
libVNF: Building Virtual Network Functions Made Easy
Priyanka Naik, Akash Kanase, Trishal Patel, Mythili Vutukuru

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, India
{ppnaik,akanase16,trishal16,mythili}@cse.iitb.ac.in

ABSTRACT
Network Function Virtualization (NFV) aims to reduce costs and
increase flexibility of networks by moving functionality tradition-
ally implemented in custom hardware into software packet pro-
cessing applications, or virtual network functions (VNFs), running
on commodity servers in a cloud. This paper describes the design
and implementation of libVNF, a library to build high performance,
horizontally scalable VNFs. Unlike existing frameworks for VNF de-
velopment, our library (i) can be used for the development of L2/L3
middleboxes as well as VNFs that are transport layer endpoints;
(ii) seamlessly supports multiple network stacks in the backend; and
(iii) enables distributed implementation of VNFs via functions for
distributed state and replica management. We have implemented a
variety of VNFs using our library to demonstrate the expressiveness
of our API. Our evaluation shows that building VNFs using libVNF
can reduce the number of lines of code in the VNF by up to 50%.
Further, optimizations in our library ensure that the performance of
VNFs built with our library scales well with increasing number of
CPU cores and distributed replicas.

CCS CONCEPTS
• Networks → Programming interfaces; Middle boxes / network
appliances;

KEYWORDS
Network Function Virtualization, kernel-bypass, mTCP, DPDK,
netmap

ACM Reference Format:
Priyanka Naik, Akash Kanase, Trishal Patel, Mythili Vutukuru. 2018. libVNF:
Building Virtual Network Functions Made Easy. In Proceedings of SoCC

’18: ACM Symposium on Cloud Computing , Carlsbad, CA, USA, October
11–13, 2018 (SoCC ’18), 13 pages.
https://doi.org/10.1145/3267809.3267831

1 INTRODUCTION
Network Function Virtualization (NFV) [25] envisions replacing
networking elements traditionally built on dedicated hardware with
software components running on commodity servers in a cloud.
NFV brings many benefits to network operators, including the abil-
ity to elastically scale the number of software instances to match

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267831

VNF B

VNF B

VNF B

VNF A

VNF C

Orchestration Engine

NFV Service
Chain

NFV
Infrastructure

Cloud of Commodity Hardware

Operating System

Hypervisor + Software Switch

Kernel
Bypass

Figure 1: The NFV ecosystem.

load (instead of provisioning hardware to handle peak load), and
the flexibility to upgrade network functionality quickly (instead of
waiting for long hardware development cycles). Recent techniques
that enable the development of high-performance packet processing
software (e.g., [3], [16]) have spurred the adoption of NFV. The
network functions being considered for virtualization today range
from simple layer 2/3 middleboxes that manipulate packet head-
ers (e.g., firewall, L3 load balancer, NAT), to networking elements
that terminate transport layer connections and perform higher layer
processing.

Figure 1 shows a simplified view of an NFV deployment. Net-
work traffic is forwarded through service chains of one or more
virtual network functions (VNFs), hosted on the underlying NFV in-
frastructure consisting of a cloud of commodity servers. The VNFs
in the chain can be monolithic (VNFs A and C in the figure), or
horizontally scaled clustered implementations (VNF B). The VNFs
can run directly on the bare metal servers, or inside virtual ma-
chines (VMs) or containers for easy provisioning and management.
The VNFs can either run over the traditional network stack within
the operating system, or can use kernel bypass techniques (e.g.,
DPDK [3], netmap [42]) to directly access packets from the hard-
ware in userspace and then process them using optimized userspace
network stacks (e.g., mTCP [30], TLDK [15]). Finally, an orches-
tration layer runs across the system and performs functions such
as traffic steering, elastic scaling, and lifecycle management of the
VNFs.

This paper focuses on the problem of building high-performance
VNFs. For NFV to become a cost saving paradigm, a VNF developer
should only have to write the core packet processing logic of the
VNF. The other parts of the VNF code—including the logic of
efficiently communicating with other VNFs of the service chain over
a network stack, and managing distributed state across other replicas

https://doi.org/10.1145/3267809.3267831
https://doi.org/10.1145/3267809.3267831

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA P. Naik et al.

of the same VNF—should be readily available in reusable optimized
VNF development libraries. However, we find that the reality of
VNF development is far from it. For example, we examined the code
of industry-grade VNFs that constitute the packet core of mobile
telecommunication networks (LTE EPC, or Long Term Evolution
Evolved Packet Core) [1]. We found that about 38% of the code of
these VNFs pertained to reading and writing network data efficiently
via DPDK, and had nothing to do with the core logic of the VNF.

The VNF development frameworks proposed in prior work cannot
be used to easily build scalable implementations of complex VNFs
such as the EPC components for the following reasons. First, most
frameworks (e.g., [16, 17, 38]) focus on providing richer APIs for
packet header manipulation in L2/L3 middleboxes, and do not have
abstractions that support the development of VNFs with transport
layer endpoints such as the EPC components. Second, frameworks
that support the transport layer endpoint abstraction (e.g., [15, 30])
expose an event-driven socket-like API over a multicore-scalable
userspace stack to VNF developers. However, it is well known that
writing event-driven code is complicated by the fact that the pro-
cessing of a single application-layer request is split across multiple
callbacks, resulting in the VNF developer having to maintain sig-
nificant state across callbacks [18]. Therefore, building VNFs with
transport layer endpoints over such frameworks still requires signifi-
cant developer effort.

Third, while some frameworks exist to build horizontally scalable
middleboxes (e.g., [26, 31, 41, 47]), none of them comes with a
transport layer stack that enables the development of VNFs with
transport layer endpoints. Finally, existing frameworks force the
VNF developer to choose a network stack apriori (e.g., the regular
Linux kernel stack or a kernel bypass stack), and VNFs written on
one stack are not easily portable to another. However, our experi-
ments with different types of VNFs show that there is no one right
choice when it comes to network stacks. For example, when pro-
cessing a CPU-intensive workload in the VNFs that comprise the
IP Multimedia Subsystem (IMS) in telecommunication networks, a
kernel bypass mechanism that is non-trivial to setup and configure
achieves a throughput gain of only 1.4× over the more readily avail-
able Linux kernel stack (see §4.2 for details). On the other hand, for
the I/O intensive LTE EPC gateway VNFs, the kernel bypass stack
improves throughput by 33× as compared to the Linux kernel stack,
because the impact of reducing kernel I/O processing overheads is
more promounced with an I/O intensive workload. These results
indicate that VNF developers would benefit from the ability to easily
switch and experiment with multiple network stacks, to pick the
one that is best suited to the application needs. However, existing
VNF development frameworks do not provide this flexibility, and
switching network stacks requires significant changes to the VNF
code.

This paper describes the design and implementation of libVNF,
a C++ library that eases the development of high performance, hor-
izontally scalable VNFs [6]. The libVNF API provides a set of
high-level functions for efficient network communication, and can
be used to build both L2/L3 middleboxes as well as VNFs that act
as transport layer endpoints. The libVNF library implements these
API functions over multiple backend network stacks; we currently
support the Linux kernel stack and the mTCP userspace stack (over

the netmap/DPDK kernel bypass mechanisms). The libVNF commu-
nication API is asynchronous and event-driven, in order to leverage
event-driven multicore-scalable network stacks like mTCP. VNF
developers embed packet processing logic within callback functions
that are invoked by the library when events (e.g., packet arrivals)
occur on connections. Unlike prior work, libVNF significantly eases
the management of application state across callbacks by exposing
the abstraction of an application-layer request to the VNF developer.
With libVNF, VNF developers can store state across multiple con-
nections and callbacks in a single request object that is efficiently
managed by the library. libVNF can also be used to easily build
distributed clustered implementations of a VNF; our API provides
functions to store and retrieve state in a shared datastore, and func-
tions to monitor the health of multiple replicas of a component.

Our implementation of the libVNF API employs several optimiza-
tions for high throughput and multicore scalability. Upon initial-
ization, the library spawns one event-driven application thread per
core, and the threads use cache-optimized per-core data structures
for lockfree operation wherever possible. To avoid the overhead
of dynamic memory management, the library preallocates memory
using optimized slab allocators for frequently recycled objects, e.g.,
packet buffers and request objects.

We build several VNFs using our library to show that our API is
expressive enough to cater to a wide variety of VNFs, from a simple
L3 load balancer to complex VNFs that make up the EPC and IMS
subsystems in the packet core of mobile telecom networks. We find
that using our library to build VNFs saves up to 50% lines of code in
the VNF, and the performance of VNFs built over libVNF is within
10% of optimized VNFs built without the library. Further, we show
that the performance of VNFs built with our library scales well with
increasing replicas of a VNF, and with increasing CPU cores within
a single replica.

This paper builds upon and improves our position paper [35] that
only proposed an API without an implementation. The experience
of implementing the API over multiple network stacks has led us
to refine our API further from this prior work. The rest of the paper
is organized as follows. §2 provides an overview of our system. §3
describes the libVNF API and its implementation. §4 presents the
evaluation of our system. §5 describes related work and §6 concludes
the paper.

2 LIBVNF OVERVIEW
We designed libVNF with the following goals:

• The API should be useful for the development of both L2/L3
middleboxes as well as VNFs that terminate transport layer
connections.
• The API should be agnostic to the choice of the network stack

(kernel vs. kernel bypass) and the deployment platform of the
VNF (baremetal vs. VM).
• The API should ease state management and replica coordina-

tion in a distributed VNF implementation.
• The performance of the library should scale well with increas-

ing CPU cores of the VNF.

We now illustrate VNF development in our framework with a
simple example of a service chain consisting of VNFs A, B, and
C, shown in Figure 2. Let the communication between the VNFs

libVNF SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 2: Example VNF service chain.

1 struct b_state{
2 char* a_req;
3 int serverID;
4 };
5 //callback for request from A
6 void handle_a_req(a_sockid,requestObj,a_req){
7 requestObj = allocReqObj(a_sockid,1);
8 //connect to C
9 int c_sockid = createClient(C_IP_ADDR,C_PORT,TCP);

10 //callback for read on C's socket
11 registerCallback(c_sockid,READ,handle_c_reply);
12 linkReqObj(c_sockid,requestObj);
13 b_state *x = static_cast<b_state*>(requestObj);
14 //store state in request object
15 x->serverID = a_sockid;
16 x->a_req = setPktDNE(a_req);
17 //send request to C
18 c_request = getPktBuf(c_sockid);
19 //... fill packet buffer ...
20 sendData(c_sockid,c_request,LEN);
21 }
22 //handle function for reply from C
23 void handle_c_reply(c_sockid,requestObj,c_reply){
24 //... read reply from C ...
25 //retrieve state from request object
26 b_state *x = static_cast<b_state*>(requestObj);
27 a_sockid = x->serverID;
28 //... compute reply using a_req and c_reply ...
29 //write reply back to A
30 a_reply = getPktBuf(a_sockid);
31 // ... fill packet buffer ...
32 sendData(a_sockid,a_reply,LEN);
33 unsetPktDNE(x->a_req);
34 freeReqObj(c_sockid);
35 freeReqObj(a_sockid);
36 }
37 int main(int argc, char *argv[]){
38 int serverID = createServer("",B_IP,B_PORT,TCP);
39 //callback function for read on server socket
40 registerCallback(serverID,READ,handle_a_req);
41 //initialize request object pool
42 int reqpool[1] = {sizeof(struct b_state)};
43 initReqPool(reqpool, 1);
44 startEventLoop();
45 return 0;
46 }

Listing 1: VNF B written with libVNF

proceed as follows: A generates requests to B over a TCP connection.
To process A’s request, B first opens a connection to C, sends a
request, and waits to get a response back. After receiving C’s reply,
B proceeds to do some computation based on data received from A
and C, and then sends a reply back to A.

1run(){
2 //called in thread after accept
3 read(a_sockid,a_req,LEN);
4 connect(c_sockid,&daddr,size);
5 write(c_sockid,c_request,LEN);
6 //read reply from C
7 read(c_sockid,c_reply,LEN);
8 //compute a_reply using a_req and c_reply
9 //write reply back to A

10 write(a_sockid,a_reply,LEN);
11}

Listing 2: VNF B written over blocking sockets

Listing 1 shows some snippets of the code of B built over libVNF.
The main function of B first invokes the initialization API (§3.1,
lines 38–44) to begin VNF execution. During initialization, the
library creates one affinitized VNF thread per CPU core, and starts
each thread in an event-driven loop to process packets. The library
also configures the packet I/O path through the network stack, the
details of which depend on the type of network stack (kernel vs.
kernel bypass), the layer at which the VNF is operating (L2/L3 vs.
transport), and the deployment platform (baremetal vs. VM).

After initialization, the VNF uses the functions in the libVNF
communication API (§3.2) to communicate with other VNFs, e.g.,
by opening connections (line 9) and sending data (lines 18–20). In
order to leverage existing work on multicore-scalable network stacks
like mTCP that expose an event-driven API, our communication
API is also asynchronous and event-driven. The VNF developer
registers callback functions to be invoked by the library on events
such as packet arrivals (lines 11, 40), and the main packet processing
logic of the VNF is written within these callback functions (e.g.,
handle_a_req and handle_c_reply). We currently imple-
ment this API over the regular Linux stack and the mTCP userspace
stack with the DPDK/netmap kernel bypass mechanisms. Our imple-
mentation uses per-core pools of packet buffers that are preallocated
using optimized allocators, and accessed in a lockfree manner by the
application threads. We also employ optimizations such as batched
transfer of packets to/from the network card wherever possible.

Developing applications over non-blocking event-driven APIs
such as ours is harder than when using blocking APIs, because
application state that would have been on the process stack in the
blocking case must now be manually marshalled across callbacks
by the developer of the event-driven application [18]. For example,
Listing 2 shows how the code of B would be written over blocking
sockets, while Listing 3 shows B written over an event-driven API
with non-blocking sockets (but without using libVNF). We can
see from the code snippets that state required in B to reply to A’s
request (e.g., the packet received from A) is readily available as local
variables on the stack when using blocking sockets. However, in
the case of event-driven APIs, when B replies to A’s request within
the callback invoked upon receiving C’s reply, the packet received
from A is no longer on the stack. Therefore, when not using libVNF,
B must explicitly allocate memory and maintain data-structures to
track this state (lines 22–30 of Listing 3), and this problem only gets
worse as the VNFs get more complex.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA P. Naik et al.

1 //map socket id to state
2 map<int,void*>state_store;
3 //set to maintain socket status
4 set<int>c_conn_map,a_conn_map;
5 struct b_state{
6 char* a_req;
7 int serverID;
8 };
9 void run(){

10 if (events[i].data.sockid == listen_sockid){
11 //store the socket of A in a set
12 a_conn_map.insert(newsockfd);
13 }
14 else if (events[i].events & EPOLLIN) {
15 if(a_sockid in a_conn_map){
16 //read request from A
17 read(a_sockid,a_req,LEN);
18 //connect to C
19 connect(c_sockid,&daddr,size);
20 //store the socket of C in a set
21 c_conn_map.insert(c_sockid);
22 void* requestObj = malloc(sizeof(b_state));
23 b_state *x = static_cast<b_state*>(requestObj);
24 //store packet from A required
25 x->a_req = malloc(LEN);
26 memcpy(x->a_req,a_req,LEN);
27 //associate C s socket to A s socket
28 x->serverID = a_sockid;
29 //point C socket to request state
30 state_store[c_sockid]=requestObj;
31 //write request to C
32 write(c_sockid,c_request,LEN);
33 }
34 if(c_sockid in c_conn_map){
35 //read reply from C
36 read(c_sockid,c_reply,LEN);
37 //retrieve A s socket from the map
38 b_state *x = static_cast<b_state*>
39 (state_store[csockid]);
40 a_sockid = x->serverID;
41 //compute a_reply using x->a_req and c_reply
42 //write reply back to A
43 write(a_sockid,a_reply,LEN);
44 free(x->a_req);
45 free(state_store[c_sockid]);
46 state_store.erase(c_sockid);
47 c_conn_map.erase(c_sockid);
48 a_conn_map.erase(a_sockid);
49 }
50 }}

Listing 3: VNF B written with an event-driven API

To ease this process of managing state across callbacks, libVNF
provides the abstraction of a request object. A request object can be
used to store application state of a single request across callbacks
and connections, e.g., VNF B can embed the packet received from A
during the callback handle_a_reqwithin a request object, and re-
trieve it to generate a reply to A in the callback handle_c_reply.

libVNF over mTCP libVNF over Linux stack

Linux Stack

VNF Application

netmap/DPDK stack
mTCP network stack

VNF Application

Multiqueue NIC NIC
percore

request object
pool

libVNF API

per-core
thread

Server
Socket

Client
 Socket

local data
store pool

percore
packet pool

Figure 3: VNF Architecture with libVNF.

Our API provides functions to allocate and manage request ob-
jects (§3.3). These objects are maintained in per-core, preallocated,
cache-optimized slabs in the library. From comparing Listing 1 and
Listing 3, it is clear that the request object abstraction significantly
simplifies VNF development in libVNF as compared to frameworks
that only expose an event-driven socket-like API.

Finally, libVNF makes it easy to develop VNFs that are imple-
mented as a cluster of replicas for fault tolerance and scalability. Our
state management API functions (§3.4) can be used to transparently
store and retrieve state across VNF replicas, and our orchestration
API (§3.5) can be used to monitor and manage the replicas.

3 API DESIGN AND IMPLEMENTATION
The libVNF API consists of 19 functions that are implemented in
around 2500 lines of code in an open-source library [6]. Table 1 sum-
marizes our API, and Figure 3 illustrates the architecture of a VNF
built over our API. We now describe our API and its implementation.

3.1 Initialization
Rows A1–A2 in Table 1 show the functions used to initialize a VNF
built over libVNF. A VNF starts a packet receiving endpoint, or a
server using function A1. If the VNF is operating as a transport layer
endpoint, the arguments to A1 will consist of the IP address, port
number, and protocol of the server. This API function is implemented
in the library by creating a listening server socket in the Linux or
mTCP network stacks, and binding it to the specified address and
port by the library. Instead, if the VNF is operating as a L2/L3
middlebox without transport layer processing, only the network
interface is provided as an argument to A1. This functionality is
realized by the library using raw sockets in case of the Linux stack,
and by directly communicating with the underlying kernel bypass
packet I/O mechanism (netmap or DPDK) in the case of the mTCP
stack. Our library currently supports registering only one server
socket per VNF, due to a similar restriction in the mTCP stack. We
currently support only TCP as the transport layer protocol.

We use the terms connection endpoints and sockets interchange-
ably, to refer to both raw sockets over interfaces and transport layer

libVNF SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

No. Function Inputs Return value
A1 createServer receiving interface (for L2/L3 VNFs) or IP, port, protocol of

listening socket (for transport layer VNFs)
connection identifier

A2 startEventLoop None None
C1 createClient local server connection id, local client IP, transmitting interface

(for L2/L3 VNFs) or IP, port, protocol of remote server (for
transport layer VNFs)

connection identifier

C2 registerCallback connection id, event (READ/ACCEPT/ERROR), pointer to call-
back function with inputs: connection id, pointer to packet buffer,
pointer to request object, error code

None

C3 getPktBuf connection id pointer to empty packet
buffer

C4 sendData connection id, pointer to packet buffer, size of data to write None
C5 setPktDNE connection id, pointer to packet buffer pointer to packet buffer
C6 unsetPktDNE connection id, pointer to packet buffer None
C7 closeConn connection id None
R1 initReqPool array containing sizes of request object types, number of request

object types
None

R2 allocReqObj connection id, index of request type void * pointer to re-
quest object

R3 linkReqObj connection id, pointer to existing request object None
R4 freeReqObj connection id, index of request type None
D1 setData connection id, table name, key, pointer to value, size of value,

location (LOCAL/REMOTE), pointer to callback function with
arguments: connection id, key, pointer to request object, error
code

None

D2 getData connection id, table name, key, location (LOCAL/RE-
MOTE/CHECKCACHE), pointer to callback function with argu-
ments: connection id, key, pointer to value, size of value, pointer
to request object, error code

None

D3 delData table name, key, location (LOCAL,REMOTE) None
D4 setKeyDNE table name, key None
D5 unsetKeyDNE table name, key None
O1 registerfor

Notification
orchestrator (IP, port), pointer to callback function with argu-
ments: task (ADD/REMOVE), vnf_name, vnf_ip_address, event
(MAINTENANCE/FAILURE/OVERLOAD)

None

Table 1: The libVNF API functions.

sockets at particular port numbers. API functions that create con-
nection endpoints (including A1) return a connection identifier to
the VNF code, which is provided as an argument to several other
API functions. The connection identifier returned by the library to
the VNF is the concatenation of the socket file descriptor and the
CPU core number on which the VNF thread is running, because the
socket file descriptors are per-core local and not globally unique in
mTCP.

After creating a server, the VNF registers callback functions
which must be invoked by the library when any event like packet
reception occurs on the socket (as described in §3.2). The VNF then
invokes function A2 to enter an event loop. The function A2 blocks,
and control returns to a callback function in the VNF code when
an event of interest occurs. The implementation of A2 depends on
the backend network stack. Across all stacks, the library creates one

VNF thread per core, and pins the thread to its core. In case of the
Linux stack, all threads register for events on the shared server socket
created by A1 (with suitable locking), and invoke the epoll system
call to block for events; the edge-triggered listen socket semantics
ensure that every new connection request is delivered to one of the
VNF threads only. The mTCP stack uses per-core accept queues and
listen sockets for multicore scalability. So, when running over mTCP,
the VNF threads invoke mTCP’s epoll-like API to block for events
on their own per-core listen sockets. In case of L2/L3 VNFs running
over the mTCP stack, the underlying kernel bypass mechanism is
directly polled for packets, completely bypassing the transport layer
in mTCP.

Before invoking the event loop, the library initializes the I/O paths
for sending and receiving packets through the network stack. The
I/O path configuration depends on whether the VNF is running on

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA P. Naik et al.

bare metal or inside VMs, and on the specific network stack being
used. Note that mTCP scales performance across multiple cores
by running one copy of the network stack per core, and binding
a separate RX/TX packet queue to each core via a kernel bypass
mechanism. When the VNF runs mTCP directly on the physical
server, physical NICs can expose multiple RX/TX packet queues to
mTCP via the multi-queue functionality. When the VNF runs mTCP
inside a VM, we provision multiple queues in a software switch that
is compliant with the kernel bypass mechanism (e.g., VALE [43] for
netmap and BESS [46] for DPDK), and bind one such queue per
core of the VM. Of course, all of this configuration is much simpler
when running on the kernel network stack; the library simply sends
and receives packets from the network interface exposed by the
host/guest kernel. Note that all of this configuration is transparent to
the VNF developer, and is completely managed by the library.

3.2 Communication
Rows C1–C7 in Table 1 correspond to functions that are used to
communicate with other VNFs in a service chain. Function C1 is
used to create a client-side connection endpoint for initiating trans-
mission. Much like A1, C1 can also be used to create both endpoints
for L2/L3 VNFs and transport layer VNFs. Function C1 takes the
connection identifier of the local server socket as an argument in
order to identify the CPU core of the running thread and use per-
core data structures where possible. C1 is non blocking, and returns
immediately to the VNF after initiating the process of connection
setup within the library. Packets sent on a socket by the VNF before
connection setup completes are buffered internally by the library,
and flushed once connection setup completes. Our API does not
notify connection setup failures to the VNF; instead, this error will
be discovered and handled by the VNF when it tries to write data.
A VNF can create any number of transport layer client sockets us-
ing C1. However, if the VNF is opening a connection endpoint to
send/receive packets directly from an interface (for L2/L3 VNFs),
only one endpoint per interface RX/TX queue will be permitted for
obvious reasons.

For all endpoints (server and client), the function C2 registers a
callback function with the library. The callback is registered for one
of the following events: ACCEPT (new connection), READ (packet
arrival), and ERROR. The same connection endpoint can register
different callback functions for different events. Once callbacks are
registered, the VNF cedes control to the event wait loop in the library.
Upon the occurrence of one of these events on any socket, the event
loop in the library returns, and the library invokes the suitable VNF
callback function to handle the event. The arguments passed to the
callback function by the library depend on the event.

The library maintains per-core pools of packet buffers, allocated
using slab allocation in the boost library [22]. Much like the TCP
socket buffers in Linux, the size of the packet pools must be tuned
based on the network linerate; our current implementation allocates
2048 buffers per core, each of size 1024B. When epoll or a similar
function returns in the library indicating packet arrival (EPOLLIN),
the packet is first copied into a free packet buffer in the per-core
userspace buffer pool within the library. The library then invokes the
corresponding callback function on the socket, providing a pointer
to this packet buffer as an argument. If the event loop returns to

indicate an error on any socket (e.g., ENOTCONN), the callback is
invoked with the suitable error code as an argument, and with a null
pointer for the packet buffer. If the event loop indicates a new TCP
connection request (EPOLLIN on the listen socket), the connection
identifier of the new connection is passed as an argument. Finally,
every socket can optionally have some application state associated
with it in the form of a request object (§3.3), and a pointer to this
request object, if it exists, is also returned.

To send data on any connection, the VNF must first obtain a
pointer to a free packet buffer using API function C3. The connection
identifier provided as an argument to C3 helps the library identify
the core-local packet buffer pool to allocate from. Once the VNF
fills the buffer with the desired contents, it must invoke API function
C4 to transmit the packet. The VNF can just fill in the payload if
it is sending packets via a transport layer stack, but must generate
all network layer headers itself when it is acting as a L2/L3 VNF
and communicating over raw sockets. API C4 to send packets is a
non-blocking function, and errors that occur during the transmission
are notified to the VNF via a later error event callback.

Prior work has shown that batching the transmission and reception
of packets can improve network I/O performance [42]. Therefore, lib-
VNF strives to incorporate batching in its implementation wherever
the underlying network stack supports it. mTCP already incorpo-
rates batching at the transport layer and transport layer VNFs built
over mTCP automatically gain the benefits of batching. However,
when implementing L2/L3 VNFs that do not undergo transport layer
batching, our library enables batching directly via the kernel bypass
mechanism. For example, our library reads a batch of packets from
the NIC, and then invokes callback functions for every packet in
order. Similarly, on the transmit path, the library collects a batch of
packets before handing them over to the kernel bypass mechanism.
Batching is not implemented over the kernel stack because the socket
API of Linux does not support it.

Packet buffers are reused by the library after the VNF has pro-
cessed the received packet and the callback returns. However, if a
VNF does not wish the buffer to be recycled immediately (e.g., to
store a pointer to the packet in a request object, and access it in
another callback), it can use API function C5 to set the Do Not Evict
(DNE) flag on the packet buffer. Buffers with this flag set are not
recycled until the flag is unset using function C6. The requirement
of storing packet buffers beyond the callback is the reason why lib-
VNF maintains its own pool of packet buffers in userspace, even
when running on stacks like mTCP that have a similar mechanism
internally. If the number of free packet buffers in the pool fall below
a threshold, the library proceeds to allocate more memory from the
kernel and expand its pool. We currently do not have mechanisms to
detect malfunctioning VNFs that exhaust the packet buffer pool, e.g.,
by not un-setting the DNE flag, and a better mechanism of garbage
collecting unused packet buffers is part of future work.

The final API function pertaining to communication is C7, used
to close a connection and release all state pertaining to it.

3.3 Request Objects
libVNF provides the abstraction of request objects to easily manage
application state across multiple callbacks. libVNF has no knowl-
edge of specific application semantics, so VNF developers indicate

libVNF SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

the size of application state that they wish to track across callbacks to
the library via API function R1. This function takes as argument the
number of types of request objects and their sizes. Upon receiving
this information from the VNF, the library provisions multiple pools
of request objects per core, one pool for each object size, after round-
ing up the request object sizes to the smallest power-of-2 block that
can accommodate the object. Our implementation currently allows
4 pools of 220 objects each per core, and the pools are preallocated
using a slab allocator [22] to avoid dynamic memory allocation over-
heads. The per-core request object pools are cache-optimized, and
accessed by the VNF threads in a lockfree manner.

Every connection endpoint can be optionally associated with a re-
quest object, and this object is returned on every callback associated
with that endpoint. If a connection has no request object associated
with it yet, API function R2 can be used to allocate a new request
object of a specific size and associate it with a connection endpoint.
Further, multiple connection endpoints (e.g., sockets to communi-
cate with A and C at B) can also be associated with the same request
object, because handling one application layer request can rely on
multiple asynchronous network communications. In such cases, API
function R3 can be used to associate an existing request object to
another connection endpoint. Once a VNF has completed processing
a request (or has encountered an error and wishes to abort a request),
the request object can be deallocated using API function R4. Note
that the API gives applications complete control over what state they
wish to track across callbacks, and what the granularity of a request
is. We currently assume that the application has one outstanding re-
quest at a time on a connection, and we plan to relax this assumption
in future work.

Request objects can store pointers to other objects managed by
the library, e.g., packet buffers. Recall that API function C5 is used
to obtain a pointer to a non-evictable packet buffer, and such pointers
can be stored in request objects without worrying about the buffers
being recycled. The VNF developer should take care to ensure that
the pointers stored in a request object are released (e.g., packet buffer
marked as evictable using function C6) before a request object is
released. We assume that the memory allocated for a request object
is freed by the VNF developer at the end of the request processing.

3.4 State Management
The libVNF API provides functions to store application state (as-
sumed to be in the form of multiple tables of key-value pairs) across
per-core threads of the VNF application, and across multiple dis-
tributed replicas of a VNF. The API supports non-blocking get, set,
and delete of these key-value pairs. Our framework provides a local
datastore that is shared across all threads of a single VNF instance,
and a remote shared data store that is shared across multiple VNF
replicas. In addition, the library also maintains a local FIFO cache
of key-value pairs fetched from the remote datastore, which can
be used to improve performance when accessing remote state. Our
current implementation assumes that keys are integers and values
are dynamically allocated blobs of arbitrary size.

API function D1 is used to store a key-value pair, in the local or
remote datastores. The function is non-blocking, and an associated
callback function is invoked when the set operation has completed
by the library (successfully or otherwise). Function D2 is used to

retrieve a key-value pair. In addition to fetching from the local or
remote datastore, the API can also indicate whether the local cache
must be checked before contacting the remote server. Note that
applications can use the cache for enhanced performance, but may
choose to forgo checking in the local cache in case the application
logic deems the cached value to be stale. The get operation is also
non-blocking, and a callback function is invoked by the library
when the get completes. Fetched key-value pairs are also stored
in the datastore cache (if not present already), and a pointer to the
dynamically allocated value is provided to the callback function.
Finally, API function D3 is used to delete keys from local and
remote datastores. Note that key-value pairs stored in the cache can
be evicted by the FIFO eviction policy any time after the callback
returns. However, if the VNF requires to hold on to a value for a
little while longer (e.g., for storing its pointer in a request object) it
may use API functions D4/D5 to set/unset the Do Not Evict (DNE)
flag of the cache entry.

The libVNF library implements the local datastore and the datas-
tore cache as hashmaps that point to pre-allocated blocks of memory
storing values. The local datastore and cache are accessed from the
per-core VNF threads through locking. We use the Redis in-memory
key-value store as the remote datastore in our implementation be-
cause of its widespread use as a distributed fault tolerant datastore
in cloud applications; other datastores can be considered as part
of future work. The library opens one TCP connection per CPU
core to the datastore during initialization. In order to ensure that all
communication to the datastore is non-blocking, we built a wrapper
over Redis (using hiredis-vip([2]) that runs at the Redis server and
communicates asynchronously with our library threads running on
VNF replicas. We use the transaction support provided by Redis to
correctly handle multiple writes to the same key by different replicas,
and guarantee atomic updates of keys across replicas.

3.5 Orchestration
Multiple VNFs hosted on a cloud in an NFV deployment will typ-
ically be managed by an orchestration framework that is part of a
cloud management software. Among other things, an orchestrator
takes care of instantiating VNFs on physical servers and managing
the life-cycle of the VNFs. For example, NFV orchestrators like
OpenBaton [11] and OPNFV [14] use simple heuristics such as CPU
utilization thresholds to trigger scaling events. Once an orchestrator
detects a scaling or failure event, it takes suitable action to address
the situation, e.g., spawning a new replica of a VNF during failure or
overload, or decommissioning an existing replica during underload
or maintenance. libVNF does not seek to replicate this functionality
of detecting failures or overload/underload scenarios. However, lib-
VNF can integrate with orchestrators and learn of these events, in
order to notify VNFs that wish to adapt to these events. For example,
a load balancer VNF built over libVNF may wish to adapt its traffic
steering algorithm based on the number of replicas it is steering
traffic to. Any VNF that wishes to know the status of another VNF
from the orchestrator for such use-cases may register for notifica-
tions using orchestration API function O1. libVNF interfaces with an
orchestrator to learn of failure and scaling events, and invokes a call-
back function in all VNFs registered for orchestration notifications.
The callback is invoked with the following details that are available

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA P. Naik et al.

VNF A VNF C

S/W Switch (on kernel)

LB VNF VNF B VNF B Data
Store VM

Software Switch (Vale on netmap)

Physical NIC
NIC queue

Figure 4: Experimental setup for microbenchmarking.

at the orchestrator: the identity of the VNF whose status has changed,
the type of change (addition or removal of replicas), and the reason
for the change (e.g., failure). The VNF receiving these notifications
can then take suitable action to handle the failure or scaling event.
We have currently integrated libVNF with a homegrown orchestrator
built on simple VM monitoring tools, and have implemented the
orchestration API in this setup. We plan to explore the integration
with a more sophisticated orchestrator as part of future work.

We would like to note that, while libVNF does not contain explicit
mechanisms for fault tolerance beyond whatever state has been
stored in the remote datastore by the VNF itself, it has enough
hooks to enable VNF developers to build fault tolerant distributed
implementations customized to the needs of the application. When
failures happen, our library returns error codes back to the VNF
developer in callbacks, and orchestrator notifications about new
replicas being spawned. With these inputs, the VNF developer can
handle faults in a manner that is appropriate for the application
semantics. For example, when a transport layer connection to an
upstream VNF times out, the VNF could choose to abort the request
or retry once again at another replica. Similarly, when a VNF replica
fails, the new replica can decide how it should resume execution
based on what state has survived the failure in the remote datastore.

4 EVALUATION
Our evaluation of libVNF comprises two parts. First, we run mi-
crobenchmarks and show that the performance of VNFs built with
our library is usually within 10% of the performance of optimized
implementations built without using the library, and that the perfor-
mance scales well, both with increase in number of CPU cores in the
VNF, as well as increase in the number of replicas of a distributed
VNF implementation (§4.1). Second, we build several complex real-
world VNFs over our library, and show that our API is expressive
enough to develop a wide variety of VNFs, and that using our library
results in up to 50% reduction in development effort (as measured
by LoC) (§4.2).

4.1 Microbenchmarks
Setup. We consider a simple service chain consisting of VNFs A,
B, and C, as shown in Figure 2. VNFs A and C are implemented
as multithreaded C++ applications over pthreads, while B is the
VNF of interest for our benchmarking exercise. VNF A generates
multiple requests to B in a closed loop fashion in order to saturate B.
Upon receiving a request, B performs a CPU-intensive computation
(updating a value in a busy for loop), communicates with C, and
then replies back to A. We measure the performance of B in terms of
end-to-end throughput (requests completed/sec) and average latency

of request completion, as measured at A. Across all experiments,
we ensure that the VNFs A and C are not the bottleneck. All graphs
report the minimum, maximum, and average values of metrics over
5 runs of 300 seconds each.

We implement B both using the libVNF API (we call this ver-
sion BLib), and as a regular non-blocking C++ application (we call
this version BNoLib). We run each of BLib and BNoLib on three
different network stacks: the regular Linux kernel, the mTCP stack
over DPDK, and mTCP over netmap. Note that the code of BLib did
not change across the various network setups, while BNoLib was
significantly rewritten for each network stack. We also ran BLib in a
clustered configuration, with multiple replicas of B synchronizing
state using a remote datastore. Migrating to a distributed implemen-
tation also did not require rewriting the code of BLib. We used a
simple load balancer built over our API (see §4.2) to steer traffic
across multiple replicas of B.

We use two Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
servers with 24 cores, 64GB memory to host the VNFs. VNFs A
and C run inside VMs on one Linux (Ubuntu 14.04) server with
KVM hypervisor, while one or more replicas of B (along with the
load balancer and remote datastore VMs) run on a second Linux
(CentOS7) server that is connected to the first over a 1Gbps link.
When testing B on the mTCP/netmap stack, B runs inside a VM that
is hosted over the netmap-based VALE software switch, as shown
in Figure 4. When testing B on the mTCP/DPDK (dpdk-17.08)
stack, B runs directly on the physical server, and not inside a VM,
because we could not get mTCP to run inside a VM using the DPDK
kernel bypass mechanism. (Specifically, mTCP did not recognize the
multiple queues exposed by BESS, which is a DPDK-based software
switch.) When testing B on the Linux and netmap stack, B runs inside
a VM hosted on the KVM hypervisor. VMs hosting A and C were
provisioned with 4 CPU cores and 4GB RAM each, while each
replica of B was provisioned with 4GB RAM. The number of cores
and replicas of B varied across experiments. In all the above setups,
we first verified correct packet transmission and reception using
simple test programs before running our benchmarking experiments.

 0

 50

 100

 150

 200

 250

 300

DPDK
BLib

DPDK
BNoLib

netmap
BLib

netmap
BNoLib

Linux
BLib

Linux
BNoLib

T
h

ro
u

g
h

p
u

t(
re

q
/s

ec
)

CPU intensive VNF

Figure 5: Single core CPU intensive application: throughput
comparison with and without library.

libVNF SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

DPDK
BLib

DPDK
BNoLib

netmap
BLib

netmap
BNoLib

Linux
BLib

Linux
BNoLib

T
h

ro
u

g
h
p

u
t(

re
q

/s
ec

)

I/O intensive VNF

Figure 6: Single core I/O intensive application: throughput com-
parison with and without library.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

DPDK
BLib

DPDK
BNoLib

netmap
BLib

netmap
BNoLib

Linux
BLib

Linux
BNoLib

L
at

en
cy

(m
se

c)

I/O intensive VNF

Figure 7: Single core I/O intensive application: latency compar-
ison with and without library.

Comparison of single core VNFs. We first compare the perfor-
mance of BLib and BNoLib when running on a single core VM,
across three different network stacks: Linux, mTCP/netmap, and
mTCP/DPDK. Figure 5 shows the throughput of B across all 6 exper-
iments. We see from the figures that the throughput of BLib is within
5% of that of BNoLib, indicating that our library implementation
does not introduce any overheads. However, we noticed that the
mTCP/DPDK stack underperformed in this experiment. We found
the reason to be the polling variant of the DPDK kernel bypass driver
(unlike the interrupt-based driver of netmap), which did not share the
single CPU well with the CPU-intensive application. To verify this
fact, we modified B to skip the CPU computation on each request,
i.e., upon receiving A’s request, B simply communicated with C and
replied back to A. Figure 6 shows the throughput of B in this I/O
intensive mode of operation. We now see that both mTCP/DPDK
and mTCP/netmap outperform the kernel stack, and once again, the
throughputs of BLib and BNoLib are comparable across all stacks.

Further, Figure 7 shows that the request processing latencies of BLib
and BNoLib are comparable as well.

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4 6 8

T
h

ro
u

g
h
p

u
t(

re
q

/s
ec

)

Number of cores

on DPDK stack

X

2.0X

2.9X

4.1X

5.8X

8.3X

on netmap stack

Y

1.9Y

2.7Y

3.8Y

5.2Y

7.0Yon kernel stack

Z

2.0Z

3.1Z

4.0Z

5.9Z

7.6Z

Figure 8: Performance scaling with increasing CPU cores.

Multicore scalability. We now consider the CPU-intensive version
of B built over the library (i.e., BLib) and test how its performance
scales with increasing number of CPU cores of the VNF B. Figure 8
shows the throughput of B, across all three network stacks, as the
number of CPU cores are varied from 1 through 8. We see from the
figure that the performance of B scales well with increasing cores
due to several implementation choices made in our library (e.g., use
of per-core data structures where possible).

 0

 200

 400

 600

 800

 1000

1 2 3 4

T
h

ro
u
g

h
p
u

t(
re

q
/s

ec
)

Number of replicas

local data store

X

1.9X

2.8X

3.6X

remote data store

Y

1.9Y

2.8Y

3.5Y

with local caching

Z

1.9Z

2.8Z

3.6Z

Figure 9: Performance scaling with increasing replicas.

Scalability across replicas. We now consider single core B built
using the library (i.e., BLib) over the mTCP/netmap stack, and run it
as a distributed VNF with varying number of replicas. We consider
various methods of storing/retrieving state at B (by changing the
API parameters in B): always accessing the local datastore, always
accessing the remote Redis datastore running on another VM, and
accessing the remote datastore via a cache (with a very high hit
ratio of 97%). Figure 9 shows the throughput of B as the number

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA P. Naik et al.

of replicas of B varied from 1 to 4. We see from the figure that the
performance of B scales well with increasing replicas in all the three
state management options. Further, we see that B’s performance
degrades slightly when using the remote datastore as compared
to the local datastore, due to the extra network stack processing
required for remote communication. However, caching state locally
as done by our library can reduce this performance degradation for
workloads with good cache locality.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 50 100 150 200 250 300 350
 0

 10

 20

 30

 40

 50

 60

 70

T
h

ro
u

g
h
p

u
t(

re
q

/s
ec

)

N
u

m
b
er

 o
f

fa
il

u
re

s/
se

c

Seconds elapsed

throughput at B

failures at A

Figure 10: Scale-out and failure timeline.

Handling orchestration events. We now consider the clustered im-
plementation of B, where the load balancer of the cluster is built
over the orchestration API of libVNF and uses the orchestrator noti-
fications to adapt its traffic steering. Figure10 shows the aggregate
throughput of a clustered implementation of B and the failure rate
at A as a function of time. This is across two events: the load from
A was increased at around 60 seconds leading to the orchestrator
increasing the number of replicas of B from 1 to 2, followed by one
of the replicas being taken down at around 245 seconds. Across both
events, we found that the load balancer was notified of the event and
could successfully adapt its traffic steering to the change in the status
of B’s replicas within 5 seconds of the event. This recovery time is a
function of the granularity at which libVNF synchronizes with our
simple orchestrator, and can be improved further in the future.

VNF Throughput
No library

Throughput
With libVNF

LoC saved

IMS 5483 reg/s 5678 reg/s 42%
EPC 7988 reg/s 7548 reg/s 38%
LB 2.7 Gbps 2.3 Gbps 52%

Table 2: VNF development with and without libVNF.

4.2 Building VNFs with libVNF
We now build three sample VNFs using our library. The VNFs we
build range from a simple L3 load balancer to several complex VNFs
deployed in the packet core of mobile telecommunication networks.
We implement all VNFs over the Linux and mTCP stacks, with and

without using the libVNF APIs. Table 2 summarizes the key results
comparing the VNF implementations using our library with those
that were built without libVNF.
IMS. IMS (IP Multimedia Subsystem) is a set of networking ele-
ments used to setup voice and video calls over IP within modern
telecommunication networks. IMS comprises of multiple compo-
nents: Proxy Call Session Control Function (P-CSCF), Interrogating
CSCF (I-CSCF), Serving CSCF (S-CSCF), and a Home Subscriber
Server(HSS). These components communicate with each other as
part of several service chains, and together handle requests to reg-
ister mobile users and setup calls between pairs of registered users,
among other things. The VNFs within IMS are all transport layer
endpoints that receive requests from mobile users (and from other
VNFs in the service chain) over TCP and perform CPU-intensive
computation (such as authentication) to process the requests.

We implemented simplified versions of the IMS VNFs that handle
user registrations alone [8], both using libVNF and without the
library. We then ran experiments to compare the performance of the
two versions, when both versions were running on the Linux stack.
All VNFs run within VMs provisioned with 2 CPU cores and 4GB
RAM, hosted on an Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
server with 24 CPU cores and 64 GB RAM. We also built a multi-
threaded closed loop load generator to fire registration requests and
saturate the IMS VNFs, and measure the saturation throughput of the
system as the average number of registrations successfully completed
per second at the load generator. Row 1 of Table 2 shows that there
was no performance overhead in implementing the IMS VNFs over
the library. In fact, we noticed a slight improvement in performance
when using the version built over the library. Upon profiling our
code, we found that this improvement in performance was due to
the preallocation of several data structures within the library, as
compared to the dynamic memory allocation overhead incurred by
the version built without using the library. Further, we found that
using the library API reduced the LoC in the implementation by over
40%.
LTE EPC. Long Term Evolution Evolved Packet Core (LTE EPC)
is the packet core of modern 4G telecommunication networks, and
connects the radio network with the rest of the Internet. Mobile
users register with the network and send mobile data, which is then
tunneled through the EPC using packet forwarding state that is
created during the registration procedure. The main components of
the EPC are the Mobility Management Entity (MME) and, Serving
and Packet Gateways (S/P-GWs). MME handles user registration and
other CPU-intensive control plane procedures and sets up forwarding
state to tunnel user traffic through the SGW and PGW gateway
VNFs.

We implemented simplified versions of all three EPC compo-
nents (MME, SGW, PGW), along with a closed loop load generator
that generates control and dataplane traffic to saturate the EPC [9].
Our simplified version of the EPC code only handles user regis-
tration/deregistration, datapath setup, and data transfer; we do not
handle other EPC procedures, e.g., handovers. We then ported the
simplified MME component to use the libVNF API, and compared
the performance of the VNFs built with and without the library over
the mTCP/netmap stack. (We have not yet ported the SGW/PGW
components to the library as they run over the UDP transport layer
stack that is currently not supported by mTCP.) In the experiment,

libVNF SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

we run all EPC components and the load generator inside VMs pro-
visioned with 1 CPU core and 4GB RAM, hosted on an Intel(R)
Xeon(R) CPU E5-2670 v3 @ 2.30GHz server with 24 cores and 64
GB RAM. We let the load generator saturate the MME with control
plane traffic and measure the saturation throughput (in terms of the
number of registration successfully completed per second) of the
versions of MME. From Row 2 of Table 2, we see that using our
library imposes a low overhead of under 6%, and results in LoC
savings of around 38%.

As discussed in §1, we also compared the performance of the
mTCP/netmap and Linux stack versions of IMS and EPC (both built
without the library) in order to understand the benefits of kernel
bypass mechanisms over the kernel stack, as part of the motivation
of our work. We found that the mTCP-based kernel bypass stack
resulted in very small performance gains (1.4× higher than that
of the Linux stack in case of IMS) when running CPU intensive
workloads, but performed very well (e.g., 33× higher than the Linux
stack in case of the SGW/PGW of EPC) when running I/O intensive
workloads. Upon profiling the code, we found that the CPU cycles
saved during I/O processing in a kernel bypass stack were insignif-
icant in comparison to the CPU cycles spent on application-layer
processing in the case of CPU-intensive workloads, resulting in a
small performance gain for the kernel bypass techniques.
L3 Load Balancer. Next, we build a simple L3 load balancer (LB),
both with and without the library, over the netmap kernel bypass
mechanism. Recall that this LB was also used to steer traffic to
multiple VNF replicas in Figure 4. Our LB is not very sophisticated—
it simply uses the hash of the source port to distribute incoming flows
to a fixed set of backend replicas—but it suffices to demonstrate
the ability of our library to build L2/L3 VNFs. The experience of
building a L3 VNF using the same API functions that are used to
build a transport layer VNF was a challenging experience, and led
us to refine our library implementation in significant ways.

In order to test the performance of our LB, we ran an iperf [4]
client and server on two separate VMs, with the LB VM intercepting
the flow to rewrite packet headers, and measured the throughput
achieved by iperf. All VMs were provisioned with one core and
1GB RAM, and were hosted on an Intel i5 server with 4 cores and
12GB RAM. From Row 3 is Table 2, we see that the forwarding
capacity of the LB VNF is 14% lower when built over our API as
compared to when built directly over the netmap API. We found
that this difference in throughput between the implementations was
due to the additional API calls being made within the library. Note
that the impact of the additional API calls by the library is higher in
this very simple VNF that does very little work per packet, but this
overhead was negligible in comparison with the VNF processing in
more complex VNFs (IMS and EPC).

5 RELATED WORK
Network stack design optimized for NFV. Prior work has identi-
fied several shortcomings in the network I/O subsystem of standard
operating systems, and has provided solutions for the same. One set
of solutions (e.g., Megapipe [27], FastSocket [33]) propose fixes to
the Linux network stack to improve network I/O performance and
make it scale well across multiple CPU cores. On the other hand,
kernel bypass mechanisms like DPDK [3] and netmap [42] choose

to bypass the Linux kernel altogether and process network packets
directly in userspace, with the help of clean-slate multicore scalable
network stacks (e.g., mTCP [30]). Clean slate operating systems
designs such as IX [21], Arrakis [39] propose a refactored kernel de-
sign that is better suited to fast I/O processing. Finally, modern NICs
(e.g. smartNIC [7]) are evolving to offload network stack processing
from the CPU in order to improve I/O performance. Our work on
libVNF is orthogonal to this body of work, and the implementation
of the libVNF API can leverage such optimized network stacks in
the backend.
Frameworks to build L2/L3 VNFs. Click [32] is a seminal work
on providing suitable abstractions to ease the development of L2/L3
middleboxes. More recently, VNF development frameworks such
as Netbricks [38], YANFF [17], and VPP [16] are built on top of
DPDK, and expose a rich packet header manipulation API to build
L2/L3 VNFs. PISCES [44] allows developers to specify a L2/L3
packet processing pipeline in the P4 [23] language, and compiles it
to a C-based software switch code. However, unlike libVNF, these
frameworks cannot be easily used to build VNFs that also act as
transport layer endpoints, nor do they have mechanisms to enable a
distributed clustered implementation of a VNF.

On the other hand, these frameworks expose a richer API for
packet header manipulation than libVNF, which only delivers raw
packets to the VNF. While we plan to explore enhancements to our
API to support richer packet manipulation in the future, we believe
that the strength of libVNF really lies in the ability to develop
both L2/L3 and transport layer VNFs within the same framework.
Therefore, we envision libVNF being used to primarily develop
transport layer VNFs and the L2/L3 VNFs that need to coexist with
these transport layer VNFs (e.g., L3 load balancer to steer traffic to
the multiple transport layer VNF replicas), while frameworks with
a richer API for L2/L3 VNF development can be used when the
ecosystem has no VNFs with transport layer endpoints.
Frameworks to build transport-layer VNFs. Flick [19] proposes
a domain-specific language to build VNFs over the mTCP userspace
stack, but does not support the development of horizontally scal-
able VNFs. Network stacks such as mTCP [30], TLDK [15] build
transport layer (TCP/UDP) functionality in userspace over a kernel
bypass mechanism like DPDK, and expose an event-driven epoll-
like API for network communication. mOS [29] is a network stack
derived from mTCP that provides the abstraction of a monitoring
socket and an event-driven API over it, so that TCP-level flow state
can be reconstructed even on middleboxes that do not terminate TCP
connections. Our work is complementary to such efforts; the libVNF
provides a higher-level API than sockets, and can use most of these
network stacks in the backend.
Frameworks to build horizontally scalable VNFs. Split/Merge
[41] and OpenNF [26] address the problem of efficiently migrat-
ing application state across distributed stateful middleboxes during
scale-out and scale-in. On the other hand, StatelesNF [31] proposes
to handle failures and scaling in distributed middleboxes not via
migrating state across replicas, but by storing all shared state in a
remote data store. S6 [47] provides a shared state space abstraction
to distributed middleboxes, and transparently migrates state to opti-
mize shared state access. However, unlike libVNF, these frameworks
are not integrated with a transport layer stack to build VNFs that act
as transport layer endpoints.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA P. Naik et al.

Frameworks to build fault-tolerant VNFs. The Pico-Replication
[40] framework enables the development of fault tolerant middle-
boxes by replicating TCP flow state across replicas, while FTMB [45]
achieves the same goal by carefully replaying input packets. lib-
VNF does not explicitly implement mechanisms for fault tolerance;
VNF developers can customize the fault tolerance logic of their
applications using the the libVNF API functions for checkpointing
state, detecting connection errors, and performing efficient load-
balancing on failures (e.g., as described in recent research on load
balancers [20, 24, 36]).
NFV infrastructure and orchestration. While our work focuses
on buildng VNFs, other efforts in industry and academia have ad-
dressed the complementary problems of developing an optimized
NFV infrastructure to deploy the VNFs, and mechanisms to or-
chestrate and manage the deployed VNFs. NetVM [28] and Open-
NetVM [50] propose NFV platforms based on DPDK, and opti-
mize communication across VNFs of a service chain hosted on the
same physical machine via zero copy packet transfer. Flurries [49]
is an NFV platform that is designed to host lightweight VNFs in
containers. ClickOS [34] is a Xen-based NFV platform optimized
to host middleboxes. OPNFV [14] aims to create a standardized
NFV software platform, comprising of several open-source systems
such as the OpenStack cloud management software [13], the OVS
(Open vSwitch) software switch [12], and the KVM hypervisor [5].
ONAP [10] is an industry effort to create an orchestration platform
for VNFs, while E2 [37] and Dysco [48] are academic efforts that
address the orchestration and placement problem.

6 CONCLUSION
This paper presents libVNF, a library to ease the development of
high-performance horizontally-scalable VNFs. The libVNF API is
expressive enough to build a wide variety of VNFs, ranging from
L2/L3 middleboxes, to those that terminate transport layer connec-
tions and perform significant processing at the application layer.
libVNF provides mechanisms for managing states across multiple
replicas of a VNF, thereby simplifying the process of building hori-
zontally scalable implementations of network functions. The library
API builds over the event-driven communication API exposed by
modern network stacks, and provides abstractions that ease the pain
of managing application state across event callbacks. The API func-
tions are agnostic to the choice of network stack, and can work
with multiple network stacks in the backend. Experiments with VNF
prototypes built over our API show that libVNF enables the devel-
opment of high performance VNFs, saves significant development
effort, and introduces minimal overhead. In the future, we propose
to extend our API to provide non-blocking functions for file han-
dling and other essential activities, by integrating our library with an
asynchronous disk I/O framework. Our library also lacks a rich API
for packet header manipulation, like that found in other frameworks
for building L2/L3 VNFs [16, 38, 44], and we plan to enhance our
API in this direction as well. We believe that a library such as ours,
if widely used for VNF development, can significantly accelerate
the adoption of NFV.

ACKNOWLEDGEMENTS
We thank Sagar Tikore and Vaishali Jhalani for helping with some
of the experiments. We thank Yashasvi Sri Ram and Sai Sandeep for
helping make libVNF more user-friendly. We are also thankful to the
anonymous reviewers for their insightful comments and feedback.
This work is supported by a research grant from Intel Corporation,
and a Ph.D. student fellowship from IIT Bombay.

REFERENCES
[1] 2018. CORD Intel EPC. https://gerrit.opencord.org/ngic.
[2] 2018. Hiredis-vip. https://github.com/vipshop/hiredis-vip.
[3] 2018. Intel Data Plane Development Kit. http://dpdk.org/.
[4] 2018. Iperf. https://software.es.net/iperf/.
[5] 2018. Kernel Virtual Machine. https://www.linux-kvm.org/page/Main_Page.
[6] 2018. libVNF. https://github.com/networkedsystemsIITB/libVNF.
[7] 2018. Netronome. https://www.netronome.com/products/smartnic/overview/.
[8] 2018. NFV-IMS. https://github.com/networkedsystemsIITB/NFV_IMS.
[9] 2018. NFV-LTE-EPC. https://github.com/networkedsystemsIITB/NFV_LTE_

EPC.
[10] 2018. ONAP. https://www.onap.org/.
[11] 2018. Open Baton. https://openbaton.github.io/documentation/.
[12] 2018. Open vSwitch. https://www.openvswitch.org/.
[13] 2018. Openstack. https://www.openstack.org/.
[14] 2018. OPNFV. https://www.opnfv.org/.
[15] 2018. Transport Layer Development Kit. https://github.com/FDio/tldk.
[16] 2018. Vector Packet Processing. https://github.com/FDio/vpp.
[17] 2018. Yet Another Network Function Framework. https://www.slideshare.net/

MichelleHolley1/new-model-for-cloud-network-function-development-yanff.
[18] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R. Douceur.

2002. Cooperative Task Management Without Manual Stack Management. In
Proc. of ATEC ’02.

[19] Abdul Alim, Richard G. Clegg, Luo Mai, Lukas Rupprecht, Eric Seckler, Paolo
Costa, Peter Pietzuch, Alexander L. Wolf, Nik Sultana, Jon Crowcroft, Anil
Madhavapeddy, Andrew W. Moore, Richard Mortier, Masoud Koleni, Luis Oviedo,
Matteo Migliavacca, and Derek McAuley. 2016. FLICK: Developing and Running
Application-Specific Network Services. In Proc. of USENIX ATC’16.

[20] Joao Taveira Araujo, Lorenzo Saino, Lennert Buytenhek, and Raul Landa. 2018.
Balancing on the Edge: Transport Affinity without Network State. In Proc. of
NSDI’18.

[21] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating
System for High Throughput and Low Latency. In Proc. of OSDI’14.

[22] Boost. 2018. https://www.boost.org/.
[23] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[24] Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load
Balancer.. In NSDI’16.

[25] ETSI. 2012. Network Functions Virtualisation. https://portal.etsi.org/nfv/nfv_
white_paper.pdf.

[26] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. 2014. OpenNF: Enabling Innova-
tion in Network Function Control. In Proc. of SIGCOMM’14.

[27] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012.
MegaPipe: A New Programming Interface for Scalable Network I/O. In Proc. of
OSDI’12.

[28] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM: High Per-
formance and Flexible Networking Using Virtualization on Commodity Platforms.
In Proc. of NSDI’14.

[29] Muhammad Asim Jamshed, YoungGyoun Moon, Donghwi Kim, Dongsu Han, and
KyoungSoo Park. 2017. mOS: A Reusable Networking Stack for Flow Monitoring
Middleboxes. In Proc. of NSDI’17.

[30] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A Highly Scalable User-
level TCP Stack for Multicore Systems. In Proc. of NSDI’14.

[31] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. Stateless
Network Functions: Breaking the Tight Coupling of State and Processing. In Proc.
of NSDI’17.

[32] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
2000. The Click Modular Router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000),
263–297. https://doi.org/10.1145/354871.354874

https://gerrit.opencord.org/ngic
https://github.com/vipshop/hiredis-vip
http://dpdk.org/
https://software.es.net/iperf/
https://www.linux-kvm.org/page/Main_Page
https://github.com/networkedsystemsIITB/libVNF
https://www.netronome.com/products/smartnic/overview/
https://github.com/networkedsystemsIITB/NFV_IMS
https://github.com/networkedsystemsIITB/NFV_LTE_EPC
https://github.com/networkedsystemsIITB/NFV_LTE_EPC
https://www.onap.org/
https://openbaton.github.io/documentation/
https://www.openvswitch.org/
https://www.openstack.org/
https://www.opnfv.org/
https://github.com/FDio/tldk
https://github.com/FDio/vpp
https://www.slideshare.net/MichelleHolley1/ new-model-for-cloud-network-function-development-yanff
https://www.slideshare.net/MichelleHolley1/ new-model-for-cloud-network-function-development-yanff
https://www.boost.org/
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://doi.org/10.1145/354871.354874

libVNF SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

[33] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu, and
Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implementation for Short-
Lived Connections. In Proc. of ASPLOS ’16.

[34] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function
Virtualization. In Proc. of NSDI’14.

[35] Priyanka Naik and Mythili Vutukuru. 2017. libVNF: A Framework for Building
Scalable High Performance Virtual Network Functions. In Proc. of APSys ’17.

[36] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. 2018.
Stateless Datacenter Load-balancing with Beamer. In Proc. of NSDI’18.

[37] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia
Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A Framework for NFV
Applications. In Proc. of SOSP’15.

[38] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. 2016. NetBricks: Taking the V out of NFV. In Proc. of OSDI’16.

[39] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krish-
namurthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The Operating
System is the Control Plane. In Proc. of OSDI’14.

[40] Shriram Rajagopalan, Dan Williams, and Hani Jamjoom. 2013. Pico Replication:
A High Availability Framework for Middleboxes. In Proc. of SoCC’13.

[41] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. 2013.
Split/Merge: System Support for Elastic Execution in Virtual Middleboxes. In
Proc. of NSDI’13.

[42] Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet I/O. In Proc. of
USENIX ATC’12.

[43] Luigi Rizzo and Giuseppe Lettieri. 2012. VALE, a Switched Ethernet for Virtual
Machines. In Proc. of CoNEXT ’12.

[44] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster,
Nick McKeown, and Jennifer Rexford. 2016. PISCES: A Programmable, Protocol-
Independent Software Switch. In Proc. of SIGCOMM ’16.

[45] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind Krishna-
murthy, Christian Maciocco, Maziar Manesh, João Martins, Sylvia Ratnasamy,
Luigi Rizzo, and Scott Shenker. 2015. Rollback-Recovery for Middleboxes. In
Proc. of SIGCOMM’15.

[46] Berkeley Extensible Software Switch. 2018. http://span.cs.berkeley.edu/bess.html.
[47] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy, and

Scott Shenker. 2018. Elastic Scaling of Stateful Network Functions. In Proc. of
NSDI’18.

[48] Pamela Zave, Ronaldo A. Ferreira, Xuan Kelvin Zou, Masaharu Morimoto, and
Jennifer Rexford. 2017. Dynamic Service Chaining with Dysco. In Proc. of
SIGCOMM ’17.

[49] Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K. Ramakrishnan, and Tim-
othy Wood. 2016. Flurries: Countless Fine-Grained NFs for Flexible Per-Flow
Customization. In Proc. of CoNEXT ’16.

[50] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire
Todeschi, K.K. Ramakrishnan, and Timothy Wood. 2016. OpenNetVM: A Plat-
form for High Performance Network Service Chains. In Proc. of HotMIddlebox

’16.

http://span.cs.berkeley.edu/bess.html

	Abstract
	1 Introduction
	2 libVNF Overview
	3 API Design and Implementation
	3.1 Initialization
	3.2 Communication
	3.3 Request Objects
	3.4 State Management
	3.5 Orchestration

	4 Evaluation
	4.1 Microbenchmarks
	4.2 Building VNFs with libVNF

	5 Related Work
	6 Conclusion
	References

