough
to build a wide variety of VNFs. VNF developers using the
libVNF API only need to write VNF-specific packet process-
ing logic, and the library handles the tasks common to all
VNFs, like efficient communication via high-performance
network stacks and state management across distributed
horizontally scaled replicas. Our API provides high level ab-
stractions over lower-layer packet I/O optimizations, making
it easy for VNF developers to leverage such optimizations.
We have developed two very different VNFs using our API,
and have demonstrated a significant reduction in LoC if our
framework is used.

Our library is under active development, and we hope to
make an open-source implementation available soon. As part
of future work, we plan to build several different VNFs using
our library, and demonstrate their end-to-end execution over
our framework. We would like to evaluate the performance
impact of state synchronization using a shared data store,
for different granularities of synchronization. We would
also like to quantify the performance benefits of several
packet I/O optimizations and kernel bypass mechanisms, and
provide suitable guidelines to application developers about
the various design options available for VNF development.
We believe that the availability of a library such as ours
will greatly decrease the time, effort, and cost to building
network functions, and accelerate the adoption of NFV in
the networking community.
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