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Abstract—In recent years, WiFi has grown in capacity as well
as deployment demand. WiFi system administrators (sysads)
want a simple answer to the question “Is my WiFi network
healthy?”, and a possible follow-up “What is wrong with it?”, if
it is reported as “unhealthy”. But we are far from having such
an interface today. It is this gap that this work attempts to fill.
We present Witals, a system for WiFi performance diagnosis. We
first design a causal diagnosis graph, that extensively identifies
the underlying cause(s) of WiFi performance problems. Next, we
identify a set of metrics corresponding to nodes in this causal
graph. These metrics are measured in real-time by an operational
AP, and help in quantifying the effect of each cause. We design a
diagnosis algorithm based on the causal graph and the metrics,
which ultimately presents a sanitized view of WiFi network health
to the sysad. We have implemented a prototype of Witals on
an enterprise grade 802.11n AP platform. Using a variety of
controlled as well as real-life measurements, we show that our
diagnosis framework follows ground truth accurately. Witals has
also helped the sysads uncover some unexpected diagnoses.

Index Terms: Health of wireless networks, AP-centric,

Causal graph, Metrics

I. INTRODUCTION

In the last decade, the raw capacity of WiFi has increased,

from a meager 1-2Mbps with pre-802.11b, to several hundreds

of Mbps with MIMO-based 802.11n, and few Gbps with

802.11ac. The reach and demand of WiFi deployments have

grown too, and so has the variety of clients. However, the

system administration related pain-points of WiFi installations

have not decreased. Empirical evidence suggests that wireless

is considered problematic, even when the problem may lie

elsewhere.

As the size and geographic reach of cloud-managed WiFi

deployments increase, it is critical for system administrators

(sysads) to have a simple interface which tells the health status

of a WiFi network: Is the WiFi network healthy? If not, what

ails it? While this is an important question, such performance

diagnosis is technically challenging due to the multitude of

inter-dependent and temporally varying factors. We address

this challenge with the design, implementation, and evaluation

of Witals, a system for health diagnosis of WiFi installations.

Prior approaches toward such a WiFi performance diagnosis

system have been incomplete (details in Sec. II), given the

complexity of such diagnosis. Most prior research work either

use heavy weight sensor infrastructure ([11], [15]) or extra

radio at the AP ([19], [22]) or need client side modifications

([7], [9]). Most of them also use a central analysis engine.

First author was at IIT Bombay during this work

But it is hard to justify such additional trace-collection in-

frastructure for a large fraction of WiFi installations: small

and medium businesses, home-office, guest WiFi portals at

cafeterias, restaurants, shops, WiFi at point-of-sales and so

on. There are some AP-centric diagnosis frameworks ([19],

[20], [23]) as well, but these too stop short of diagnosing

the root cause(s) of WiFi performance problems. They do not

have a framework where multiple simultaneous causes can

be quantified or compared. On the other hand, the state-of-

the art commercial tools ([3], [5]) provide plots of various

metrics (e.g., error rate, bytes downloaded, number of radios

in the vicinity, throughput etc.) and use many thresholds. These

metrics are incomparable to one another, thus making it further

difficult to diagnose root cause(s) of performance problems.

The design of Witals explicitly avoids the requirement of

any distributed trace collection, or centralized merging and

analysis, instead uses an AP-centric architecture: a live AP is

constantly also diagnosing any performance problems present.

Witals focuses on WiFi performance problems. Further, we

are focused on diagnosis of WiFi performance in the downlink

direction, which is the common case.

For such performance diagnosis, we start with a causal

diagnosis graph which relates various causes to different kinds

of performance problems. The nodes in the graph are possible

WiFi performance problems. The edges in the graph are causal

relationships between the nodes. The causal diagnosis graph is

non-trivial, given the complex interplay of various phenomena

at different layers of the network stack, in a WiFi network.

Our causal diagnosis graph identifies an extensive set of

performance problems (Sec. III). This distilled yet extensive

picture of WiFi performance causes is our first contribution,

vis-à-vis prior work.

Corresponding to different nodes of the causal diagnosis

graph, we identify metrics (witals: WiFi vital statistics) which

can be measured real-time in an operational AP (Sec. IV).

The set of metrics considered in prior work is vast; e.g.,

MAC layer throughput, frame loss rate, bit-rate. Some of

these metrics affect many nodes in the causal graph, hence,

it is not possible to diagnose the root cause(s) from these

metrics. On the other hand, some metrics do not affect any

node. Further, some of the metrics are not in the same unit

as other metrics, for example, average bit-rate with airtime

utilization and so on. In contrast, our metrics (a) are directly

related to specific nodes of the diagnosis graph, thus helping

in diagnosis, (b) quantify the extent to which a cause is

affecting the overall performance, and importantly (c) they
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are comparable with one another. The metrics being compa-

rable allows the identification and quantification of multiple

simultaneous causes of WiFi performance problems, which

is a common occurrence. The careful identification of the

comparable metrics, each measuring the effect of a cause

on throughput loss, is another aspect separating Witals from

prior work and current commercial systems; this is our second

contribution.

Next, using the witals metrics and the causal diagnosis

graph, we present a diagnosis algorithm (Sec. V). The purpose

of this algorithm is to present a refined view to the sysad, by

representing the health of the WiFi networks over time. Fig.

Fig. 1(a) shows the values of the witals metrics for one of our

real-life measurements, where 80 clients were associated with

an AP. The network was being used in a classroom for an

online quiz activity, and the user experience was poor. Note

that, state-of-the-art in current commercial systems stops with

such a view of a multitude of graphs. Although the metrics are

comparable, Fig. 1(a) is not easy to interpret visually. Fig. 1(b)

shows output of our Witals algorithm. A bubble in a column

indicates that the corresponding column has been diagnosed

as a performance problem. Also, the width is proportional

to the throughput reduction it causes. As can be seen from

Fig. 1(b), Witals, capable of diagnosing multiple simultaneous

causes, diagnoses over-crowding, suboptimal rate adaptation

algorithm, data and control, management frames of other

neighboring BSS and interference from other neighboring BSS

as the major reasons for poor performance of this network.

The sysad can drill-down this final simplified view for further

details, such as to learn the throughput impact of each cause,

if and when necessary. The diagnosis algorithm’s ability to

present a simplified picture to the sysad, even in presence of

complex interactions between multiple simultaneous causes, is

also a novel aspect of Witals, and forms our third contribution.

We have implemented the Witals framework on an enter-

prise grade 802.11n AP platform, and used this prototype to

evaluate Witals extensively (Sec. VI). Using various controlled

experiments as well as measurements in different uncontrolled

real-life settings, we show that WiFi performance diagnosis

using Witals matches ground-truth effectively. Witals helped

the sysads unearth some unexpected root-causes behind perfor-

mance degradation in certain deployments. We also compare

Witals diagnosis with both research and commercial tools

quantitatively. The extensive implementation based evaluation

is the fourth and final contribution of this work. While Witals

performs root-cause diagnosis from a single-AP perspective,

most of our evaluation have been in campus/enterprise settings

with multiple surrounding APs. We show that this single-

AP perspective itself is of significant value, and presents a

substantial challenge. In Sec. VII, we discuss how we can

extend this framework from multiple AP perspective. In future,

we plan to extend Witals framework for such settings.

II. RELATED WORK

Diagnosing the health of wireless networks has been very

interesting to the research community and also to the commer-

cial AP vendors. Researchers have proposed different tools

to diagnose the potential problems in the wireless networks

using various architectures. We categorize them into three

main classes: (1) separate infrastructure of monitors/sniffers,

(2) client based, and (3) AP-centric architecture. Below we

discuss few examples in each category.

1) Separate infrastructure of monitors/sniffers: Jig-

saw [11] and Wit [15] deploy monitors (or WiFi sensors)

throughout the network, collect comprehensive link layer

traces at each sensor, transfer them centrally, and merge the

traces to provide a unified view of the network. The work

in [10] builds on Jigsaw and classifies TCP throughput issues,

assuming TCP header availability. PIE [22] builds on Jigsaw

and Wit, and uses traces from multiple APs and analyses at

a central controller. It detects which two specific nodes are

interfering in an enterprise network. The implementation uses

an additional radio per AP, which is akin to a distributed sensor

infrastructure. MOJO [21] also uses a separate infrastructure

of sniffers to collect data, and an inference engine to diagnose

the problems. This paper focuses on physical layer anomaly

detection, specifically the detection of hidden terminal vs cap-

ture effect and detection of noise vs signal strength variation.

Other performance problems are not considered here.

While these systems use separate infrastructure of moni-

tors/sniffers, it might be an overkill for a large fraction of

WiFi installations: small and medium businesses, home-office,

guest WiFi portals at cafeterias, restaurants, shops, WiFi at

point-of-sales and so on. The avoidance of heavy-weight link

layer trace collection and merging is of special significance in

today’s high data rate 802.11n and 802.11ac. Hence, we design

Witals to diagnose the health of wireless networks without

using any extra infrastructure.

2) Client based architecture: WiFi-Profiler [9] and Client-

Conduit [7] represent early work on helping WiFi clients

diagnose problems at the client side. These architectures use

help from other nearby clients. In WiMed [13], the diagnosis

is done at the client using a second sensing radio. It classifies

non-WiFi interference types to: bluetooth, microwave etc..

These architectures, unlike our work Witals, require client

side modifications. In a way, these are complementary to

Witals, which performs diagnosis at an AP.

3) AP-centric architecture: These research tools use inline

measurement architecture i.e., AP as the vantage point. They

collect measurements at the operating AP itself and avoid

use of any other infrastructure for trace collection. The work

in WTF [23] is interested in distinguishing between wireless

faults versus other ISP faults in home networks. But it stops

short of diagnosing the root cause of any wireless problem

present. Architecturally, it is similar to Witals in the use of

an AP-centric measurement framework, but unlike Witals, the

fault diagnosis algorithm runs at a central server. WTF also

requires TCP header inspection, unlike Witals.

Antler [20] is another system for AP-centric wireless perfor-

mance diagnosis. It uses a hierarchical approach for collecting

metrics. As a baseline operation, Antler collects a minimal

set of metrics to represent the health of a wireless network.

Once these metrics cross the threshold, the second tier of

metrics are collected to have a more detailed view of the

network. If second tier of metrics also cross the threshold,

then collection of third tier of metrics starts and so on. Like

WTF, Antler too requires data to be sent to a central server for
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Fig. 1: Witals metrics and Witals diagnosis for classroom-80, a real-life scenario

diagnosis. As we shall show in Sec. VI, the causal diagnosis in

Witals is extensive. On the other hand, Antler cannot diagnose

several wireless conditions such as slow talker, sub-optimal

rate-adaptation, 802.11n aggregation-related throughput loss

and so on. It also cannot distinguish between different causes

of interference, which Witals can. Further, it does not provide

a framework where the effect of multiple simultaneous causes

can be quantified and compared. We have implemented Antler

and compared it with Witals in Sec. VI.

WISE [19] is an AP-centric measurement framework for

observing home wireless experience. The framework uses

primary radio of the AP to collect information about its clients,

a second radio for collecting additional measurements and a

remote measurement controller for control and configuration

of the APs. WISE relates various causes of poor wireless

performance and comes up with a new metric Witt i.e., WiFi-

based TCP throughput. It predicts the TCP throughput of a

new flow in the current wireless condition. WISE computes

Witt metric using linkexp model, it is linkexp = (1−a)∗(1−
c) ∗ r, 0 < a < 1, o < c < 1. Where a is airtime utilization

from external sources, c is local contention and r is effective

rate. WISE uses Witt metric to classify WiFi performance into

5 categories, ranging from very poor to very good.

WISE mainly focuses on offline analysis. On the contrary,

Witals is made to run in real time. Like PIE, WISE too uses

an additional radio per AP. Further, WISE needs higher layer

packet header inspection, unlike Witals. Also, WISE can not

diagnose several wireless conditions for e.g., sub-optimal rate

adaptation algorithm, poor efficiency due to low level of frame

aggregation etc.. WISE computes local contention from the

relative amount of other clients’ traffic to the total traffic at

the AP. This provides a wrong diagnosis when this ratio is high

for other reasons (e.g., slow talker) apart from contention. We

have implemented WISE and compared it with Witals as part

of evaluation in Sec. VI.

Table I compares prior work with Witals. In summary,

none of the prior work addresses WiFi performance diagnosis

in an extensive yet simplified manner for a sysad. Nor can

they quantify the effect of a cause or diagnose multiple

simultaneous causes. In addition, much of the prior work has

used 802.11a/b/g for prototyping and evaluation. The Witals

prototype uses 802.11n, which is a significant test of its low

overhead in real-time data collection and diagnosis.

In terms of commercial systems (e.g., [1], [2], [3], [5]),

while AP vendors are very interested in WiFi performance

diagnosis, the state of the art is to present a variety of graphs

of different metrics (e.g., error rate, bytes downloaded, number

of radios in the vicinity, throughput etc.) incomparable to one

another. Also, any problem reporting is based on arbitrarily-

set thresholds for these different metrics. The incomparable

metrics make a sysad’s job difficult to diagnose the root cause

of WiFi performance problem. We quantitatively compare

Witals with popular commercial tools in Sec. VI.

III. CAUSAL DIAGNOSIS GRAPH

The performance of a WiFi network might be poor for a

variety of reasons. We design Witals to examine the health of

the wireless networks. Additionally, it can be integrated with

other network management solutions which diagnose problems

outside a WiFi network. Witals diagnoses the WiFi network’s

health from the perspective of the downlink performance

of clients of the AP on which Witals runs. While uplink

performance issues are important too, the focus of this work

is diagnosing downlink performance issues. In Sec. VII, we

discuss how we can extend this framework to diagnose the

uplink performance issues. Henceforth in the paper, we use the

term APW to refer to the access point on which an instance of

Witals is running, while talking about performance diagnosis

by that AP.

We first describe the causality between possible perfor-

mance problems and their effect on the WiFi network. Fig 2

shows the Witals causal graph. The nodes are possible WiFi

performance problems. The edges are causal relationships

between the nodes: a −→ b, means a causes b.

Note that none of the causal relationships are novel or

unknown; our contribution lies in careful identification and

organization of extensive causes of performance problems.

At a high level, if downlink throughput of APW is low,

there are only three possible reasons A. Low offered load:

APW does not have enough data to transmit, B. Not enough

airtime: APW has data to transmit but does not get enough

opportunities to transmit, C. Inefficient utilization of provided

airtime: APW has data to transmit and it gets enough oppor-

tunities to transmit as well but it is not able to utilize airtime

efficiently. Note that by design, one or more of the above must

happen, for the observed downlink throughput to be poor. That

is, if there is enough offered load, sufficient airtime for the AP,
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Feature Jigsaw
/ Wit

PIE MOJO WiFi profiler,
Client-Conduit

WiMed WTF Antler WISE Witals

Additional resource for trace collection? Yes Yes Yes No Yes No No Yes
Additional resource for analysis? Yes Yes Yes No No Yes Yes Yes

NoClient side modification? No No No Yes Yes No No No

Performance issues covered extensively? No No No No No No No No
Diagnosis & quantification of multiple simultaneous causes? No No No No No No No No

Yes802.11n/ac support? No No No No No Yes No Yes

TABLE I: Summary of comparison of Witals with prior work

and efficient utilization of the same, downlink throughput is

necessarily good.

A. Low offered load

The first possible reason for low throughput, marked as

“A” in Fig 2, is low offered load to the wireless network.

This could in turn be caused due to a variety of non-wireless

related reasons such as wired network bottleneck, overloaded

web server, or simply when the wireless clients are not

generating enough traffic. Witals does not distinguish between

the different reasons causing low offered load.

The next two subsections discuss the remaining two possible

reasons for low throughput B. & C..

B. Not enough airtime for APW

We now discuss all the possibilities where APW has data

but does not get enough airtime to transmit: these are shown

under the node marked “B” in Fig 2. When APW does not

get sufficient airtime, this must necessarily be due to one of

the following possibilities.

B.1 Wasted non decodable energy: The channel is occu-

pied with energy which is not decodable. Such energy could

either be non-WiFi energy or WiFi non-frame energy. The

former could be due to any of a number of non-WiFi devices

operating in the same frequency range, e.g., microwave oven,

baby monitor, etc. Or it could also be due to WiFi radios

far away from APW . The latter is co-channel interference:

energy which can be detected as WiFi transmission but cannot

be decoded into an intelligible frame (e.g., sync loss after

PLCP detection). We have observed that with the high data

rates of 802.11n, such instances are quite common. When a

neighbouring AP transmits at a high data rate (say 300 Mbps)

to its nearby client, it is likely that APW detects it as WiFi,

but cannot decode the bits of the frame: the high data rates of

802.11n are decodable only at short distances (10-30 feet).

B.2 Other BSS: Some of the energy which is decodable,

could belong to other BSS in the vicinity, sharing APW ’s

channel. Now, this might be caused by data frames of other

BSS or control and management frames of other BSS.

B.3 Control, management overheads: Within APW ’s

BSS, airtime would be taken up by control and management

overheads in WiFi (e.g., beacons, probe request/response, etc.).

We also include here, frames received with FCS (Frame Check

Sequence) error.

B.4 Upload: Within APW ’s BSS, a portion of the airtime

would be used for uplink transmissions, which effectively

causes downlink airtime reduction.

B.5 MAC unfairness: Now, even when the above factors

are not affecting APW ’s airtime, the distributed operation of

the 802.11 DCF MAC can result in short term or even long

term unfairness, which can even be severe. Such unfairness

can be in terms of (i) transmission opportunities (txop) or (ii)

airtime. (i) APW may not get sufficient txop when it is the

middle node in a classical hidden terminal scenario [14]: APW

loses the DCF contention with high probability to one of the

other two nodes. (ii) Even with fair txop, due to different bit-

rates of the transmitters, there can be unfairness in airtime.

When a radio operates at a low data rate (say 6Mbps) and

occupies most of the time in the channel, then it slows down

faster radios (say 144Mbps) significantly. This is the classical

slow talker problem.

B.6 Overcrowding: Finally, even when airtime is fair, there

may simply be too many radios (N ) in the channel. APW may

get 1
N

airtime, which would result in less airtime if N is large.

C. Inefficient utilization of provided airtime

In this subsection we discuss all the possibilities when APW

has data to transmit and gets enough airtime but is not able

to utilize airtime efficiently. These are shown as the causes of

the node marked “C” in Fig 2.

C.1 Low bit-rate: A straightforward reason for poor uti-

lization of airtime is that APW ’s transmissions are at a low

physical layer bit-rate. APW may be using a low bit-rate if the

client has a low signal strength (RSSI) and thus cannot work at

a high bit-rate. Or even if RSSI is good, APW ’s rate adaptation

algorithm could be picking a sub-optimal bit-rate. A classical

case of this is when the rate adaptation algorithm confuses

non-channel losses (e.g., collisions) for channel losses due to

low SNR.

C.2 High loss rate: Even when APW is operating at an

optimal bit-rate, airtime may not be effectively used if there

are too many link layer losses leading to retransmissions.

There are two possible reasons for high loss rate. First, DCF

collisions: 802.11 is a contention based access mechanism.

When radios pick the same random number for backoff be-

fore transmission, collisions happen, the probability of which

increases with the number of radios. Second, any other client

side issues: it might be possible that when APW transmits, it

may be hidden from some source of WiFi or non-WiFi energy

which interferes at the client. Another client-side reason for

high loss rate we have observed is that several clients are

unable to handle high levels of 802.11n aggregation, losing

frames between the wireless hardware and the driver; i.e., the

client has a CPU/system bottleneck.

C.3 Low aggregation: In case of 802.11n, even when APW

is operating at an optimal bit-rate and the loss rate is also

low, airtime utilization can be inefficient if level of frame

aggregation is low. Prior work [18] has reported this and we

have observed the same in our experiments too.
D. Cross-links in the causal graph

So far we have described the causal elements in the causal

graph (Fig. 2) from the perspective of insufficient airtime and
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Fig. 2: Witals Diagnosis: Causal Graph (underlined green nodes are diagnoses of Witals)

inefficient usage of provided airtime. But the various nodes

in the causal graph (causes) we have introduced have other

effects too. We now describe these as cross-links (dashed lines,

marked 1-6) in the causal graph.

When other APs (BSS) operate on same or nearby channel

of APW , airtime reduction for APW is one possible effect. If

these APs are too far from APW or use high data rates, these

transmissions will not be decodable to APW . This is co-chan-

nel interference, and hence shows up as an increase in wasted

non-decodable energy. Fig. 2 shows this as cross-link 1.

When APW is a middle node in a hidden terminal scenario,

this results in collisions being seen at APW . This too shows

up as wasted non-decodable energy. This cause-effect relation

is shown as cross-link 2 in Fig 2.

When there are a large number of transmitters (N ) in the

channel, not only is the airtime share ( 1
N
) of APW low,

but this also has another important effect. Overcrowding also

causes a large number of DCF collisions due to high chance

of two nodes picking the same random number for backoff.

This is shown as cross-link 3 in Fig. 2. Further, when two

frames collide, the energy becomes non decodable and thus

wasted. This is shown as cross-link 4 in Fig 2.

When there is high loss rate on the channel either due to

overcrowding (high collisions and so high frame losses) or

client side issues, this interacts poorly with TCP. High loss rate

could cause variable RTT for TCP, DUP ACKs, and spurious

TCP timeouts (also reported by prior work [17]). Thus TCP

slows down in response to these, causing low offered load to

WiFi. This interaction is shown by cross-link 5 in Fig 2.

A more immediate effect of high losses is that the rate

adaptation algorithm, unable to distinguish non channel losses

from channel losses, reduces the bit-rate. This is shown in

Fig 2 as cross-link 6.

E. Causal diagnosis, limitations, actions

The causal graph as described above is the basis for the

design of the diagnosis algorithm (Sec. V). The underlined

green nodes in Fig. 2 are the various conditions Witals can

diagnose. By design, the leaf nodes (i.e., those without any

incoming edge) of the graph represent the diagnoses of Witals.

However, there are two exceptions: (1) some leaf nodes are

not associated with any diagnosis, and (2) some non-leaf nodes

represent diagnoses. We describe them in more detail below.

(1) As mentioned earlier, a limitation of Witals is that, due to

its AP-centric architecture, we cannot diagnose specific client-

side issues and wired side issues. Hence, we can not diagnose

the leaf nodes associated with client side issues and wired

side issues. As discussed before, TCP slowdown is caused

by high frame losses (cross-link 5), that in turn is caused by

overcrowding. Also, high frame losses cause rate adaptation

confusion (cross-link 6). Therefore, in occasion of TCP slow

down, overcrowding and RA based problems show up.

Aside from these, a specific wireless related leaf node we

do not diagnose is that of hidden terminal. The reason for

this is as follows. We attempted to create the MAC unfairness

starvation scenario as in [14], experimentally, with APW in

between two other APs. However, we observed that starvation

rarely happens; instead the hidden terminal problem shows

up primarily as increase in wasted non-decodable energy,

rather than as MAC unfairness. That is, the cross-link is

experimentally observed to be stronger than the primary causal

effect expected. Hence this hidden terminal scenario manifests

itself as co-channel interference, which is what Witals diag-

noses. Another possible hidden terminal scenario is between

two clients of APW , with APW as the middle node. Since

Witals does not have client-side view, we cannot diagnose

this situation. But we expect this to be rare, since the two

clients have to be at opposite ends of APW ’s coverage, for

this situation to arise.

(2) There are three non leaf nodes that represent diagnoses

are: (a) co-channel interference, (b) rate adaptation confusion,

and (c) low offered load. (a) Co-channel interference causes

increase in wasted non-decodable energy. But co-channel
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interference itself is caused by other BSS in the vicinity. Due

to this dependency, it becomes a non leaf node, but this is

a diagnosis as well. (b) High number of frame losses causes

confusion to the rate adaptation algorithm, which lowers the

bit-rate in response. Due to this dependency, suboptimal rate

adaptation algorithm becomes a non leaf node, but this also

is a diagnosis. (c) As discussed before, we can not diagnose

wired or client side issues, and TCP slowdown shows up as

overcrowding and RA. Therefore, we diagnose the non-leaf

node low offered load to indicate idle channel condition.

IV. WITALS FOR DIAGNOSIS

What metrics can we possibly use for diagnosing problems?

The spectrum of performance metrics considered in prior

works is vast. For example, Antler [20] considers the following

metrics: minimum throughput, overhead, airtime utilization of

the AP and the clients, signal strength of the clients, data

rate, packet loss rate, retransmission percentage. WISE [19]

considers the following metrics for computation of Witt: air-

time utilization, local contention, effective rate. We categorize

the set of metrics considered in prior work into following

categories. (1) Metrics related to TCP, (2) metrics related

to MAC throughput, (3) metrics related to number of WiFi

entities, (4) metrics related to number of bytes, (4) metrics

related to airtime utilization, (6) metrics related to signal

strength (7) metrics related to bit-rate, (8) metrics related to

loss rate, (9) metrics related to overhead, (10) metrics related

to contention, and (11) metrics related to non-WiFi.

Out of all these metrics, we choose a specific subset. In

choosing the metrics (called witals, or WiFi vital statistics),

we have the following guidelines. (1) We should be able to

diagnose multiple simultaneous causes of WiFi performance

problems, as this is a common scenario. (2) It should be easy

to measure and maintain in real-time in a live AP, even when

operating at the high data rates of 802.11n or 802.11ac.

Common unit of measurement: Given the above guide-

lines, we choose a minimal set of metrics. Importantly, we

represent all of our metrics in the same comparable unit of

measurement. We choose percentage reduction in downlink

throughput due to a cause, as this common comparable unit.

This is an important choice, as this allows us to compare mul-

tiple possible simultaneous causes of performance problems,

and flag the major ones.

Time window of measurement: We measure metrics in

windows of time, of duration denoted as TW . The choice of

TW has to be such that it is large enough to tide over the fine

grained frame-level behaviour of 802.11 DCF. It also has to be

large enough to amortize the fixed overheads of implementing

the diagnosis algorithm. TW also has to be small enough to

detect a problem before it “disappears” (e.g., a value of a

minute or two is likely to be too high). In practice, we have

found that TW of a few seconds works well.

In Table II, we show the set of metrics considered in

prior work. We also indicate whether we choose them in

our framework or not, the justification for the same, and the

corresponding witals metrics (if any). Some of the metrics such

as TCP RTT, MAC throughput considered in prior work affect

many nodes in our diagnosis graph, hence, it is not possible to

diagnose the root cause(s) from these metrics. Therefore, we

do not choose such metrics. On the contrary, some metrics

such as bytes downloaded, number of associations are not

related to any node, we do not choose them as well. Some

other metrics such as signal strength of the AP and the clients,

average bit-rate and so on, are not comparable with other

metrics such as airtime utilization. Hence, we modify these

metrics in an appropriate way to make them comparable with

others.

As described earlier, the underlined green nodes in the

causal graph of Fig. 2 are various diagnoses of Witals.

We come up with a set of metrics, that helps us diagnose

the green nodes of the causal graph. The metrics fall into

two categories: (a) airtime reduction metrics, (b) metrics

representing inefficient utilization of airtime. These mirror

the two major sets of causes marked “B” and “C” in the

causal graph. And all metrics are represented in terms of

percentage of downlink throughput reduction they cause. The

close connection between the metrics below and the nodes in

the causal graph is captured in Table III. It lists the various

possible diagnoses of Witals, each diagnosis corresponds to

a node of the causal graph of Fig. 2. An important point

is that comparable witals metrics and causal relationships in

the causal graph allow the detection of multiple simultaneous

problems, which is a common occurrence, especially due to

the complex inter-dependences as shown in the causal graph.

Table III also shows the possible follow-up actions for each

diagnosis. We must note here that the follow-up actions given

here are merely suggestive and not exhaustive. While some

follow-up actions are short term in nature (e.g., switch AP

channel), some are longer term (e.g., re-plan WiFi installation).

A. Airtime reduction metrics

We use the following metrics to measure downlink through-

put reduction due to airtime reduction for APW .

Wasted non-decodable energy (W ): This metric measures

the percentage of airtime lost (over the measurement window

TW ) due to non-decodable energy. This metric is a direct

measure of the throughput reduction attributable to this cause.

To measure W , we have used vendor support in the AP

driver. The API provides means to measure the amount of

airtime for which there was any energy detected on air. It also

provides means to get per-frame information (length, data-rate

etc.) for all frames on air, using which we can get the time

duration of decodable energy. Subtracting the latter from the

former, we get W . We note that the above API is not unique to

the vendor’s driver, similar ones are available in popular open-

source drivers such as ath9k as well as in broadcom chipset

based driver.

CtlMgtOverhead (O), OtherBSSOvhd (OBO), OtherB-

SSData (OBD), Upload (Ul): Once we have per frame

(length, data-rate) information, the airtime occupied by control

and management overheads (O) of own BSS, control and

management overheads (OBO) of other BSS, data frames

of other BSS (OBD), upload (Ul) are all straightforward to

compute. When represented as a percentage of measurement

window TW , like with W , these form direct measures of

throughput reduction due to each of these causes.
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Metric Chosen Reason witals

Metrics related to TCP: TCP RTT [23], TCP
throughput [2], [1]

No Many nodes are affected by these metrics, not possible to diagnose
root cause(s) from these

-

Metrics related to MAC throughput: average, ag-
gregate, minimum throughput [2], [6]

No Many nodes are affected by these metrics, not possible to diagnose
root cause(s) from these

-

Metrics related to number of WiFi entities: number
of associations [5]

No Not related to any node -

Metrics related to number of bytes: down-
loaded/uploaded/total bytes [13]

No Not related to any node -

Metrics related to airtime utilization [20], [19]
Channel utilization Yes Direct mapping, used to diagnose low offered load I
Airtime utilization of the AP No Our focus is to maximize this metric Dl
Airtime utilization of the clients Yes Direct mapping, used to diagnose upload Ul

Metrics related to signal strength: signal strength
of the clients [20]

Yes
(modified)

The raw signal strength values are not comparable with others, we
modify it in an appropriate way to make it comparable

RSSIredn

Metrics related to bit-rate: average bit-rate [20],
effective rate [19]

Yes
(modified)

The bit-rate values are not comparable with others, we modify it in
an appropriate way to make it comparable

RAredn

Metrics related to loss rate: frame loss rate [20],
frame retx % [1], error rate [19]

No We use these to determine rate adaptation based problems -

Metrics related to overheads: control, management
overhead [20]

Yes Direct mapping, used to diagnose control, management overheads O

Metrics related to contention: local contention [19],
percentage of data frames collided [21]

Yes
(modified)

These metrics are not comparable with others, we modify them in
an appropriate way to make it comparable

W,N

Metrics related to non-WiFi energy: non-WiFi en-
ergy [19], RF-interference [1]

Yes Direct mapping, used to diagnose non-WiFi devices W

TABLE II: The set of metrics considered in prior work and their applicability in Witals framework

WiFi Diagnosis Metric Possible remedial actions

Healthy - Good news for WiFi sysad; source of any problem is elsewhere

LowLoad I Implies healthy; source of any problem is non-wireless

NonWiFi W Short to medium term: look for obvious sources of nonWiFi interference (microwave etc); long term: consider
5Ghz, fewer interfering devices

CoChInterf W , OBO &
OBD

Short to medium term: better channel planning; long term: consider 5Ghz, more channels

CtlMgtOvhd O Better configuration of access point

OtherBSSOvhd OBO Short to medium term: better configuration of other BSS; long term: consider 5Ghz, more channels

OtherBSSData OBD Short to medium term: better channel planning; long term: consider 5Ghz, more channels

Upload Ul Consider imposing a limit on upload

SlowTalker Sredn Own client slow ⇒ discourage slow clients at critical times (medium term); implement airtime fairness (long
term). Slow talker out of sysad’s control ⇒ consider switching channel/band of operation

Overcrowding W , N If own clients are too many, consider imposing a limit, especially if its a guest WiFi; timed access for guests; if
too many BYOD clients stricter BYOD policy; consider deploying more APs.

LowRSSI RSSIredn Suggest client to move to another location, Re-plan WiFi installation, set user expectation (good coverage
guaranteed only at certain locations)

RA RAredn, N Use collision aware rate adaptation (e.g CARA [12], YARAa [8]). Investigate client side issues.

LowAggr Aggrredn Suggest better client hardware or better aggr. algo at AP

TABLE III: Diagnosis Table

Fig. 3: Break up of airtime

Fig. 3 shows the split of airtime among the above metrics.

We also note that we can compute the percentage of idle time

I , subtracting out the non-decodable and decodable portions

of airtime from the total of 100%.

Slow talker reduction (Sredn): A metric whose design

is non-trivial is the slow-talker reduction (Sredn) metric.

Prior work has considered metrics such as ratio of the fast

radio to the slower one [22]. Instead, in accordance with our

guiding principle that we wish all metrics to be comparable

to one another, we wish to design Sredn to reflect throughput

reduction due to the slow talker problem.

Thus, to compute Sredn, we ask the question “how much

has APW been slowed down due to slower radios ?”. Or more

precisely, “how much more airtime (throughput) could APW

have achieved had all radios been at least as fast as APW ?”.

Posed in this fashion, the computation of Sredn is a sequence

of straightforward algebra. We first calculate APW ’s average

bit-rate during a TW , as a ratio of the number of bytes BTotal

transmitted, over the air occupancy time TTotal due to these

transmissions: Ravg = BTotal/TTotal. To claim that APW

is facing a slow talker problem, we hypothetically speed up

every other transmission observed in TW . Let there be m
other transmissions, with transmission i of size Bi and rate

Ri. Compute the hypothetical data rate of transmission i as

Hi = max(Ri, Ravg). Then we compute the air occupancy

when there is no slow talker (i.e., all other transmissions at

least as fast as Ravg) as Thyp =
∑

i Bi/Hi. Whereas the

original air occupancy is Torig =
∑

i Bi/Ri. Now, Sredn is

nothing but the additional fraction of airtime which would

have been freed up had there been no one slower than APW :

Sredn = (Torig − Thyp)/TW .

As computed above, we realize that Sredn is nothing but a

sub-portion of the airtime represented by OBD and Ul. This

is depicted in Fig. 3. As we shall show in our experiments, this

computation of Sredn distinguishes mere presence of a slow

radio (not sending much traffic) versus a slow radio causing

throughput reduction for APW .



8

Number of contending transmitters (N): The above

set of airtime reduction metrics is sufficient to diagnose all

of the problems grouped under “B. Not enough airtime” in

Fig. 2, with the exception of the over-crowding problem. To

diagnose over-crowding, we need a measure of the number of

contending transmitters (denoted N ), in TW . Since TW is typ-

ically a few seconds, which is much larger than typical frame

transmission durations, we first break-up TW into smaller

windows ts. The value of ts must be large enough to observe

multiple nodes’ transmissions. We have seen that a ts value

of 100-500ms works well in practice (we use ts = 200ms
in implementation). Within each ts window, APW counts the

number of observed transmitting radios, and takes this as an

estimate of N . To compute N for a given TW , we simply

average these estimates over all the ts windows within TW .

Our experiments confirm that the above mechanism to

estimate N is robust in diagnosing over-crowding. Finally, we

note that the metric N is the only exception in our set of

witals metrics in that it does not directly represent percentage

throughput reduction due to a wireless problem.

B. Metrics for inefficient airtime utilization

We use three different metrics to diagnose the different

causes under “C. Inefficient utilization of provided airtime” in

Fig. 2. Each of these metrics represents throughput reduction

in the given airtime.

Let us first calculate ideal throughput at the link layer. It is

a function of link layer bit-rate R and the level of aggregation

Aggr (in case of 802.11n) [18]. It is of the form:

f(R,Aggr) =
P ×Aggr

P ×Aggr/R+ Toverheads

(1)

Here, P is the payload size prior to aggregation, and

Toverheads accounts for overheads: the average DCF backoff,

the PHY and MAC headers, 802.11 ACK, and TCP ACK.

We capture the throughput reduction due to the three rea-

sons LowRSSI, RA, and LowAggr, using f(R,Aggr). The

three witals metrics are denoted as RSSIredn, RAredn, and

Aggrredn respectively.

Fig. 4: Metrics for inefficient use

of airtime

These three

metrics can be

visualized as part

of the same unified

throughput reduction

picture, as depicted

in Fig. 4. A note of

caution here is that

the axes in the figure

are non-linear; they

correspond to f(R,Aggr).
(a) RSSIredn represents the throughput reduction due

to lower-than-ideal RSSI alone. It compares the throughput

achievable at the highest data rate Rmax, with that achievable

at data rate possible ideally at the current RSSI, Rrssi.

This comparison is done at the observed average level of

aggregation Aggravg.

(b) RAredn: Now, APW could be transmitting at a rate

lower than Rrssi. Denote this as Ravg. RAredn captures the

throughput reduction from operating at Ravg as opposed to

operating at Rrssi, at Aggravg.

(c) Aggrredn represents the throughput reduction at the ob-

served rate Ravg , due to operating at the observed aggregation

level Aggravg as opposed to operating at the ideal Aggrmax.

Given the above, we can write, for each client i:
RSSIredn(i) =

f(Rmax(i),Aggravg(i))−f(Rrssi(i),Aggravg(i))
f(Rmax(i),Aggravg(i))

RAredn(i) =
f(Rrssi(i),Aggravg(i))−f(Ravg(i),Aggravg(i))

f(Rmax(i),Aggravg(i))

Aggrredn(i) =
f(Ravg(i),Aggrmax)−f(Ravg(i),Aggravg(i))

f(Ravg(i),Aggrmax)

We then compute each metric for APW as the average over

the corresponding metrics for each active client i. We use

an empirical definition of an active client: APW should have

transmitted a minimum of 10 data packets to that client in TW .

For the above computations, we need Rmax(i), Rrssi(i), and

Aggrmax; the others are measured by APW over each TW

easily.

Here Rmax(i) is the ideal bit-rate for client i at the ideal

RSSI; this is nothing but the maximum bit-rate: 54Mbps for

802.11g, 72 Mbps for 802.11n 1× 1 etc.

To estimate Rrssi(i) for client i, we use a combination of

(a) the data rate determined by the measured average RSSI

on the uplink, and (b) observed loss rates at the various data-

rates in the past five TW windows. This estimation of Rrssi is

similar to computing SNR threshold for adapting bit-rate [24].

We have taken Aggrmax = 10, as this represents (an al-

most) ideal level of aggregation; as [18] shows, an aggregation

level of 10 achieves close to optimal efficiency (88% for a bit-

rate of 72Mbps).

V. DIAGNOSIS ALGORITHM

We now design the diagnosis algorithm, based upon the

causal graph of Sec. III, and the witals metrics of Sec. IV.

The algorithm runs at the end of every TW , using as input the

witals metrics measured in that TW . It gives as output one or

more of the diagnoses listed in the first column of Table III.

In our implementation, we choose TW = 2s.

A. Algorithm

The algorithm is summarized in Algorithm 1. The tight

connection between the witals metrics and the various nodes

in the causal diagnosis graph, as captured in Table III, enables

the design of the algorithm.

The algorithm first computes M, representing the set of

major throughput reduction metrics. Our design principle in

witals, of making the metrics comparable is what enables the

definition of M. Among the metrics W , O, OBO, OBD Ul,
Sredn, RSSIredn, RAredn, Aggrredn (i.e., all witals except

N ), we select the top three as representing the major reasons

for throughput reduction. To account for the fact that even

the top three among these may not be causing throughput re-

duction, we apply a min-thpt-thresh i.e., minimum throughput

threshold of 10% to each of these metrics; i.e., M consists of

up to three metrics, each of which represents at least a 10%

throughput reduction.

We first diagnose Healthy if M is empty, i.e., there is noth-

ing causing over min-thpt-thresh throughput reduction. Given

a non-empty M, the diagnosis of CtlMgtOvhd, OtherBSSOvhd,

OtherBSSData, Upload, SlowTalker, LowRSSI, RA, LowAggr
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Algorithm 1 Diagnosis algo, runs every TW

1: M = Set of up to 3 major witals metrics > min-thpt-thresh

2: if M is ∅ output Healthy
3: if I > idle-thresh then ⊲ Channel more idle than busy
4: output LowLoad, Healthy
5: else ⊲ Channel more busy than idle
6: if O ∈ M output CtlMgtOvhd
7: if OBO ∈ M output OtherBSSOvhd
8: if OBD ∈ M output OtherBSSData
9: if Ul ∈ M output Upload

10: if Sredn ∈ M output SlowTalker
11: if RSSIredn ∈ M output LowRSSI
12: if RAredn ∈ M output RA
13: if Aggrredn ∈ M output LowAggr
14: if W ∈ M then

15: if N > simul-tx-thresh output Overcrowding
16: if (OBO +OBD) > otherbss-pres-thresh output CoChInterf
17: if neither of the above output NonWiFi
18: end if

19: end if

is straightforward: we simply check if the corresponding

metric (as given in Table III) is in M (lines 6-13 in Diagnosis

Algo). We note that these “problems” are diagnosed only when

the channel is more busy than idle (i.e., I < 50%).

Now, from the causal graph (Fig. 2), we see that W
(wasted non-decodable energy) could be caused due to a va-

riety of reasons: non-WiFi device, or co channel interference,

or over-crowding. Lines 14-17 of diagnosis algo distinguish

between these possible causes. The metric N which is a

measure of simultaneous transmitters on the channel is used

to flag Overcrowding. Note that, we are measuring number of

transmitters detected at the AP at small intervals, thus the

actual number of simultaneous transmitters might be more

than what the the AP sees. The transmitters who have have

been successful to send their frames, are the ones seen by

AP. Hence, we pick an empirical threshold of 5 for simul-

tx-thresh (simultaneous transmitters threshold) for detecting

overcrowding. The presence of significant interference from

other BSS (otherbss-pres-thresh) is used to flag CoChInterf.

If neither of the above is identified as a possible cause, we

conclude that the high W is due to a NonWiFi device.

In several real-life measurements, we found that a diagnosis

every TW might be too fine-grained for a sysad, and it flags

several transient problems. The sysad might be interested to

know the persistent performance problems. Therefore, Witals

also provides a further refined view showing the persistent

performance problems in the last 15 minutes or so.
B. An Example Run

Now we take an example to better understand the diagnosis

algorithm. We take a sample trace from a real-life measure-

ment where 80 clients were associated with APW , the same as

mentioned in Sec. I. The clients were tablets used by students

in a classroom, and the traffic consisted of an online quiz.

Fig 1(a) plots the witals metrics over time. We note here

that the state-of-the-art in current commercial systems stops

with such a view of a multitude of graphs. Now, recall that

each witals metric shows airtime or throughput reduction

percentage because of that problem. Even with the metrics

being comparable, Fig. 1(a) is not easy to interpret visually.

Fig. 1(b) next shows the output of our diagnosis algorithm

plotted over time. The width of the bubble is proportional

to the throughput reduction it causes. We also plot aggregate

throughput of the network. We can see here that Overcrowding,

RA, OtherBSSOvhd, OtherBSSData and CoChInterf are the

major performance problems for this network. The sysad can

potentially set event triggers based on the algorithm’s output

and take appropriate actions. Note that the distilled view in

Fig. 1(b), is enabled by the design of comparable witals

metrics and the cross-links. Such distillation is not possible

in current commercial systems or state of the art prior work.

C. Parameters in the algorithm

In our Witals algorithm, we have used a few parame-

ters. They are: time window of measurement TW = 2sec,
simul-tx-thresh of 5 for determining Overcrowding, slot size

ts = 200ms for determining number of contending transmit-

ters (N), min-thpt-thresh of 10%, idle-thresh of 50%, active

clients’ number of data packets threshold of 10, picking top

3 reasons, as opposed to some other number. The values of

these parameters are not crucial to our diagnosis algorithm. In

Sec. VI, we evaluate the sensitivity of the parameters.

VI. EVALUATION

We evaluate our diagnosis algorithm in two different settings

(1) controlled experiments and (2) real-life measurements. In

controlled experiments, we artificially create a problem and

see if the Witals diagnosis matches the ground truth. Next, we

run our algorithm in real settings where we corroborate ground

truth from system administrators and from users’ feedbacks.

In all cases, Witals matches ground truth accurately. Here, we

also evaluate Antler [20] and WISE [19] prior work on AP-

centric diagnosis (described in Sec II). We also compare Witals

with popular commercial tools. Prior to the experiments, we

first describe our prototype implementation.

A. Prototype Implementation

We have implemented Witals on an enterprise grade com-

mercial AP1 platform capable of 2×2 as well as 3×3 802.11n

operation. The hardware is based on the Atheros 9xxx gener-

ation chipset, and the software is a set of modifications to a

licensed version of the Atheros driver. The radio is placed in

promiscuous mode, so that the driver can extract statistics for

packets intended for other radios in the vicinity too. We have

implemented the diagnosis logic as part of AP software suite.

To measure the accounting of airtime at APW , we take help

of hardware supported registers. We also log extensive info

(address, length, data rate etc.) about transmitted and received

frames. We had to pay attention to detail, in making the imple-

mentation work at the high rates of 802.11n. The simple set of

witals metrics helped too, in keeping the overhead minimal:

while some of the witals metrics such as Sredn are subtle

in design, the per-frame computation itself is minimal. We

studied the impact of Witals on APW ’s throughput, comparing

it with a vanilla AP as well as the expected throughput as per

Eqn. 1. We found that the throughput of the Witals AP closely

matched the expected throughput, even at 2x2 802.11n 40MHz

channel bonded operation.

1AirTight AP: AirTight C-55 AP, AirTight C-60 AP.
http://www.airtightnetworks.com/home/resources/datasheets.html
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We also implemented Antler [20] and WISE [19]. Antler

uses many thresholds for diagnosis, but provides value for

only two. So, we have assumed the missing threshold values

to the best we can. We did not implement the Airshark module

in WISE: this module differentiates between various sources

of non-WiFi activities, and is complementary to our work.

WISE performs an offline analysis using the Witt metric. For

comparison, we assume that the causes WISE attributes to

poor performance are various diagnoses of WISE.

B. Parameter sensitivity

To evaluate the sensitivity of our chosen thresholds on

Witals diagnosis, we change all the threshold values evaluate

in the same classroom scenario (in Sec. V). We modify TW

as 5 sec, simul-tx-thresh as 10, ts as 100ms, min-thpt-thresh

as 20%, idle-thresh as 60%, active clients’ number of data

packets threshold as 20. In all cases, our diagnosis does not

change significantly (not shown here) with the changed values.

Likewise, the sysad can specify 3/more/lesser major reasons

for Witals diagnosis algorithm depending on the specific

deployment demand. Therefore, our algorithm is not crucial

to these thresholds. One can set an appropriate threshold that

suits the deployment demand.

C. Controlled experiments

In the controlled experiments below, we use an 802.11n

client associated with an 802.11n Witals AP (APW ). We

used iperf TCP throughput tests on the downlink; the iperf

throughput was used to learn ground truth regarding presence

of a “problem”. In each controlled experiment, to the extent

possible, we ensured the “problem” we intentionally intro-

duced was the only problem. For each experiment, we plot

the output of Witals and it matches the ground truth cause.

1) Detection of LowRSSI: We start with the simple sce-

nario of poor signal strength detection: LowRSSI. For this

experiment, APW ’s client was moved across four locations

while staying for 30 sec at each location. We started at time

t = 11s at position 1 (1m from APW ), moved to position

2 (5m) at t = 60sec, moved to position 3 (20m) at t = 99s,

then moved to position 4 (40m) at t = 142s, then finally came

back to position 1 at t = 212s.

Initially, Witals diagnoses (plot not shown) the network as

Healthy. But, during the time the client faced poor signal

strength (between 100-200s, at position 3 & 4), LowRSSI

is diagnosed. We also observe that the bit-rate was sub-

optimal in many TW windows, likely due to the rate adaptation

algorithm exploring the best rate in the face of client mobility.

There are also several instances of LowAggr diagnosed: as

throughput reduces, this appears to interact poorly with the

A-MPDU aggregation algorithm as well. Using a plot of the

raw witals metrics against time (not shown), we found that

RSSIredn was around 30% in position-3 and close to 100%

in position-4.

Comparison with Antler and WISE: We evaluated Antler

and WISE against the trace from this experiment. Both are able

to detect poor link condition.

Healthy

LowLoad
NonWiFi

CoChInterf
CtlMgtOvhd

OtherBssOvhd
OtherBssData

Upload

SlowTalker
Overcrowding

LowRSSI
RA

LowAggr

0 50 100 150 200 250 300
Time(s)

0
22
45

AggrThpt(Mbps)

Fig. 5: Witals diagnosis: OtherBSS
2) Detection of NonWiFi device presence: To test Witals

on detection of presence of non-WiFi device: NonWiFi, we set

up an experiment where we operate APW in channel-9 of the

2.4GHz band. We used a microwave oven, specified to operate

around the same central frequency, as the interferer. From a

plot of Witals diagnosis (not shown), we find that NonWiFi is

diagnosed in this time window. Also diagnosed frequently is

RA, as the microwave causes high frame loss, and APW ’s rate

adaptation algorithm confuses this for channel loss.

During the time the microwave was on, the aggregate

throughput dropped to about 10Mbps from about 23Mbps.

A plot of the witals metrics (not shown) indicated that W
(wasted non-decodable energy) was causing a 45% reduction

in airtime and throughput.

Comparison with Antler and WISE: While WISE is able

to detect the presence of non-WiFi device, Antler provides a

diagnosis of interference. Antler reports interference if there

is a difference between the AP’s airtime and the airtime

attributable to its clients’ uplink and downlink transmissions.

Such a difference arises in this experiment due to a high

degree of wasted non-decodable energy W resulting from

microwave. However Antler is unable to detect the reason for

the interference i.e., non-WiFi device.

3) Detection of OtherBSSData: In this experiment, we

introduced interference from another BSS using a second AP

(say AP2) operating on the same channel as APW and kept

close to APW . We also had a client (C2) associated with

and kept close to AP2, with iperf-generated downlink TCP

traffic. Fig 5 shows the result of Witals algorithm. We see

that presence of high data traffic on the other BSS is correctly

diagnosed, and so is the co-channel interference (CoChInterf)

caused by AP2. During several TW windows, LowAggr is also

reported, like in the LowRSSI experiment.

The ground truth was further corroborated by looking at

a plot of the witals metrics over the same time window (not

shown). We found that the OBD metric was around 20% until

about t = 100s. Subsequently, AP2 captures a larger share of

airtime, OBD increases to 70%.

Comparison with Antler and WISE: Here, Antler di-

agnoses interference, and WISE detects high airtime utiliza-

tion from external sources. Antler is unable to classify this

interference as : NonWiFi, CoChInterf, OtherBSSOvhd, or

OtherBSSData. WISE too can not classify the reason for high

utilization as : CoChInterf, OtherBSSOvhd, or OtherBSSData.

4) Detection of SlowTalker: To create a situation of MAC

unfairness due to a slow radio, we set up an experiment

where three clients are associated with APW . Two of them

were running iperf in the downlink direction and third one
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Fig. 6: Witals diagnosis: SlowTalker
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was running iperf in the uplink direction. Here we fixed

the uplink client’s transmission bit-rate to be low: MCS 0,

6.5Mbps/7.2Mbps. Fig 6 shows the diagnosis output of Witals

algorithm against time. We see that SlowTalker is correctly

diagnosed as a major reason for throughput reduction. We

also see that Upload is a significant reason. A plot of the

witals metrics (not shown) indicated that the slow client

occupies almost 60% of the channel (this shows up as Ul)

and APW ’s downlink airtime is only around 26%. The slow

talker reduction metric (Sredn) is around 60%.

Comparison with Antler and WISE: Here, Antler can

not diagnose the slow talker problem. WISE provides wrong

diagnosis of high local contention (> 0.5 [19]). WISE com-

putes Witt metric using linkexp model, which in turn computes

the local contention. Fig 7 shows the Witt value & local

contention with time. The reason for wrong diagnosis is that

WISE diagnoses local contention in an indirect way, from

the relative amount of other clients’ traffic to the total traffic.

Since the slow client occupied the channel for more time, other

clients could not get enough airtime. Hence, WISE diagnoses

this as high local contention for the fast clients.

5) Detection of Overcrowding: To test our Witals frame-

work’s ability to detect Overcrowding, we set up an experiment

where 30 clients were associated with APW . Before the exper-

iment, we ensured the access point placement was optimal so

that all clients can operate at the highest bit-rate individually.

We also ensured that the web server or the wired network

were not loaded. That is, the performance seen by the clients

in our experiment was constrained by the wireless network

bottleneck. External WiFi interference was minimal. All the

clients were downloading a large file from a local server and

simultaneously uploading another large file.

Even though a controlled experiment, this scenario stress

tests our Witals framework as several phenomena kick-in

simultaneously. As all the clients were downloading as well

as uploading, the number of contending stations is high. This

causes collisions, which in turn results in airtime wasted in

non-decodable energy (cross-links 3 & 4, Fig. 2). Collisions

also cause frame losses, which in turn cause the rate adap-

tation algorithm to select a sub-optimal bit-rate (cross-link 6,

Fig. 2). Retransmissions & variable RTT could also cause TCP

slowdown (cross-link 5, Fig. 2).

Despite the above simultaneous phenomena, we see in

Fig 8(a) that Witals algorithm presents a clear picture. It

diagnoses Overcrowding correctly. We see that the SlowTalker,

CtlMgtOvhd, and RA problems are reported as well. A plot of

the witals metrics over time (not shown) indicated that W
varied between 50% and 80% during the experiment. The

metric O was also high, about 30%, likely due to collision

induced FCS errors. We observed that the combination of the

above factors reduced the downlink throughput to near zero

during the experiment.

Comparison with Antler and WISE: Antler infers con-

gestion from bit-rate. If bit-rate is low but RSSI is high, it

diagnoses as congestion. We evaluated Antler against the trace

from this experiment. Fig 8(b) shows the diagnosis. Instead

of reporting congestion, the diagnosis was interference. The

incorrect diagnosis is due to difference between the AP’s

airtime and the airtime attributable to its clients’ uplink and

downlink transmissions. High degree of wasted non-decodable

energy W resulting from collisions causes this difference.

Here, WISE too detects interference. Fig 8(c) shows the

Witt value & non-WiFi energy. The reason for high non-WiFi

energy is high degree of wasted non-decodable energy W
resulting from collisions. WISE diagnoses this as interference.

Our diagnosis graph specifically cross-links 3, 4 of Fig. 2, and

their incorporation into our diagnosis algorithm allows us to

flag the correct diagnosis.

6) Witals on VoIP performance: So far, we have seen

that Witals is able to detect the “low throughput” issues

correctly. To understand, whether Witals framework can detect

the issues with poor VoIP performance, we set up a controlled

experiment. Initially, one client connects to APW . We emulate

VoIP traffic via UDP CBR (constant bit-rate) traffic of 1.2

Mbps (Skype HD video [4]). After 80 sec, we connect another

client to APW . This client runs iperf in the uplink direction for

another 100 sec. Fig 9 shows the diagnosis output of Witals

algorithm against time. Here, instead of aggregate throughput,

we plot jitter values with time. We see that initially the jitter

values are low, but once the upload starts the jitter values

increase. Witals is also able to detect the reason for increase

in jitter as Upload.
D. Real life measurements

We tested Witals in various real scenarios. Here, we discuss

results from 4 different real scenarios: (1) a research confer-

ence with 10 clients connected to the AP under diagnosis, (2)

a classroom at our Institute with 43 clients connected to APW

(termed classroom-43 henceforth), (3) a denser classroom at

our Institute with 80 clients to APW (termed classroom-

80 henceforth), and (4) a students’ hostel (dormitory) in

our Institute, with 20 clients connected to the AP under

diagnosis. In each case, we corroborated ground truth in terms

of presence of wireless problem(s) by verifying with system

administrator(s), collecting users’ feedback, and also our own

observation. We also verified ground truth by manually looking

into our traces.

In the classroom settings above (classroom-43 and

classroom-80), APW was the one used for network access by



12

Healthy

LowLoad
NonWiFi

CoChInterf
CtlMgtOvhd

OtherBssOvhd
OtherBssData

Upload

SlowTalker
Overcrowding

LowRSSI
RA

LowAggr

0 50 100 150 200 250 300
Time(s)

0
2
5

AggrThpt(Mbps)

(a) Witals diagnosis

Interference

Congestion

Poor Link

Packet Traces

0 50 100 150 200 250 300
Time(s)

Healthy

(b) Antler diagnosis

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  50  100  150  200  250  300
 0

 0.2

 0.4

 0.6

 0.8

 1

W
it
t(

M
b

p
s
)

U
ti
li
z
a

ti
o

n

Time

Witt Non-WiFi util

(c) WISE diagnosis

Fig. 8: Overcrowding / Congestion Detection Witals Vs Antler & WISE

Healthy

LowLoad
NonWiFi

CoChInterf
CtlMgtOvhd

OtherBssOvhd
OtherBssData

Upload

SlowTalker
Overcrowding

LowRSSI
RA

LowAggr

0 50 100 150
Time(s)

1
10
100

Jitter(ms)

Fig. 9: Witals diagnosis: for VoIP application
Healthy

LowLoad
NonWiFi

CoChInterf
CtlMgtOvhd

OtherBssOvhd
OtherBssData

Upload

SlowTalker
Overcrowding

LowRSSI
RA

LowAggr

0 50 100 150 200 250 300
Time(s)

0.00
0.08
0.16

AggrThpt(Mbps)

Fig. 10: Witals diagnosis: Conference

the clients. In the conference and hostel settings however, none

of the clients associated with the Witals AP APW . The Witals

radio APW collected traces and metrics all the same, acting

like a sniffer on the same channel: we tweaked the algorithm

implementation to perform the diagnosis at APW on behalf

of an actual operational AP to which clients connect.

1) Conference: We evaluated Witals at a research con-

ference. In this setting, there were several neighboring APs

in various 2.4GHz channels. Although, only about 10 clients

were connected to the AP, the performance of WiFi was really

poor. Users complained about slow WiFi. Fig. 10 shows the

diagnosis output of Witals algorithm for a representative 5-

minute duration. There are several time windows where the

WiFi network is lightly loaded or otherwise healthy (user

listening to an interesting talk?). But the major performance

problems in this network are OtherBSSData, OtherBSSOvhd

and CoChInterf. OtherBSSOvhd is an unexpected diagnosis. In

this setting, there were several APs that operate on the same

channel. So, one can understand the data frames of other BSS

causing performance problems. Again, some of the energy that

is non-decodable at APW is causing co-channel interference.

The remedy action for these two problems could be suggesting

the clients of other APs to move to another AP on different

channel and likewise. But control, management overheads of

other BSS i.e., OtherBSSOvhd will still be there. This implies

poor configuration of the APs.
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Fig. 11: Witals diagnosis: classroom-43

Validation: We conveyed our Witals diagnosis to the con-

cerned system administrators. They were surprised to know

the diagnosis and identified the issues in their configuration.

2) Classroom-43: In this classroom setting, students down-

loaded online video instructional material over WiFi, during

lab hours. The setup consisted of students connecting to a web

server that hosts the video content. The students used WiFi-

enabled individual laptops and tablets, and some used wired

desktops as well. The activity was as follows: the students

connected to content server, authenticated themselves, and

viewed embedded video content (with javascript controlled

video markers) over the network. Fig. 11 shows the diagnosis

output of Witals algorithm for a representative 5-minute dura-

tion. It shows the aggregate throughput to be about 6 Mbps,

significantly lower than ideal. We see that there is significant

presence of Overcrowding, which matches with the empirical

ground truth observation. The diagnosis also highlights two

other significant problems: Upload and RA. Upload was a

surprising diagnosis, since most students were simply expected

to watch the downloaded videos. And the RA problem is a

side-effect of the over-crowding.

Validation: For validation of our diagnosis we collected

users’ feedbacks. The authors were also present in the class-

room. The empirical observation was that the network was

noticeably slow when all students were using the network.

Students complained to the teacher that their downloads were

getting stuck. In the anonymous feedbacks, students revealed

that they were using facebook, whatsapp etc. in classroom.

That validates our surprising diagnosis of high upload. Prior

work [17] also reported similar problems in a dense classroom.

3) Classroom-80: We also tested Witals in another highly

crowded WiFi-enabled classroom at our Institute. Here almost

200 students were present. We set up 3 access points in 3 non

overlapping channels of 2.4Ghz ISM band. There were many

neighbouring APs on each of the non overlapping channels.
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The WiFi network was used for a classroom activity involving

an online quiz using an Android quiz application on the tablets.

The students logged in via the app to a server, when the quiz

was published by the teacher, the app downloaded the quiz

file. The app enabled students to answer the questions, after

which it submitted the answers to the server.

The ground truth observed empirically was that the students’

experience was really bad. The app took a long time to

download the quiz file. When submitting responses also, many

students found their upload was stuck. Out of 200 students

only about 120 students could submit their responses, with

the instructor having to fall back on paper-printed quiz forms.

Given that quiz file itself was small, we did not expect such

poor performance. The APW for which we present results

served 80 clients. Fig. 1(b) (shown in Sec. I) plots Witals

diagnosis for a representative 5-minute window.

We see here that once again Overcrowding is reported as a

major reason. Unlike classroom-43, Upload is not a problem,

while OtherBSSData and OtherBSSOvhd are significant prob-

lems. Overcrowding also results in RA, and OtherBSSData and

OtherBSSOvhd also result in CoChInterf; these combined ef-

fects reduce throughput significantly, explaining the poor user

experience. The value of this refined view can be understood

by trying to deduce the same visually, from the raw witals

metrics in Fig. 1(a) (in Sec. I).

Validation: For validation of our diagnosis we spoke to

system administrator of our Institute. They confirmed that

indeed there are many BSS on each of the non overlapping

channel which was out side their control. The students also

complained about the slow network. The authors were also

present at the venue and they too experienced slow network.

4) Hostel: Finally, we present results of testing Witals at a

student hostel (dormitory) in our Institute campus. The hostel

access point serves around 100 student-rooms across 4 floors.

We placed our APW close to the hostel’s AP, to enable Witals

diagnosis. The empirical ground truth here was that the user

experience was satisfactory.

While Witals was operational here for a whole day, we look

at a 5-min window during a busy period (around 2.50am!), as

the network is mostly idle otherwise. Even in the relatively

busy period, the network is lightly loaded and healthy for

several TW windows. Witals diagnoses (not shown here)

LowRSSI and CtlMgtOvhd as significant reasons. Sub-optimal

rate selection is a problem here too, as indicated by RA, but

unlike the previous classroom scenarios, Witals algorithm does

not attribute this to collision, but to other issues: it is likely

that there are client-side reasons for such sub-optimal rates.

We also see in this measurement, the benefit of our defi-

nition of Sredn. There are several slow radios, but they are

not sending sufficient traffic to cause a throughput problem

and trigger a SlowTalker diagnosis in Witals. Had we used a

simple ratio of fast to slow radio, like in [22], several instances

of SlowTalker would have been incorrectly diagnosed.

Validation: For validation of of our diagnosis we spoke to

system administrators of the hostel. They informed that one

access point serves several floors and there is coverage issue in

several rooms. This validates our diagnosis of LowRSSI. The

problems reported above were short-term, the network was

Healthy and LowLoad for quite a few time windows, thus it did

not affect user experience: this matched with our observation

that there were no major complaints by users.

E. Comparison of Witals with Commercial Tools

We compare Witals with popular commercial tools. These

tools plot various metrics incomparable to each other and

uses arbitrary thresholds. Further, they do not consider various

simultaneous cause-effects of wireless problems. We come up

with some example scenarios and compare Witals diagnosis

with popular commercial tools such as AirDefense [5].

In presence of other BSS (in otherBSS controlled ex-

periment Sec VI-C), AirDefense will correctly trigger an

interference alarm. Here, Witals also correctly diagnoses Oth-

erBSSData and related CoChInterf. AirDefense will trigger

an utilization alarm when control/management/data frames

or number of associations exceed the thresholds. For valida-

tion, we conducted a controlled experiment where 90 clients

(tablets) were associated with our Witals-enabled AP for a

classroom quiz. The load on the network was very low,

aggregate throughput is merely 100Kbps. Witals diagnoses the

network as LowLoad and Healthy. But in this case, AirDefense

will trigger an utilization alarm. Most commercial tools diag-

nose any non 802.11 energy as interference. But during high

collisions, when two frames collide, the energy becomes non-

decodable. These tools can not differentiate non-decodable

energy caused by external sources from the one caused by high

collisions. For validation, we take the overcrowding controlled

experiment described in Sec VI-C. Fig 8(a) shows that Witals

correctly diagnoses Overcrowding, but most commercial tools

will diagnose this as Interference.

VII. DISCUSSION AND FUTURE WORK

We now discuss a few aspects related to Witals.

What about 802.11ac? While we have built a prototype of

Witals for 802.11a/b/g/n, fundamentally the algorithm remains

same for 802.11ac as well. We are in process of porting our

Witals implementation to a 802.11ac driver.

What about uplink? Conceptually, an instance of Witals

can run at the clients and will be able to diagnose uplink

performance issues. But due to huge variability of clients’

drivers the implementation might be difficult. On the other

hand, if we diagnose at the access point we will be los-

ing out some important information. For example, when the

network is lightly loaded, AP can not distinguish whether:

clients are simply not generating enough traffic, or there

is a wireless issue. There are several client side diagnosis

tools such as WiFi-Profiler [9], Client-Conduit [7]. These are

complementary to our work, we can install these tools at the

clients and collect client side information, which could be

potentially utilized in the Witals framework to diagnose uplink

performance problems.

What about Multiple APs? Witals can be potentially ex-

tended to understand the performance of broader deployments

for enterprise/campus networks by co-ordinating information

across multiple vantage points. This requires a coarse grained

synchronization (in granularity of TW ) between the APs and a

central server for analysis. Each AP can send Witals diagnosis

to a central server. Then the server has to merge each AP’s
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diagnosis to provide a combined view of the network. The

diagnosis of LowLoad, NonWiFi, Overcrowding, LowRSSI,

RA, LowAggr will remain same. The server will note the

frequency of such reportings in all the APs and will flag-off

the majorities. Now, OtherBSSOvhd and OtheBSSData will no

longer be diagnosed from a channel perspective. Instead, these

will be CtlMgtOvhd and Download.

Before-and-after analysis? We have performed several

controlled experiments to understand how Witals helps to

diagnose issues and improve performance. For example, in one

controlled experiment, 15 laptops simultaneously downloaded

and uploaded a long file. Here, Witals reported Overcrowding

and RA. After diagnosing overcrowding as the root cause,

we plugged in a solution WiFiRR [17] to reduce conges-

tion. Thereafter, Witals reported Healthy and LowLoad. The

throughput also improved from from 10-12 to 20-40 Mbps.

The details are described in [16].
VIII. CONCLUSION

In this paper, we have presented the design of Witals, an

AP-centric system for diagnosing a WiFi network’s health.

We do not require any distributed sensor infrastructure, extra

radio at the AP, or client-side modifications. We start with

the design of a causality graph. The causal graph identifies an

extensive set of performance problems. We then come up with

a minimal set of metrics, witals, closely associated with the

nodes of the causal graph. An important property of the witals

metrics is that each of them quantifies throughput reduction,

and being in the same units, are comparable. Our diagnosis

algorithm then puts together the causal graph and the metrics.

The final output is capable of presenting a clear picture to

a sysad, even in the presence of complex real-life WiFi net-

work problems. The Witals framework is capable of detecting

multiple simultaneous problems too, a common occurrence.

We have evaluated Witals extensively in controlled as well

as real-life uncontrolled settings, based on a prototype. We

show that our diagnosis matches ground truth closely. Witals

also helped the sysads unearth some unexpected root-causes

behind performance degradation in certain deployments. We

also perform a quantitative comparison of Witals with research

and commercial tools.

Given the importance of WiFi performance diagnosis, es-

pecially in cloud-managed remote WiFi deployments, we

believe that the AP-centric Witals framework is a significant

contribution, even as WiFi speeds grow.
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