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Abstract—
Offloading computation to local controllers (closer to switches)

has been a popular approach to designing scalable SDN con-
trollers. We observe that, in addition to the offload of local switch-
specific state, a subset of global state can also be offloaded to,
and accessed at local controllers with suitable synchronization.
We present the design and implementation of Cuttlefish, an SDN
controller framework that adaptively offloads a portion of the
application state (and computation) to local controllers. Cuttlefish
uses developer-specified input to identify control messages that
can be correctly processed at local controllers, and makes offload-
ing decisions based on the cost of synchronizing the offloaded
state across controllers. SDN applications use the Cuttlefish API
to access the offloaded state, and Cuttlefish transparently
manages the state synchronization, and redirection of control
messages to the appropriate (central or local) controller. We have
implemented Cuttlefish using the Floodlight SDN controller. Our
evaluation shows that Cuttlefish applications achieve ∼2X higher
control plane throughput and ∼50% lower control plane latency
as compared to the traditional SDN design.

Index Terms—software-defined networking, scalability, con-
troller framework

I. INTRODUCTION

Software Defined Networking (SDN) is a design paradigm
of separating the control and data planes of networking el-
ements. A software defined network consists of a software-
managed, logically centralized controller, and light-weight
switches that are programmed with forwarding rules by the
controller. Any data plane traffic for which rules do not exist,
or signaling messages that require control plane processing, are
directed to the controller by the switches. SDN “applications”
running at the controller process these messages and install
corresponding forwarding rules on the data plane switches.

Prior work (§V) has identified several scalability problems
with centralized SDN controllers and has proposed solutions to
fix the same. One set of solutions [1]–[3] develop horizontally-
scalable distributed SDN controllers that spawn multiple con-
troller replicas to scale controller capacity. The replicas use
standard synchronization techniques to distribute application
state and associated computation between themselves. Other
solutions [4]–[6] propose hierarchical SDN controllers which
offload computation that does not require network-wide view
to local controllers running on (or close to) the switches. For
example, traffic engineering applications that detect flows with
large number of packets (elephant flows) before calculating
optimal routes can offload the task of detecting large flows

to local controllers. The local controllers maintain local state
of switch flow statistics, while the central root controller
only runs route computations that require global view. This
decoupled computation setup results in a lower computation
load at the root controller, and reduces the network traffic
between the switches and the root controller.

Prior work [7] implicitly classifies an SDN application’s
state into global network-wide state (that pertains to, or is
accessed by, multiple switches/entities in the network) and
local switch-specific state. Local state can be easily maintained
at local controllers, and control plane messages that depend
on such state can be offloaded to local controllers. Global
state must be maintained at the root controller (or with tight
synchronization across distributed controllers), and control
plane messages that access global state must necessarily be
processed at the root (or its synchronized replicas). The key
observation of our work is that, beyond the dichotomy of
local and global state, there is a third type of state that we
refer to as partitioned state. Partitioned state is a subset of
global state that can be cached at local controllers, and can
be accessed like local state during the processing of some
control plane messages. These control plane messages, which
we call offloadable messages, access this partitioned state (and
local state) from a single network location and do not require
concurrent access to any other non-local state. The key idea
of our work is that, by synchronizing partitioned state from
the root controller to specific local controllers, the messages
that access this partitioned state (offloadable messages) can
be offloaded to local controllers. This offload can lower the
computation overhead at the central root controller, resulting
in higher control plane capacity, and lower latency for the
SDN application. We refer to this new mode of operation of
an SDN application as the offload mode of operation, as shown
in figure 1(b). In offload mode, partitioned state and local
state resides at local controllers, and offloadable messages
that access such state are handled locally. The updates to
the partitioned state are synchronized between the root and
local controllers. In contrast, when operating in the default
centralized mode (Figure 1(a)), all application state resides
at the central root controller, and all control plane messages
(offloadable and otherwise) are processed at the root (or one
of its replicas in a distributed framework).

We now describe one use case that motivates our work.
Several researchers [8] [9] [10] [11] [12] [13] have proposed



(a) Centralized mode. (b) Offload mode.

Fig. 1: SDN operation modes.

that the 4G LTE packet core [14] can be decomposed into an
SDN controller application that processes signaling messages,
and simpler data plane switches that forward user data based
on the state setup by the signaling messages. In this decom-
posed design of the LTE packet core, one important piece
of application state called the user’s forwarding context—
the information needed to forward a user’s data through the
dataplane gateways—is an example of partitioned state. The
user’s context is created by a control message that registers
the user when she turns on her data connection for the
first time. Processing this registration message requires global
network view and access to an authentication database, and
must necessarily happen at the root controller. However, the
signaling message sent when a user wants to reconnect after
a small idle period requires access only to the user’s context
and no other global state. This is an example of an offloadable
message that can be handled at a local controller closer to
the ingress switch of the user, provided the user’s context
is synchronized with the local controller after registration.
With a significant increase in signaling traffic in modern
cellular networks [15], coupled with the observation that about
half of this traffic consists of messages that transition the
user between idle and active states [16], a framework that
offloads these idle/active transition messages can significantly
improve overall application scalability. We discuss other such
usecases in our paper (§II) and show that several classes of
SDN applications exhibit such partitioned state and offloadable
messages.

Does the offload mode of operation always improve per-
formance? Performing computation based on partitioned state
at local controllers is beneficial only if the state at the local
controller needs to be synchronized with the “master copy”
at the root controller infrequently. If the traffic characteristics
entail frequent updates to the partitioned state, there is frequent
synchronization between the root and local controllers. This
synchronization cost may outweigh the benefit of compute
offload, and a traditional design that does not offload such
state might work better. Figure 2 shows the throughput of
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Fig. 2: Performance with different controller modes

the LTE packet core application, under various control plane
traffic mixes, in both the centralized and offload modes of
operation (details in §IV). In this experiment, the proportion
of registration messages (that update the partitioned state at the
root controller, resulting in synchronization between the root
and local controllers) monotonically increases from traffic mix
A to mix H, and the proportion of offloadable messages de-
creases. We can observe that offload mode performs better than
centralized mode for traffic mixes A to D, because a significant
fraction of the control plane messages are offloaded in offload
mode, thereby improving the capacity of the SDN controller.
However, for the rest of the traffic mixes, the centralized mode
performs better, due to the high synchronization cost (in terms
of CPU and network overhead) between the root and local
controllers in offload mode. With traffic characteristics being
dynamic in nature, an SDN controller framework must support
offloading of partitioned state and associated computation
adaptively between the centralized mode and offload mode
based on the cost of synchronization, in order to optimize
system performance.

This paper describes the design and implementation of
Cuttlefish (§III), a hierarchical SDN controller framework that
adaptively offloads computation from the root controller to
local controllers at (or closer to) switches in order to optimize
SDN application performance. Cuttlefish uses programmer
input to identify the subset of control plane messages that are
offloadable and can be correctly handled at local controllers.
Beyond identifying offloadable messages at design time, the
offload mechanism itself is completely transparent to the SDN
applications. The application developer is required to write
only a single SDN application with logic for handling and
processing various control plane messages, and the same
application runs at both the root and local controllers. The
only change required to SDN applications running on Cuttle-
fish is that they must manage their partitioned state using the
Cuttlefish API that provides functions to get/put/delete key-
value pairs. When the system is operating in offload mode, our
framework takes care of synchronizing the partitioned state
between the root and local controllers, so that the correctness
of the SDN application is maintained. Our framework monitors
the cost of this synchronization, and periodically computes the
appropriate mode (centralized vs. offload) for the application
to operate in. This decision about the operational mode is
enforced by pushing rules to the SDN switches to redirect



control plane messages to the suitable (root or local) controller.
We implement Cuttlefish using the Floodlight SDN con-

troller and Open vSwitch SDN switches. We also implement
three sample SDN applications— a key-value store, the LTE
packet core and a stateful load balancer—to demonstrate the
feasibility of our framework. We evaluate our framework using
these applications under multiple traffic scenarios (§IV), and
show that our framework adapts the amount of offload to traffic
conditions correctly. Across applications, the performance of
Cuttlefish matches that of the best operating mode (centralized
or offload) for a given traffic mix. Cuttlefish improves LTE
control plane throughput by ∼2X and control plane latency
by ∼50% as compared to always operating in the centralized
mode. For the key-value store application, Cuttlefish improves
throughput by ∼3X and latency by ∼60% as compared to
always operating in the offload mode. Further, we observe that
the additional monitoring and metric collection of our adaptive
algorithm imposes a negligible overhead, and our algorithm
can identify and switch to the correct offload mode within
20-70 seconds of a shift in control traffic pattern.

The main contributions of our work can be summarized as
follows: (i) We introduce a new taxonomy of state for SDN
applications, beyond the existing notions of global network-
wide state and local switch-specific state. The key idea of
Cuttlefish is to offload computation that depends on partitioned
state—a subset of global state that can be correctly cached
and updated at local controllers—to improve the performance
scalability of the centralized root controller; (ii) Our frame-
work provides APIs to access partitioned state in an SDN
application, and manages the synchronization of this state
across the root and local controllers. Further, our framework
monitors the cost of state synchronization across the root and
local controllers, and automatically switches between the cen-
tralized and offload operation mode to maximize application
performance, in a manner that is transparent to the application.
Our open source framework [17] enables SDN application
developers to easily leverage these features to improve the
performance of their applications.

II. MOTIVATING APPLICATIONS

While prior work on hierarchical SDN controllers only
offloaded computation that depends on switch-local state,
Cuttlefish proposes offloading computation that depends even
on partitioned state—a subset of global application state that
can be cached and accessed with suitable synchronization
at local controllers. The usefulness of Cuttlefish therefore
depends on whether enough applications exist with partitioned
state, in order to benefit from the computation offload of our
framework. We provide a few examples of such applications
in this section.

A. SDN-based LTE EPC

One of the network components being considered for
control-data plane decomposition in telecom networks is the
mobile cellular packet core, also called the LTE EPC (Long
Term Evolution Evolved Packet Core). The EPC is part of

Fig. 3: Architecture of SDN-based LTE EPC.

the 4G LTE network that connects the wireless side of the
network (the user and the base stations) to the rest of the
Internet, as shown in Figure 3. The main network elements in
the EPC are the Mobility Management Entity (MME) in the
control plane, and the Serving and Packet Gateways (SGW
and PGW) that forward user traffic in the data plane. Recent
proposals to redesign the EPC using SDN principles (e.g., [8])
propose decomposing the control and data plane logic in the
EPC gateways, and running the control logic of the packet
gateways and the MME in an SDN controller. This design
simplifies the EPC gateways and makes them more scalable,
while making the LTE control plane in the software controller
more flexible and amenable to new feature additions.

When a user equipment (UE) connects to a LTE network
for the first time, the UE sends out a control plane attach
request to the EPC to register itself. The MME processes the
attach request, and sets up corresponding forwarding state for
the user in the SGW and PGW. When the UE becomes active
after an idle period, it generates a service request to restore the
previous forwarding state that was released in the idle period at
the dataplane gateways. The EPC also processes other control
plane messages in addition to the attach request and the service
request, e.g., a detach request to disconnect the UE from the
network, and a handover request when the UE moves across
the network.

With the traditional SDN architecture of the EPC, all signal-
ing messages, including the attach/detach requests and service
requests, are forwarded to the root controller. Now, most of the
processing of an attach request must necessarily be done in the
root controller because it requires access to a global database
to authenticate the user, and creation of forwarding state
requires access to the complete network topology. However,
processing the service request requires only the forwarding
state that was already created during the attach procedure,
and can be entirely offloaded to a local controller, provided
the forwarding state at the root is made available locally. A
hierarchical SDN controller framework with local controllers
at EPC gateway switches can thus efficiently offload com-
putations like the service request processing from the root
controller. However, if the traffic is predominantly composed
of attach requests, the synchronization cost of propagating the
forwarding state at the end of every attach request to local



controllers can outweigh the benefit of lowered computation
load due to service request offload, and may ultimately lower
the performance of the EPC application. Therefore, an adaptive
framework like Cuttlefish offloads control plane messages
such as the service request only after considering this tradeoff
in realtime.

B. SDN based Stateful Load Balancer

Consider a simple stateful load balancer that balances
incoming connections among its current pool of servers based
on the current load on the servers (measured by, say, the
utilization of the servers, or the current number of ongoing
connections at the servers). If this application were to be
implemented within the SDN framework, the load balancer
application running at the controller would maintain server
load statistics, assign servers upon start of a new connection,
and install forwarding rules to direct traffic to that server for
all subsequent packets of the connection. In addition to new
connection requests, the load balancer application will also
handle messages to add/remove servers from the pool, updates
related to the load level at the servers, and so on1.

Now, if this SDN application were to be designed in a
hierarchical SDN controller framework like Cuttlefish, one
possible way to offload computation could be as follows:
the root controller assigns subsets of servers to local con-
trollers, and local controllers make load balancing decisions
by assigning incoming connections to servers in their local
pool. The root controller maintains the global view of server
load statistics and moves servers across local pools based on
the incoming load distribution across local controllers. The
partitioned state in this design is the set of server statistics
and the assignment of servers to local controller pools based
on these statistics. Note that several other middleboxes like
NATs and firewalls can be decomposed into hierarchical SDN
applications in this manner—a subset of application state
can be partitioned across local controllers, with each local
controllers handling the part of the global state pertaining to
its network location or traffic.

C. Key-value store

We demonstrate a simple key-value store as another usecase
for our framework. While a key-value store by itself is not a
useful application to build on an SDN controller, it is part of
the state management framework of several SDN applications.
For example, the LTE EPC application discussed above uses
a key-value store to store per-user forwarding contexts, per-
user security related state, and so on. Therefore, we build
a simple key-value store on the Cuttlefish framework, and
implement three key-value tables that store global, partitioned,
and local states respectively. In centralized mode, all the key-
value stores reside at the root controller, whereas in offload
mode, global key-value store reside at the root controller,
local key-value store resides at the local controller and the
partitioned state store can be accessed from both the local

1Our description of the load balancer application is somewhat simplistic,
but captures the essence of real implementations.

Fig. 4: The Cuttlefish architecture.

and root controllers, with suitable synchronization performed
by the framework. Our implementation supports get/put/delete
operations on non-partitioned global, partitioned, and local
keys, in both centralized and offload modes.

III. CUTTLEFISH DESIGN AND IMPLEMENTATION

Figure 4 shows the architecture of Cuttlefish. Cuttle-
fish takes input from the application developer regarding
the type of messages in the control plane and whether they
are good candidates for offload (§III-A). SDN application
developers write applications using Cuttlefish API (§III-B)
functions to access partitioned state. The framework takes
care of transparently synchronizing this state across root and
local controllers based on the operating mode (§III-C). The
heart of Cuttlefish is its adaptation module (§III-D) that
measures the cost of synchronizing partitioned state and makes
a decision on whether to operate the application in offload
mode or centralized mode. The offload decision is enforced
by the framework by pushing suitable rules into the data plane
SDN switches (§III-E). When the adaptation module decides
to switch between controller modes, Cuttlefish ensures that
the migration of partitioned state and redirection of control
plane traffic happen correctly without any race conditions
(§III-F). Finally, we describe our implementation of sample
SDN applications in the Cuttlefish framework (§III-G).

A. Developer input

Cuttlefish requires the application developer to provide the
following input: the types of messages in the control plane
traffic, and whether each of these messages is offloadable or
not. We assume that the control plane traffic to the application
has a discrete, known number of message types, which can
be identified by inspecting packets in the SDN switches2.
The application developer provides rules to identify incoming
message types as part of the input specification.

For each message type in the control plane traffic, the user
specifies whether the message is offloadable or not. How does

2If the type of the control plane message cannot be identified by parsing
standard L2-L4 headers alone, we assume that the switches are programmable
using a language like P4 [18], in order to be able to parse application layer
headers and identify the control plane message type.



an application developer decide if a message can be offloaded
to a local controller? Given our definitions of global, local and
partitioned state (§I), a control plane message is considered
offloadable if processing the message requires access to only
switch-local state and partitioned global state. That is, all
global state accessed by the offloadable message must be
amenable to caching at the local controller, and should not be
accessed concurrently from any other network location during
the processing of this message. We expect that application
developers will have sufficient knowledge about application
state semantics to be able to provide such an input. This
expectation from the developers is common practice, and exists
in prior work. For example Split/Merge [19] and OpenNF [20],
provide APIs for moving state between distributed networking
applications, and require the developer input to have a similar
understanding of the semantics of application state. Table I
shows an example of developer input for the LTE EPC Cut-
tlefish application, listing the types of messages in the control
plane traffic of the EPC and whether they are offloadable.

Message type msgID offloadable
Authentication Step 1 1 false
Authentication Step 3 2 false
NAS Step 2 3 false
Send Access Point Name 4 false
Send UE Tunnel id (teid) 5 true
UE Context Release 6 true
UE Service Request 7 true
Context Setup Response 8 true
Detach Request 9 false

TABLE I: Sample developer input for LTE EPC.

B. The Cuttlefish API

Application developers within the Cuttlefish framework
do not need to write separate applications to run at the
root and local controllers. Instead, developers must use the
Cuttlefish state management API to access partitioned state,
and the framework takes care of transparently synchronizing
this state across the controllers depending on the mode of
operation. We assume all partitioned state can be stored as
key-value pairs. Our API provides the following get/put/delete
functions:
get(local_id, map_name, key)

put(msg_id, local_id, map_name, key, value)

delete(local_id, map_name, key)

The developer simply invokes our API functions when ac-
cessing the partitioned state in the application code, instead of
invoking regular hashmap functions.

While a traditional SDN application may use a number of
hashmaps to store the partitioned state, Cuttlefish stores all
state in a single hashmap. Therefore, the API takes map name
as one of the parameters in the get/put/delete functions, and the
key stored in Cuttlefish is a concatenation of this map name
and the original key. Cuttlefish exposes a single hashmap to
reduce the number of synchronization channels between the
root and local controllers, thereby reducing synchronization
overheads. To optimize the synchronization overheads further,

we synchronize the partitioned state at the root controller only
with the single local controller where the state is accessed.
The local id parameter in get/put/delete requests provides the
local controller identification, and also identifies the partition
of the synchronized hashmap to lookup at the root controller.
To obtain the local controller identifier, the developer could
use the default floodlight function to identify the ingress
switch of a control plane message, which indirectly identifies
the local controller. Finally, note that the parameter msg id
corresponding to the identifier of the message that generated
the state update is part of the put API, in order to let our
framework attribute synchronization costs to control plane
messages (more details in §III-D).

C. Cuttlefish API Implementation

Accessing synchronized hashmaps is slightly slower than
accessing local hashmaps due to additional mechanisms for
consistency. Therefore, we also cache partitioned state tem-
porarily in local hashmaps in centralized mode, because
synchronization is not required in centralized mode. That
is, application state in centralized mode is split between
synchronized hashmaps (which would have been populated
when the application was in offload mode) and the local
hashmap cache (which is used when only in centralized mode).
As shown in figure 5(a), all put operations in centralized mode
are only applied to the local hashmap. Get operations are
first performed on the local hashmap, and are applied in the
synchronized hashmap only in case of a miss in the local
cache. Delete operations are performed on both local and
synchronized hashmaps for consistency.

When operating in offload mode, all offloadable messages
are processed at local controllers, and all partitioned state
accesses (get/put/delete) by the offloaded messages are per-
formed on the synchronized hashmaps, as shown in Fig-
ure 5(b). All non-offloadable messages are handled at the root
controller (e.g., because processing such messages depends
on other global state), and these messages may also generate
concurrent put/delete requests to the partitioned state. In order
to optimize performance in offload mode, we batch updates to
synchronized hashmaps at the local controller and push multi-
ple updates at a time to the root controller. However, updates to
partitioned state at the root controller are immediately pushed
to the local controllers without batching, in order to ensure
that the get operations at the local controller never see stale
state3.

We implement synchronized hashmaps and batching by
extending the fault tolerance module of the open-source Flood-
light SDN controller [21]. The Cuttlefish framework has
TCP communication channels open between the root and local
controllers to transport updates to the synchronized hashmaps.
We batch up to 500 updates at a time at the local controller.

3We assume that processing non-offloadable messages does not result in
any get operations on the partitioned state at the root controller, because
messages that only read partitioned state would be offloadable and handled at
the local controller itself. Therefore, we do not worry about stale state during
get operations at the root.



(a) Centralized mode. (b) Offload mode.

Fig. 5: Cuttlefish API functions.

Note that we currently do not handle pending updates in a
batch being lost due to the failure of the local controller. Our
changes spanned about 350 lines of code in the Floodlight
controller code base.

D. The Adaptation Approach

The adaptation module of Cuttlefish can run as a separate
application at the root controller or as a standalone application.
It monitors the cost of synchronizing the partitioned state
across the root and local controllers, and periodically decides
the appropriate mode of operation (centralized vs. offload)
of the SDN application. As discussed in §III-C, updates to
partitioned state at the local controller are sent in batches,
while updates at the root are propagated immediately. There-
fore, updates to partitioned state at the root controller form a
significant part of the synchronization cost, and form the basis
for the decision algorithm in Cuttlefish.

The Cuttlefish adaptation module maintains a count of the
cumulative number of put operations made to all partitioned
state across all non-offloadable messages at the root controller,
and computes the average rate of puts/sec every epoch. We
use an epoch duration of 10 seconds in our implementation.
At the end of each epoch, the put rate metric decides if Cuttle-
fish must switch modes. If Cuttlefish is operating in offload
mode, and the average put rate crosses a threshold ThrOff Cent,
Cuttlefish switches the operating mode from offload to cen-
tralized, because it considers the synchronization cost to be too
high to result in any performance benefits due to offload. When
operating in centralized mode, Cuttlefish continues to monitor
the averaged puts/sec metric, even though the put operations
are performed on local hashmaps and the partitioned state
is not synchronized with local controllers in the centralized
mode. If the average put rate is found to be below a threshold
ThrCent Off, Cuttlefish considers the synchronization overhead
of partitioned state to be low enough and switches to offload
mode of operation. The instrumentation to the Floodlight

controller to gather the statistics of put operations, and the
logic of the adaptation algorithm were implemented in about
200 lines of code.

TABLE II: Choice of thresholds for transition.

CPU utilization ThrOff Cent (#puts/sec) ThrCent Off (#puts/sec)
30% 600 400
55% 1600 1400
75% 2000 1800
80% 2400 2200
90% 2900 2700

The threshold values ThrOff Cent , and ThrCent Off are con-
figurable, and can be derived from the amount of CPU
that the application programmer wishes to allocate towards
synchronization related computation at the root controller.
We have written a benchmark that executes put operations
at a given rate on partitioned state in offload mode, and
monitors the average CPU load at the root controller due to
the synchronization overhead. This benchmark can be run by
the application developer for different values of the put rate
to identify the rate that corresponds to a maximum tolerable
CPU burden at the root controller. This put rate can be used
to determine the threshold ThrOff Cent to migrate from offload
mode to centralized mode. The threshold ThrCent Off can be
chosen to be slightly lower than ThrOff Cent, to ensure that the
switch from centralized to offload mode happens only when
we are fairly sure that the synchronization overhead is low.
Table II shows the datasheet we use in our setup to pick
the threshold values. This datasheet was calculated for put
operations on 16 to 32 byte key value pairs, and would need
to be recomputed for a different setup or key-value pair size.

E. Enforcing the Offload Mode

When the Cuttlefish adaptation algorithm makes a decision
to switch from the offload mode of operation to a centralized
mode, or vice versa, the SDN switches in the data plane must
be configured in real time to redirect messages to the suitable
controller. We now describe how this redirection happens in
our system.

Our framework has been implemented over the Open-
vSwitch (OVS) [22] SDN switches managed by the Flood-
light controller. The OVS switches are configured with rules
to identify the various message types specified in the user
input. When the system switches modes, the controller and
switches must redirect specific offloadable message types to
the appropriate controller (root/local) based on the mode of
operation. The controller in our implementation did not come
with this support to direct packets to a specified controller; all
switches forwarded traffic to all configured SDN controllers
by default. Therefore, we developed an extension to the
Floodlight controller by implementing the
NiciraSetControllerId feature in the Loxigen library
[21], which allows the Floodlight controller to identify and
communicate with specific switches. In order to adaptively
switch between modes, we also added logic to the con-
troller to automatically generate Openflow commands that



Fig. 6: Switch from Offload mode to Centralized mode.

add/delete/modify rules to direct specific message types to
specific controllers at the OVS switches. Finally, we added a
new Openflow action type of_action_nicira to Flood-
light that allows adding routes at switches to direct packets to
a specific controller (instead of forwarding to all controllers,
as in the default implementation). These changes required
modifying ∼150 lines of code in the controller (Java), and
Loxigen library (C++) code base and required no changes to
the OVS switch implementation.

F. Transition between Controller Modes

When transitioning between modes, the Cuttlefish frame-
work takes care to avoid race conditions between the in-
stallation of switch rules to divert traffic, and the process
of synchronizing state across the root and local controllers.
When the framework switches from a centralized mode of
operation to an offload mode (Figure 7), the state from the
local hashmaps at the root is migrated to the synchronized
hashmaps first, and switch rules to divert the offloadable
messages to the local controllers are installed only after the
root and local controllers have completed the synchronization
of partitioned state. Similarly, when migrating from the offload
mode to the centralized mode (Figure 6), the switch rules
are installed only after all the batched updates from the local
controllers have been flushed to the root. We now describe
this mechanism in more detail.

Offload to Centralized mode: Recall that the partitioned
state is synchronized in batches at local controllers in offload
mode. Cuttlefish uses a flag push update at the local controller
to indicate that updates must be pushed immediately to the
root; this flag is set to false in offload mode. When we want to
switch from offload to centralized mode, we must immediately
synchronize the partitioned state, so the root controller sets
the push update flag at the local controller, causing the syn-
chronized hashmaps to flush all pending updates immediately.
After waiting for a grace period for the synchronization to
complete, the root controller is ready to switch to centralized
mode. The root controller first pushes the rules onto the OVS
at the local controller to forward all the messages (offloadable
and otherwise) to the root controller. However, there could still
be packets in the pipeline at the switch of the local controllers,
which could continue to update the partitioned state for a short
duration after the switch rules have been installed. In order to
correctly handle such packets, the root controller accesses par-

Fig. 7: Switch from Centralized mode to Offload mode.

titioned state from synchronized hashmaps for a brief waiting
period. Further, new packets arriving at the root are buffered
until the packets in the local switch’s pipeline have been
processed, in order to avoid reordering. Once this grace period
for flushing the switch pipeline has expired, the root stops
state synchronization from the local controller by turning the
push update flag to false. The root controller can now switch
to centralized mode without any state inconsistency issues,
and store newly created partitioned state in the local hashmap
cache for better application performance. The values of the
grace periods are a few milliseconds in our implementation,
and will have to be configured based on the network latency
between the root and local controllers for other deployments.

Centralized to Offload mode: When Cuttlefish is op-
erating in centralized mode, some of the partitioned state is
stored in the local hashmap cache at the root controller, and
some in the synchronized hashmaps. When the framework
decides to switch from centralized to offload mode, we must
migrate the partitioned state from the local hashmap cache to
the synchronized hashmap at the root controller. At the root
controller, the boolean variable migrating (if true) indicates
that the state is being migrated from local hashmap cache to
synchronized hashmap. When we set the migrating flag to
true, all delete operations at the root are performed on both
the local and synchronized hashmaps, all put operations are
performed only on the synchronized hashmaps, whereas all get
operations are handled normally (get from the local cache, and
on a miss get from the synchronized hashmap). Also, for all
put operations during state migration, we first perform delete
on local hashmap to avoid state inconsistency. After the local
hashmap has been transferred to the synchronized hashmaps
at the root, the local cache is cleared to avoid stale state, and
the migrating flag is set to false. We then wait for a grace
period for the synchronized hashmap updates to propagate to
the switches, after which we push rules on to the switches
to forward all offloadable messages to the local controller.
Finally, we also enable batching of updates to partitioned state
at the local controller in offload mode.

G. Implementation of Use cases

We implement the three sample applications discussed in
§II— a key-value store, an SDN-based LTE packet core, and
a stateful load balancer—over the Cuttlefish framework, to
demonstrate and evaluate the benefits of our framework.



Key-value store. We implemented a centralized key value
store application that performs put operations to partitioned
state at the root controller, and get operations to the same
state at the local controller, using the Cuttlefish API. We
have also implemented a load generator to generate traffic with
varying ratios of put/get requests, in order to test the adaptive
offload component of our system. We use the IP ToS field in
packet headers to identify put and get requests at the switches.
The application and load generator were implemented in about
1400 lines of Java/C++ code.
SDN based LTE EPC. We implement the SDN-based LTE
EPC application by extending an existing version of the
code [23] built atop the Floodlight controller and OVS SDN
switches, and adapting it to use the Cuttlefish API. We
extended the load generator in the existing code to tag packets
with message types in the IP ToS field, in order to enable
easy identification of the various control plane messages. We
also modified the load generator to generate traffic of varying
mixes, e.g., vary the ratio of the attach requests to the service
requests. Our changes modified 1800 lines of Java/C++ code
in the original application code base.
Stateful load balancer. We built a stateful load balancer as an
SDN application on top of the Floodlight controller in about
600 lines of Java code. We also wrote a load generator that
varies the distribution of load to servers, in order to force
updates to the partitioned state of server load statistics.

IV. EVALUATION

We now describe our evaluation of the Cuttlefish framework.
Our evaluation aims to answer two important questions:

• What are the performance gains of adaptively offloading
computation across local controllers? (§IV-B)

• How efficiently does Cuttlefish accomplish the process
of adaptively switching modes? (§IV-C)

A. Experimental Setup

Testbed. We deployed the Cuttlefish applications over our
testbed consisting of a Floodlight v1.2 controller as the root,
and six OVS v2.3.2 switches as the dataplane switches.
A Floodlight local controller was also colocated with the
switches. All components (controller and switches) used
Ubuntu 14.04, and were hosted over separate LXC containers
to ensure isolation. The containers are distributed amongst
two 16-core Intel Xeon E312xx @2.6Ghz servers with 64GB
RAM. The root and local controllers, and all gateway switches,
were allocated 1 CPU core and 4GB RAM each.
Parameters and metrics. We generate different experi-
ment scenarios by varying the mix of offloadable and non-
offloadable messages in the control plane traffic processed
by the SDN controllers. All experiments ran for 300 sec-
onds unless mentioned otherwise. The performance metrics
measured in our experiments were the average control plane
throughput (number of control plane messages processed/sec)
and average response latency of control plane requests. We
compare these metrics across three modes of operation of
the application: (a) centralized mode, where all control plane
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Fig. 8: Key-value store: control plane throughput.
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Fig. 9: Key-value store: control plane latency.

messages are handled at the root controller, (b) offload mode,
where all offloadable messages are always offloaded to local
controllers, and (c) the Cuttlefish adaptive offload mode,
where offloadable messages are processed at the local con-
troller only if the Cuttlefish adaptation algorithm decides that
the synchronization overhead is low enough.

B. Efficacy of Adaptive Offload

We first quantify the performance gains due to the adaptive
offload mechanism of Cuttlefish. We vary the mix of get
and put requests in the incoming traffic (mix x : y denotes
x% non-offloadable puts, i.e., puts to the partitioned state at
the root controller, and y% offloadable gets, i.e., gets from
the partitioned state at the local controller), and measure the
performance of the Cuttlefish key-value store application. Fig-
ure 8 shows the average throughput of all the controller modes,
and Figure 9 shows the average request processing latency. As
expected, the performance of the offload mode degrades as
compared to the centralized mode, as the proportion of non-
offloadable traffic increases. However, across all traffic mixes,
we see that the performance of the Cuttlefish adaptive offload
mode matches that of the best non-adaptive mode for that
traffic mix. We observe that the Cuttlefish throughput is up
to 2X higher than that of the traditional centralized mode, and
its latency is up to 50% lower. Also, Cuttlefish throughput
is up to 6.4X higher than that of the offload mode, and its
latency is up to 80% lower. Further, the throughput and latency
of Cuttlefish are almost equal to that of the optimal mode
(whether centralized or offload) for a given traffic mix, because
the cost of running the adaptation module is almost negligible.

Figure 10 and Figure 11 show the control plane throughput
and latency respectively of the LTE EPC application, as we
vary the traffic mix (x : y denotes x% non-offloadable attach
and detach requests and y% offloadable service requests). Our
observations remain the same for this application as well.
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The throughput of Cuttlefish is up to 2X higher than that
of the traditional centralized mode, and its latency is up to
66% lower. Cuttlefish throughput is also up to 3X higher
than that of the offload mode, and its latency is up to 62%
lower. As before, the performance of Cuttlefish matches the
best performing mode for a given traffic mix. For the load
balancer, we observe that the amount of synchronization traffic
is very low, and hence the offload mode is always suitable.
But the application still requires to use the Cuttlefish API to
synchronize the partitioned state (server load) in order to scale,
as well as take flow route decisions faster. We omit presenting
those results here.

C. Convergence of Adaptive Offload

In our next set of experiments, we demonstrate effectiveness
of the adaptation mechanism and measure the amount of time
taken by Cuttlefish to compute the correct mode of operation
and switch to it when the traffic mix changes. We only present
results for the key-value store application; the results were
qualitatively similar for the other applications.

In this experiment, we generate get/put traffic to the key-
value store application for a duration of 2400 seconds, while
varying the traffic mix during the experiment as follows. The
ratio of put to get requests changes from 10:90 during the first

300s of the experiment, to 5:95 in the next 300s, to 100:0 in
the next 300s, to 18:82 in the next 300s, to 5:95 in the next
300s, to 66:34 in the next 300s, and finally to 50:50 in the final
600s. We use the threshold values ThrOff Cent=2400 puts/sec,
and ThrCent Off=2200 puts/sec on the average rate of puts to
partitioned state for the offload-to-centralized and centralized-
to-offload transitions respectively. These values correspond
to a synchronization overhead of 80% CPU utilization at
the root controller, as seen from Table II. Figure 12 shows
the throughput of the key-value store application, sampled
every 30 seconds for the duration of the experiment. The
corresponding put rate metric that was used to make the offload
decision is shown in Figure 13 (samples shown every 40
seconds for visual clarity).

From the graphs, we see that when the traffic consists of
predominantly get requests in the first 600s (upto point B in
the graphs), Cuttlefish operates in offload mode. After point
B, the put rate crosses the threshold, the adaptation algorithm
switches to centralized mode, and stays in this mode upto
point D. After point D, the non-offloadable traffic reduces,
the Cuttlefish adaptation algorithm switches to offload mode,
and stays there upto point E. After point E, the traffic mix
incurs a high synchronization cost, and Cuttlefish switches
to centralized mode, and remains in this mode for the rest of
the experiment. Throughout the experiment, we observe that
the Cuttlefish adaptation algorithm always correctly identifies
the best performing controller mode and correctly switches to
it. We observe transient drop in performance after points B,D,
and E, due to the mechanisms of migrating between modes in
Cuttlefish. We find that the Cuttlefish framework takes around
20–30 seconds to switch to a new mode of operation after a
change in traffic mix. This switching duration is obviously a
function of the frequency at which we invoke our decision
algorithm (every 10 seconds), and on size of the application-
centric state requiring synchronization (700 key value pairs in
this experiment).

Given that Cuttlefish takes a few tens of seconds to identify
and switch between modes, it is expected that Cuttlefish will
not perform well if the traffic mix changes very frequently.
Of course, Cuttlefish can perform better if it reduces its
monitoring interval from 10s to something smaller.

V. RELATED WORK

Several approaches have been proposed to ameliorate the
scalability concern in a logically centralized SDN controller
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Fig. 13: Synchronization metric for the key-value store application.

design. Horizontally-scalable distributed controllers [1]–[3]
scale the centralized SDN controller by instantiating multi-
ple homogeneous instances of the centralized controller, and
distributing the control load with techniques like network
topology partitioning or state partitioning. On the other hand,
prior hierarchical scaling techniques [4]–[6] and our Cuttle-
fish framework scale controllers by offloading computation
from the central root controller. The two design options—
distributed controllers and hierarchical controllers—are com-
plementary ideas, with their own strengths and drawbacks.
While the former design can offload any control plane compu-
tation to any replica (after suitable state synchronization), the
latter can offload only a subset of control plane computation
that can be correctly performed at local controllers. However,
distributed controller frameworks incur a performance over-
head due to the synchronization of network-wide state across
replicas, while hierarchical controller designs have no such
associated costs because local switch-specific state does not
require synchronization.

Horizontally-scalable distributed controllers. Onix [1] pro-
vides a control plane API for programmers to implement
distributed network applications, without worrying about state
distribution, element discovery, and failure recovery mecha-
nisms. Hyperflow [2] provides SDN control application scal-
ability by use of multiple physical controllers, but with a
logically centralized view. Hyperflow passively synchronizes
network-wide view of controllers using the publish/subscribe
event based system, without any changes to the SDN ap-
plication. The work that comes closest to Cuttlefish is the
distributed controller design of Beehive [3]. Application state
in Beehive is stored as key-value pairs in a shared distributed
data store, much like how Cuttlefish stores partitioned state
in synchronized hashmaps. These key-value pairs of an appli-
cation can be placed at any of the distributed controllers, and
the Beehive controllers must run an expensive synchronization
protocol to agree on the location of every piece of distributed
state. While this approach has good fault tolerance, it also
incurs a high synchronization overhead. In contrast, Cuttle-
fish distributes only a subset of application state (partitioned
state) to local controllers. Therefore, Cuttlefish can offload
only a subset of control plane messages that depend on such
state to local controllers, while Beehive requires locating
application data and offloading of computation. Further, Cut-
tlefish does not explicitly handle the failure of local controllers

and the resulting loss of state, while Beehive ensures fault
tolerance via replication of state at the distributed controllers.

However, as compared to Beehive and other distributed
controller frameworks, our approach trades off generality and
robustness in favor of performance. We compare the reported
performance of a key-value store application in Beehive with
our own key-value store application. While Beehive can
take up to 20ms to identify a remote node and perform
a put operation, Cuttlefish takes under 5ms for a similar
request. The difference in performance comes from the fact
that Beehive applications must query a globally synchronized
index to determine the location of state required for a certain
computation, while Cuttlefish routes messages to controllers
by identifying message types from packet headers at the
dataplane switches itself.

In summary, we see Cuttlefish and distributed controller
frameworks like Beehive as complementary techniques that
represent two very different design points in the space of
scalable SDN controller frameworks. We can also envision
both techniques being applied together—SDN applications
can offload whatever state and computation they can easily
offload to local controllers, and use a fault-tolerant distributed
controller framework to scale the non-offloadable computation
at the root controller.
Hierarchical controller frameworks. Prior work (e.g., [4]–
[6]) has considered offloading computations that rely on local
state to local controllers. Kandoo [5] offloads tasks like
gathering flow statistics and detecting elephant flows, while
FOCUS [6] offloads node discovery via ARP flooding. Most of
these optimizations are related to computation tasks that do not
affect global controller state. In contrast, Cuttlefish not only
offloads local computation, but also computation that depends
on partitioned global state that need to be only occasionally
synchronized with its copy at the root controller.

Our prior work Devolve-redeem [24] proposed a design
of a hierarchical SDN framework that offloads partial global
state and its related computation to local controllers, and is a
precursor to our present work. However, this earlier work did
not contain a mechanism for adaptively switching between the
centralized and offload modes, and required a more complex
input from the user. Our present work significantly improves
upon this earlier work.
Offload of rules. Difane [25] caches pre-computed forwarding
rules across a subset of local switches, to avoid expensive



communication with the controller when new flows arrive.
Eden [26] provides a framework for implementing the network
functions that do not require high network support at the
end hosts. Eden tags packets with the message type in an
application library, and processes them at end hosts via a
set of match-action tables and a runtime. Cuttlefish also
works by identifying application message types. However,
Cuttlefish offloads the entire application logic (not just the
match-action rules) to local controllers on switches, and hence
is more powerful than these approaches.
State distribution frameworks. The techniques used in Cut-
tlefish to manage distributed state across root and local
controllers are similar to ideas used in frameworks to man-
age distributed state in networking applications [19], [20],
[27], [28]. Split/merge [19] provides a state management
API to applications for managing scale-up and scale-down
operations. State is transparently split between middlebox
replicas for scale-up, and merged to one replica for scale-
down. OpenNF [20] improves split/merge by providing options
for loss-free, and ordered state updates between middlebox
replicas. On the other hand, the goal of Pico replication [27]
is to provide a low overhead, high availability framework
for middleboxes. In order to dynamically grow or shrink
the number of SDN controllers, Elasticon [28] proposes a
switch migration protocol, and enables load shifting between
controllers. Some ideas of Cuttlefish, including the state man-
agement API and the protocol to guarantee ordered message
delivery when migrating between controller modes, have been
inspired by this body of literature.

VI. CONCLUSION

This paper presented the design and implementation of
Cuttlefish, a hierarchical SDN controller that offloads a subset
of SDN application state and computation to local controllers
on switches, in order to scale SDN control plane capacity. In
addition to switch-local state, we identified a subset of global
application state, called partitioned state, that can be correctly
cached and updated at local controllers on switches. Cuttlefish
incorporated an adaptive state offload capability to balance
the tradeoff between performance gains due to offload of
partitioned state, and the cost of synchronizing this state across
the root and local controllers. We developed three sample
applications—the SDN-based LTE packet core, a key-value
store, and a simple load balancer—and demonstrated efficacy
of the Cuttlefish framework. Our evaluation of the sample
SDN applications demonstrated that Cuttlefish improved
control plane throughput by ∼2X and control plane latency
by ∼50% as compared to the traditional SDN design, and
correctly chooses the amount of offload to optimize application
performance. Our framework, based on the popular Floodlight
SDN controller, is available for use by SDN application
developers [17].
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