
Evaluating Network Stacks for the Virtualized
Mobile Packet Core

Ashwin Kumar∗, Priyanka Naik+, Sahil Patki∗, Pranav Chaudhary∗, Mythili
Vutukuru∗

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, India∗

IBM Research, India+

ashkumar@cse.iitb.ac.in,priyanka.naik@ibm.com,{sahilpatki,pranavchaudhary,mythili}@cse.iitb.ac.in

ABSTRACT
Several novel userspace network stacks have been proposed
in recent research to overcome the limitations of the Linux
network stack in providing high-performance I/O for Virtual
Network Functions (VNFs). In this paper, we evaluate the
performance of several state-of-the-art network stacks in the
context of the VNFs of the 5G mobile packet core. The VNFs
in the 5G core are several times more compute-intensive than
the VNFs used to benchmark network stacks in prior work,
given the need to perform user authentication and other such
cryptographic operations. Our evaluation shows that while
modern stacks outperform the Linux kernel stack over I/O
intensive VNFs (as observed in prior work), the performance
gap is not as wide in the case of CPU-intensive VNFs of
the 5G core. We also find that the packet core VNFs can
obtain up to 67% higher performance if the network stack
could partition traffic to CPU cores at the granularity at which
VNFs maintain state (mobile subscriber in this case), enabling
a lockfree architecture within the VNF. The insights from our
work can help us design a network stack that is better suited
for compute-intensive VNFs such as those in the 5G core.

CCS CONCEPTS
• Networks → Network performance analysis; Network
simulations; Mobile networks;

KEYWORDS
Network Function Virtualization, 5G core, Cellular networks,
Kernel network stack, Kernel bypass, DPDK

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet 2021, June 24–25, 2021, Shenzhen, China, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8587-9/21/06. . . $15.00
https://doi.org/10.1145/3469393.3469402

ACM Reference Format:
Ashwin Kumar∗, Priyanka Naik+, Sahil Patki∗, Pranav Chaudhary∗,
Mythili Vutukuru∗. 2021. Evaluating Network Stacks for the Virtual-
ized Mobile Packet Core. In 5th Asia-Pacific Workshop on Net-
working (APNet 2021) (APNet 2021), June 24–25, 2021, Shen-
zhen, China, China. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3469393.3469402

1 INTRODUCTION
Network Function Virtualization (NFV) is a paradigm of
building packet processing network functions as software
entities running on commodity hardware, instead of as cus-
tom packet processing hardware. NFV promises to provide
several benefits like lower cost of developing software (as
compared to longer hardware development cycles) and the
ability to scale to higher loads by scaling “horizontally” via
spawning new software replicas (as opposed to scaling “ver-
tically” by upgrading to more powerful hardware). Several
Virtual Network Functions (VNFs) are widely available for
enterprise networks today [7, 19, 20, 22, 40], to be deployed
on baremetal or within virtual machines and containers within
the cloud. The most interest for NFV has come from telecom-
munication networks, with network functions in the mobile
packet core being standardized as VNFs in the upcoming 5G
standards. The mobile packet core connects the radio access
network (comprising mobile subscribers and base stations)
to external networks. The control plane of the packet core
consists of network functions that perform subscriber registra-
tion, authentication, session management, and other signaling
procedures, while the data plane network functions forward
user traffic. With high signaling traffic expected from IoT and
other new applications [2, 13, 24, 28, 45], a mobile packet
core with high control plane throughput and low latency is
imperative for the success of 5G. While the previous gener-
ations of telecommunication networks built these network
functions as custom hardware boxes, the softwarization of
these network functions began in 4G (LTE) networks and has
become the de facto way of architecting 5G networks [2].

Previous research has documented the limitations of the
Linux kernel network stack in handling high-speed I/O that is
required for NFV [46]. While there have been attempts to fix

1

https://doi.org/10.1145/3469393.3469402
https://doi.org/10.1145/3469393.3469402
https://doi.org/10.1145/3469393.3469402

APNet 2021, June 24–25, 2021, Shenzhen, China, China Ashwin et al.

the packet processing subsystem in the Linux kernel over the
years [25, 36, 41, 53], the more popular option has been to
use kernel-bypass techniques like DPDK (Data Plane Devel-
opment Kit [29]) and netmap [46] to process packets directly
in userspace applications with low overhead. Some VNFs can
just work off the raw packets delivered by the kernel bypass
mechanisms, but other VNFs terminate transport layer end-
points (e.g., HTTP proxy server) and must perform TCP/IP
network stack processing. Therefore, several userspace net-
work stacks have been proposed to enable TCP/IP processing
in userspace for applications that perform I/O using kernel by-
pass mechanisms [10, 12, 27, 31, 33, 34, 37, 39, 43]. Kernel
bypass techniques, in combination with optimized userspace
network stacks, have enabled VNFs to process network pack-
ets at linerate on high-speed network links, and have amelio-
rated the concern of whether software network functions can
match the performance of their hardware counterparts.

In this paper, we investigate the question of which network
stacks are suitable to deploy alongside the VNFs in the control
plane of the mobile packet core. The question merits investiga-
tion because previous work on comparing the performance of
various kernel and kernel bypass stacks has focused mostly on
I/O-intensive network functions like load balancers, firewalls,
or RPC servers. On the other hand, the control plane VNFs
in the mobile packet core perform CPU-intensive tasks such
as user authentication, and it is not clear if the conclusions
arrived earlier hold for this very different workload as well.
We used several standards-compliant network functions of
the 5G packet core and evaluated their performance across
several state-of-the-art network stacks, for a workload involv-
ing registering and authenticating mobile subscribers in the
packet core. We found that the performance gap between
the Linux network stack and the various userspace stacks
was much narrower than that reported in prior work—the
kernel stack has only 23% lower throughput than the best
performing userspace stack, and even performed on par with
some of them. We verified in our setup that kernel bypass
stacks continued to outperform the Linux network stack by
a factor of 5 or more on the more traditional I/O intensive
workloads. This conclusion (which is somewhat obvious, in
hindsight) can be explained by the fact that the network stack
processing takes up less than 25% of CPU cycles in case
of CPU-intensive VNFs, a much lower share than with I/O-
intensive ones. As a result, any overheads in the processing
of the kernel network stack have a much smaller performance
impact, especially in the case when the connections between
the compute-intensive VNFs were persistent (causing lower
connection setup/teardown processing in the stack). Further-
more, as we elaborate later (§4), some design decisions in
network stacks perform differently for different VNF work-
loads. These results lead us to the conclusion that there is no
one network stack that works for all VNFs, and the design of

the optimal network stack is closely tied to the characteristics
of the VNF packet processing. Existing research that uses a
homogenous set of benchmarks to compare network stack
performance will benefit from widening its ambit to include
diverse VNFs such as those of the mobile packet core.

Experimenting with the VNFs in the mobile packet core
also led us to realize another point of difference between these
VNFs and those traditionally used for network stack perfor-
mance evaluation. Most network functions used in prior work
(e.g., NATs) naturally maintain application state at TCP-flow
granularity, while the VNFs in the packet core maintain state
at the granularity of mobile subscribers. This distinction is
important because userspace network stacks scale their perfor-
mance with increasing load by distributing incoming traffic to
CPU cores using the hash of the TCP 4-tuple [26], ensuring
that traffic of a TCP connection is processed on the same core
throughout the lifetime of a connection [6, 12, 27, 31, 36, 47].
This partitioning of traffic means that the VNFs built on such
multicore scalable stacks can also maintain their TCP flow
state in per-core local data structures, and eschew locking
across CPU cores for the most part. Such optimizations are
not possible in the mobile packet core VNFs because the traf-
fic of a mobile subscriber can arrive on any core, requiring
locking to access all application state in a multicore VNF.
Our preliminary experiments show that if it were possible
to isolate the traffic of a mobile subscriber to a single CPU
core within the network stack, then the VNF could improve
its performance by up to 67%, by eliminating locking over-
heads when running across multiple CPU cores. Of course, it
is very challenging to partition traffic based on mobile sub-
scriber identity within the network stack, as this information
is not available in the traditional TCP/IP headers parsed by
the network stack. A network stack design that can surmount
this challenge can significantly improve performance for the
VNFs of the mobile packet core—a requirement that future re-
search in this space should keep in mind. The ability to parse
complex headers in programmable hardware [5, 11, 32, 48]
can be explored as a possible way to perform VNF-aware
packet steering [18] in future stacks.

2 BACKGROUND AND RELATED WORK
VNF Taxonomy. VNFs are software appliances that process
network packets destined to end hosts in a network. While
some VNFs manipulate packet headers and operate at the
network layer (e.g., routers, firewalls, NATs), other VNFs act
as transport layer clients/servers and operate at the application
layer of the TCP/IP stack. A VNF performs some processing
on receiving a packet, and we can classify a VNF as compute
(CPU) intensive or I/O intensive based on the amount of
processing that needs to be done for each received packet.
Further, for VNFs that terminate transport layer endpoints, the
VNFs can open a new connection for each request that must

2

Network Stack Evaluation for 5G packet core APNet 2021, June 24–25, 2021, Shenzhen, China, China

be processed (short connections) or send multiple requests
over the same connection (persistent connections). Table 1
categorizes VNFs used in prior work along these dimensions.
We see from the table that there are several VNFs that fall
under the CPU-intensive category.
Mobile packet core. A mobile network has two parts: the
radio access network (RAN) consists of the User Equipment
(UE) and the base station, and the packet core connects the
RAN to external networks. Figure 1 shows the architecture
of a 5G network. The control plane of the packet core con-
sists of the Access and Mobility Function (AMF), Session
Management Function (SMF), Authentication Service Func-
tion (AUSF) and other components that together manage user
registration, authentication, session management, handovers,
and other signaling procedures. The data plane consists of the
User Plane Function (UPF) that routes and forwards encapsu-
lated user traffic. The control plane components communicate
with each other over REST-based HTTP interfaces, and the
AMF communicates with the base station over SCTP. There-
fore, the VNFs in the control plane terminate transport layer
endpoints and must run over a TCP/IP network stack.

Among the multiple signaling procedures handled by the
control plane of the mobile packet core, we focus on the reg-
istration procedure in this paper. When a mobile subscriber
wishes to begin a data communication, she must register and
authenticate herself with the mobile network. The user’s ini-
tial registration request is sent via the base station to the AMF,
which in turn communicates with the AUSF and other VNFs
to complete the user authentication. Processing of the registra-
tion request involves at least two rounds of request/response
communication between the AMF and AUSF. Upon receiving
a registration request, AMF first obtains the authentication
challenge from the AUSF, relays it to the user, and conveys the
user’s response back to AUSF again for verification. While
we omit a detailed discussion of the registration callflow, it
suffices to know that the processing involves cryptographic
computations and is reasonably compute-intensive.

Radio Access
Network

AMF AUSF

Other VNFs

SMF

UPF

Internet Control Plane
Data Plane

Figure 1: 5G core architecture.
Network stacks for NFV. VNFs that terminate transport
layer endpoints must work alongside a network stack that
performs TCP/IP processing. VNFs built over the socket in-
terface of the kernel use the kernel’s TCP/IP stack by de-
fault, but the kernel’s mechanisms of system calls, interrupts,
locking overhead across shared kernel data structures, and
dynamic allocation of packet memory, among other things,
have been found to be an impediment towards achieving high

emulated
UE

One thread
per core

AMFRAN AUSF

SCTP HTTP
over TCP

Figure 2: 5G Core VNF Design.

throughput I/O for such VNFs [46]. While some attempts
have been made to fix the bottlenecks in the Linux network
stack [25, 36, 41, 53], other attempts have focused on bypass-
ing the kernel altogether and processing packets directly in
userspace via packet I/O mechanisms like DPDK [29] and
netmap [46]. VNFs using such kernel bypass techniques will
receive raw packets, and will have to use a userspace network
stack to process the received packets. One of the earliest such
stacks, mTCP [31], incorporates optimizations like per-core
local TCP/IP data structures and batching to achieve multi-
core scalable network stack processing in userspace. While
the mTCP processing runs in a separate thread that is co-
located with the application thread on each CPU core, TAS
(TCP acceleration as a service) [34] proposes running net-
work stack processing on dedicated cores, separate from the
application. TAS assigns separate cores to handle the TCP
connection setup and teardown on a slow path, and runs the
TCP data handling on the fast path. Arrakis [42] and IX [10]
seek to eliminate kernel overheads on the datapath of the
network stack, and use the virtualization support in network
cards to give each application its own slice of the NIC for
optimized processing. IX uses a run-to-completion model
to perform network stack and application processing in the
same thread on a CPU core. ZygOS [43] and Shinjuku [33]
extend the idea of IX to workloads which have variable-sized
requests, and use mechanisms like work-stealing and preemp-
tion to balance load across the multiple cores on which the
network stack runs, thereby reducing tail latencies of appli-
cations. Shenango [39] focuses on I/O intensive workloads
and improves CPU efficiency by reducing busy spinning in
the network stack via reallocation of CPU across applica-
tions at a fine granularity. A survey of the benchmarks used
in the evaluation of these stacks indicate that most of them
focus on the I/O intensive workloads of Table 1. Our work
focuses on evaluating a subset of these network stacks on the
CPU-intensive VNFs of the 5G core.

3 5G CORE VNF DESIGN
In this section, we describe the architecture and implementa-
tion of the 5G core VNFs that are used to benchmark various
network stacks (Figure 2). Our implementation builds upon
the standards-compliant 5G VNFs obtained from [16, 17]. We
focus our attention on AMF and AUSF, which are involved in

3

APNet 2021, June 24–25, 2021, Shenzhen, China, China Ashwin et al.

Persistent Connection Short Connection
CPU Intensive Suricata [22], endRE (WAN optimizer) [4],

Ngnix [20], Squid [49], BRAS [15], mobile packet core
control plane [3]

Bro [40], Zeek [44], Kargus [30]

I/O Intensive twemproxy [50], Mcrouter [21],
Apache traffic server [7], Netflix-ribbon [38], Aba-
cus [23], mobile packet core data plane [1]

PRADS [51], HAProxy [14], Varnish
Cache [52], Faild [8]

Table 1: Taxonomy of VNFs

handling a UE’s registration request, and build several vari-
ants of these for our experiments. We build emulators for the
other VNFs that are not part of our study.
Load generator. We use a RAN emulator to pump traffic
to the 5G core VNFs. Our RAN emulates the behavior of a
configurable set of 𝐾 concurrent UEs in a closed loop manner,
with 𝐾 being varied to vary the load in our experiments. We
only emulate registration requests from the UEs; considering
a wider set of signaling procedures is part of future work. The
RAN communicates with AMF over an SCTP connection,
on which the UE registration requests are sent, after being
encapsulated in various 5G-specific protocol headers. We
use more than one RAN to saturate AMF capacity in our
experiments; in such cases, each RAN uses a separate SCTP
connection to the AMF, much like in real-life.
AMF. AMF is a multi-threaded VNF with 𝑁 threads, with
each thread pinned to a CPU core and spinning in an event-
driven epoll loop. When measuring the performance of AUSF,
we chose 𝑁 to be large enough for AMF to generate enough
load to saturate AUSF. UE requests from the RAN arriving
over SCTP are distributed to the various AMF cores using
RSS. Handling a registration request requires the AMF to
send two different HTTP requests to AUSF. Upon first re-
ceiving the registration request, AMF requests and obtains
an authentication challenge from AUSF. This authentication
challenge is sent to the UE via the SCTP connection, and a
response from the UE is obtained. This UE response is once
again sent to AUSF by AMF to have it verified. Both these
HTTP transactions happen over separate TCP connections
between AMF and AUSF.
AMF-Persistent. In order to generate a workload with a
lower overhead of TCP connection setup/teardown, we build
a persistent connection variant of AMF that uses a set of
long-lived TCP connections to AUSF and reuses the same
connection to send multiple authentication requests.
AMF-Lockless. To scale network processing across cores,
RSS splits traffic to cores using the hash of the TCP 4-tuple,
ensuring that traffic of a TCP connection goes to the same
core always. As a result, VNFs that maintain state at TCP
flow granularity can use a lockfree multicore scalable archi-
tecture by storing state within per-core local datastructures.
However, AMF and other packet core VNFs maintain state
at the granularity of a mobile subscriber. For example, the

AMF maintains per-UE registration context for the lifetime
of a UE’s registration with the network. This implies that the
requests of a UE can be processed at any of the cores of a
VNF, requiring the VNF threads to access UE state using a
lock for mutual exclusion. In order to understand the poten-
tial performance gains of a lockfree AMF design, we build a
lockfree variant of AMF, where each of the 𝑁 AMF threads
store UE context in per-core local data structures. To ensure
that traffic of a UE arrives at a single core only, we use 𝑁
different RAN emulators sending traffic on separate connec-
tions for a disjoint set of UEs, so that the 𝑁 AMF threads,
each talking to a separate RAN, can safely update UE context
without locking. Note that this is not a very practical design
for real-life AMFs, unless the underlying network stack is
somehow made aware of UE identifiers and splits traffic to
cores based on these identifiers. However, we use this AMF
variant to help us understand if building such awareness into
network stacks is worth the effort in the first place.
AUSF. AUSF listens for AMF requests on a HTTP server
socket in an event-driven epoll loop and responds to them
suitably. Note that each AMF request requires significant
CPU computation at the AUSF, measured to be around 300K
CPU cycles in our implementation, which is several orders
of magnitude higher than that considered in prior work. We
use multiple event-driven threads to scale AUSF to multiple
cores as required. In addition to an implementation over the
kernel epoll API, we also build variants of AUSF that run
over the mTCP, TAS and IX network stacks. These network
stacks were chosen because they span a wide spectrum of
design options in userspace stacks. AUSF over IX executes
its request processing in a run-to-completion model. With
mTCP, the AUSF processing runs in a separate thread that is
co-located with the mTCP thread on the same core. With TAS,
AUSF processing runs on a separate core from the network
stack processing of TAS. We do not consider other network
stacks like Shinjuku and Shenango presently because they are
optimized for a heterogeneous request processing workload
while our AUSF currently processes only one type of request.
AUSF-IO. In order to reproduce the results of prior work, we
also built an I/O intensive variant of AUSF, which does no
computation on received requests and echoes back a dummy
response. We modify our load generator suitably for such
requests and responses. We built variants of this I/O intensive

4

Network Stack Evaluation for 5G packet core APNet 2021, June 24–25, 2021, Shenzhen, China, China

UE Threads

R
eg

is
tr

at
io

ns
/s

ec

0

1000

2000

3000

4000

5000

6000

7000

10 20 40 80 120 160 200 240

Kernel mTCP TAS IX

Figure 3: AUSF: Network stack throughput

AUSF on the same set of network stacks: the Linux kernel
stack, mTCP, IX, and TAS.

4 EVALUATION
For our evaluation, we use two Intel(R) Xeon(R) CPU E5-
2650 v4 @ 2.20GHz servers with 24 cores and 128 GB mem-
ory each, connected through Intel 82599ES 10GbE NICs.
The RAN emulator and AMF run on one server over the
Linux network stack, while the AUSF runs on the other server
over different network stacks across experiments. We use the
Ubuntu 18.04 with kernel 5.0.0-37 for experiments with the
Linux kernel stack, mTCP and TAS, and Ubuntu 14.04 with
kernel 4.4.0-142 for IX. For all experiments, we ensure that
all VNFs except the one under test have enough CPU and
RAM to not become the performance bottleneck. We gener-
ate enough load from the load generator to saturate the VNF
under test, and measure the throughput (registration requests
processed/sec) and end-to-end latency (completion time of
the registration procedure) averaged over 300 seconds.

4.1 Network stack comparison
Figure 3 shows the throughput (in terms of number of reg-
istration requests processed/sec; we saw no failures) of the
compute-intensive AUSF running on a single core, when us-
ing different network stacks, as a function of offered load
(number of concurrent UEs sending registration traffic). In-
creasing the offered load beyond 240 concurrent UEs did not
increase performance due to CPU saturation at AUSF. We see
from the figure that IX performs the best, followed by mTCP,
the Linux kernel stack, and TAS. We note that the perfor-
mance of the Linux network stack is not far off from the more
advanced userspace stacks—its throughput is only 23% lower
than that of IX at saturation. The latency measurements also
show a similar trend. These results show that the Linux kernel
stack is not a bad alternative for compute-intensive VNFs
like those of the mobile packet core, especially when kernel
bypass stacks are harder to setup in shared cloud environ-
ments with little control over the networking subsystem. We
also repeated this experiment with AUSF running on 2 CPU

UE Threads

R
eq

ue
st

s/
se

c
(in

 m
ill

io
n)

0.0

0.1

0.2

0.3

0.4

64 128 256 512 1024

Kernel mTCP TAS IX

Figure 4: AUSF-IO: Network stack throughput.

cores, and verified that AUSF throughput almost doubled,
confirming that AUSF has a CPU bottleneck.

We use the profiling tool perf [35] to understand the reasons
behind these performance results. Across all stacks, we find
that the network stack processing takes less than 25% of CPU
cycles, while AUSF consumes most of the CPU. Therefore,
any performance gains from the usage of complex network
stacks are bound to have a limited impact. Our profiling also
explains the somewhat poor performance of TAS. We find
that the userspace networking library used by TAS applica-
tions (libtas) consumes a lot of CPU cycles for connection
context management due to the frequent connection setup and
teardown in our workload, starving the VNF of CPU cycles
to perform its computations. We also observe that while IX
performs well in this experiment, the optimized IX userspace
library only supports networking functionality and not other
types of I/O. IX uses virtualization support for giving appli-
cations a dedicated path to the NIC. Therefore, IX can suffer
from poor performance when the application performs system
calls for other types of I/O, as well as when applications face
an increased number of page faults, as both of these will need
to be handled in the kernel via a VM exit [9, 10].

Next, we evaluate the network stacks on an I/O intensive
workload, to reproduce the trends from prior work. Figure 4
shows the throughput of all network stacks with the I/O-
intensive variant of AUSF. We find that the kernel bypass
stacks significantly outperform the Linux kernel stack as re-
ported in prior work, and IX has 5 times higher throughput
than the kernel stack. Note that with IX, we exhausted CPU
cores at our load generator before IX hit saturation, so our
results for the best performing userspace stack are only a
lower bound. From our profiling results, we find that system
call overhead and other factors slow down the kernel stack
as expected. We find that the performance of TAS is limited
by the overhead of frequent connection setup and teardown,
which are handled on the slow path. The performance of
mTCP is lower than that of IX because IX runs both VNF
and network stack processing within the same thread in a run-
to-completion manner, while the network stack processing
in mTCP runs in a separate thread that is co-located on the

5

APNet 2021, June 24–25, 2021, Shenzhen, China, China Ashwin et al.

UE Threads

R
eg

is
tr

at
io

ns
/s

ec

1000
2000
3000
4000
5000
6000
7000

10 20 40 80 120 160 200 240

Kernel mTCP TAS IX

Figure 5: AUSF: Throughput with AMF-Persistent

same core as the VNF thread. This two threaded model intro-
duces context switch overheads which lowers performance of
mTCP slightly as compared to IX.

Next, we use the persistent connection variant of AMF to
communicate with the regular CPU-intensive AUSF, and com-
pare the throughput of AUSF across all network stacks. The
results are shown in Figure 5. We find that the performance
of the Linux network stack and TAS have significantly im-
proved in this case as compared to the previous experiments.
TCP connection setup and teardown requires access to shared
kernel datastructures in the kernel stack, and is handled on
the slowpath in TAS, so the use of persistent connections
eliminates this overhead and significantly improves the per-
formance of both these stacks. We find that the performance
of mTCP falls slightly due to the complex interaction between
the mTCP and VNF threads once again—the mTCP thread is
very lightly loaded in the case of persistent connections, and
sometimes sleeps for long durations of time, depriving the
application thread of enough work.

In summary, the question of which network stack is best
is closely tied to the specific VNF workload, and there is no
one network stack that works for all cases. Network stacks
designed with one set of workloads in mind can perform very
differently when subjected to a different type of workload.
Our work shows that network stack benchmarks should ex-
pand beyond the traditional I/O intensive VNFs and RPC
servers, to more real-world VNFs with complex characteris-
tics. The network stack should also be designed in a way that
is robust across changes in VNF workload characteristics. As
part of future work, we plan to use more 5G core VNFs and a
wider set of signaling messages, and test the various network
stacks for these diverse set of workloads. We also plan to
explore stacks like Shinjuku [33] when we move to testing
with signaling procedures with varying processing times.

4.2 Lockfree VNF design
Next, we evaluate the impact of building application aware-
ness into the network stack. So far, our experiments have
used the regular AMF that stores per-UE context in a global
datastructure, which all AMF threads access with locking.

AMF CPU Cores

R
eg

is
tr

at
io

ns
/s

ec

0

2000

4000

6000

8000

1 4 8 12 16 20 24

Lock based AMF Lockfree AMF

Figure 6: Comparison of lock-based and lock-free AMF

We also designed a lockless variant of AMF as described in
§3, by simulating a network stack that partitioned network
traffic to CPU cores at the UE granularity, allowing AMF
to store UE context in per-core local datastructures without
locking. We provide enough CPU cores to AUSF to ensure
that it is not a bottleneck in this experiment. Figure 6 shows
the performance of the regular and lockless variants of AMF
as a function of number of CPU cores. We find that the lock-
free AMF significantly outperforms the regular locking-based
AMF, achieving 67% higher throughput at 24 cores. This re-
sult shows that incorporating an awareness of the granularity
at which VNFs store state into the network stack, though
challenging at first sight, might be a worthwhile direction to
pursue in future research.
5 CONCLUSION
This paper compares the performance of the state-of-the-art
network stacks for CPU-intensive VNFs of the 5G mobile
packet core, a design point often ignored by prior work. Our
results show that the performance of a network stack varies
significantly based on the VNF workload. For example, the
kernel network stack, which was shown to perform much
worse than newer userspace stacks in prior work, performs rel-
atively better with CPU-intensive VNFs. This paper presents
several such differences in the performance of network stacks
in the context of the 5G core VNFs. Further, we also show
that a network stack that is aware of the granularity at which
the application maintains state, and partitions traffic to CPU
cores at this granularity, can lead to significant improvements
in VNF performance. While incorporating VNF semantics
into the lower level network stack can seem challenging at
first, newer advances like programmable dataplane hardware
with programmable packet parsers can be employed to sur-
mount this technical challenge. The insights of our work can
serve as a starting point towards improving the network stack
design for VNFs of the mobile packet core.

ACKNOWLEDGEMENTS
We would like to thank the 5G testbed project funded by the
Department of Telecommunication (DoT), Government of
India, for access to the 5G packet core components.

6

Network Stack Evaluation for 5G packet core APNet 2021, June 24–25, 2021, Shenzhen, China, China

REFERENCES
[1] 3GPP. 2018. The Evolved Packet Core. http://www.3gpp.org/

technologies/keywords-acronyms/100-the-evolved-packet-core.
[2] 3GPP. 2020. 3GPP Specification Set: 5G. https://www.3gpp.org/

dynareport/SpecList.htm?release=Rel-15&tech=4.
[3] 3GPP. 2020. Access and Mobility management Function

(AMF). https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3445.

[4] Bhavish Aggarwal, Aditya Akella, Ashok Anand, Athula Balachan-
dran, Pushkar Chitnis, Chitra Muthukrishnan, Ramachandran Ramjee,
and George Varghese. 2010. EndRE: An End-System Redundancy
Elimination Service for Enterprises. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation.

[5] Ashkan Aghdai et al. 2018. Transparent Edge Gateway for Mobile
Networks. In IEEE 26th International Conference on Network Protocols
(ICNP).

[6] Abdul Alim, Richard G. Clegg, Luo Mai, Lukas Rupprecht, Eric Seck-
ler, Paolo Costa, Peter Pietzuch, Alexander L. Wolf, Nik Sultana, Jon
Crowcroft, Anil Madhavapeddy, Andrew W. Moore, Richard Mortier,
Masoud Koleni, Luis Oviedo, Matteo Migliavacca, and Derek McAuley.
2016. FLICK: Developing and Running Application-Specific Network
Services. In 2016 USENIX Annual Technical Conference (USENIX ATC
16).

[7] Apache. 2020. Traffic Server. https://github.com/apache/trafficserver.
[8] João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek, and Raul

Landa. 2018. Balancing on the Edge: Transport Affinity without Net-
work State. In Proceedings of the 15th USENIX Conference on Net-
worked Systems Design and Implementation.

[9] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access
to Privileged CPU Features. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12).

[10] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14).

[11] Carmelo Cascone and Uyen Chau. 2018. Offloading VNFs to pro-
grammable switches using P4. In ONS North America.

[12] Tencent Cloud. 2019. f-stack. http://www.f-stack.org/.
[13] FCC Technological Advisory Council. 2018. 5G Edge Computing

Whitepaper. https://transition.fcc.gov/bureaus/oet/tac/tacdocs/reports/
2018/5G-Edge-Computing-Whitepaper-v6-Final.pdf.

[14] Haprxy Developers. 2019. HAProxy. http://www.haproxy.org/.
[15] T. Dietz, R. Bifulco, F. Manco, J. Martins, H. Kolbe, and F. Huici. 2015.

Enhancing the BRAS through virtualization. In Proceedings of the 2015
1st IEEE Conference on Network Softwarization (NetSoft).

[16] DoT. 2020. 5G Testbed @ CSE IITB. https://www.cse.iitb.ac.in/
~5gtestbed/.

[17] DoT. 2021. 5G Testbed. https://5gtestbed.in/.
[18] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. 2019. Partition-Aware

Packet Steering Using XDP and EBPF for Improving Application-
Level Parallelism. In Proceedings of the 1st ACM CoNEXT Workshop
on Emerging In-Network Computing Paradigms.

[19] ETSI. 2020. Network Functions Virtualisation (NFV). https://www.
etsi.org/technologies/nfv.

[20] F5. 2020. Ngnix. https://www.nginx.com/.
[21] Facebook. 2020. Mcrouter. https://github.com/facebook/mcrouter.
[22] Open Information Security Foundation. 2020. Suricata. https://

suricata-ids.org/.

[23] Younghwan Go, Jongil Won, Denis Foo Kune, EunYoung Jeong, Yong-
dae Kim, and KyoungSoo Park. 2014. Gaining Control of Cellular
Traffic Accounting by Spurious TCP Retransmission. In Proc. of Net-
work and Distributed System Security Symposium (NDSS)’14.

[24] GSMA. 2019. Internet of Things in the 5G Era: Op-
portunities and Benefits for Enterprises and Consumers.
https://www.gsma.com/iot/wp-content/uploads/2019/11/
201911-GSMA-IoT-Report-IoT-in-the-5G-Era.pdf.

[25] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.
2012. MegaPipe: A New Programming Interface for Scalable Network
I/O. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation.

[26] Tom Herbert and Willem de Bruijn. 2018. Receive Side Scaling (RSS).
https://www.kernel.org/doc/Documentation/networking/scaling.txt.

[27] Michio Honda, Felipe Huici, Costin Raiciu, Joao Araujo, and Luigi
Rizzo. 2014. Rekindling Network Protocol Innovation with User-level
Stacks. SIGCOMM Comput. Commun. Rev. (2014).

[28] IBM. 2017. 5G Will Accelerate a New Wave of IoT Applications.
https://newsroom.ibm.com/5G-accelerate-IOT.

[29] Intel. 2018. Intel Data Plane Development Kit. http://dpdk.org/.
[30] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun,

Deokjin Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. 2012.
Kargus: A Highly-Scalable Software-Based Intrusion Detection Sys-
tem. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security.

[31] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. MTCP:
A Highly Scalable User-Level TCP Stack for Multicore Systems. In
Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation.

[32] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of the
26th Symposium on Operating Systems Principles.

[33] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for µSecond-Scale Tail Latency. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementa-
tion.

[34] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP Ac-
celeration as an OS Service. In Proceedings of the Fourteenth EuroSys
Conference 2019.

[35] Kernel.org. 2020. perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.php/Main_Page.

[36] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu,
and Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implemen-
tation for Short-Lived Connections. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems.

[37] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to Host
Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles.

[38] Netflix. 2020. Ribbon. https://github.com/Netflix/ribbon.
[39] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-Sensitive Datacenter Workloads. In Proceedings of the 16th

7

http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core
http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core
https://www.3gpp.org/dynareport/SpecList.htm?release=Rel-15&tech=4
https://www.3gpp.org/dynareport/SpecList.htm?release=Rel-15&tech=4
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3445
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3445
https://github.com/apache/trafficserver
http://www.f-stack.org/
https://transition.fcc.gov/bureaus/oet/tac/tacdocs/reports/2018/5G-Edge-Computing-Whitepaper-v6-Final.pdf
https://transition.fcc.gov/bureaus/oet/tac/tacdocs/reports/2018/5G-Edge-Computing-Whitepaper-v6-Final.pdf
http://www.haproxy.org/
https://www.cse.iitb.ac.in/~5gtestbed/
https://www.cse.iitb.ac.in/~5gtestbed/
https://5gtestbed.in/
https://www.etsi.org/technologies/nfv
https://www.etsi.org/technologies/nfv
https://www.nginx.com/
https://github.com/facebook/mcrouter
https://suricata-ids.org/
https://suricata-ids.org/
https://www.gsma.com/iot/wp-content/uploads/2019/11/201911-GSMA-IoT-Report-IoT-in-the-5G-Era.pdf
https://www.gsma.com/iot/wp-content/uploads/2019/11/201911-GSMA-IoT-Report-IoT-in-the-5G-Era.pdf
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://newsroom.ibm.com/5G-accelerate-IOT
http://dpdk.org/
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/Netflix/ribbon

APNet 2021, June 24–25, 2021, Shenzhen, China, China Ashwin et al.

USENIX Conference on Networked Systems Design and Implementa-
tion.

[40] Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in
Real-Time. Comput. Netw. (1999).

[41] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T.
Morris. 2012. Improving Network Connection Locality on Multicore
Systems. In Proceedings of the 7th ACM European Conference on
Computer Systems (EuroSys ’12).

[42] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014.
Arrakis: The Operating System is the Control Plane. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14).

[43] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-Scale Networked Tasks.
In Proceedings of the 26th Symposium on Operating Systems Princi-
ples.

[44] The Zeek Project. 2020. An Open Source Network Security Monitoring
Tool. https://zeek.org/.

[45] Qualcomm. 2020. What is 5G. https://www.qualcomm.com/invention/
5g/what-is-5g.

[46] Luigi Rizzo. 2012. Netmap: A Novel Framework for Fast Packet I/O.
In Proceedings of the 2012 USENIX Conference on Annual Technical
Conference.

[47] ScyllaDB. 2019. Seastar. http://seastar.io/.
[48] Rinku Shah, Vikas Kumar, Mythili Vutukuru, and Purushottam Kulka-

rni. 2020. TurboEPC: Leveraging Dataplane Programmability to Ac-
celerate the Mobile Packet Core. In Proceedings of the Symposium on
SDN Research.

[49] Squid. 2020. Squid: Optimising Web Delivery. http://www.squid-cache.
org/.

[50] Twitter. 2019. Memcached Proxy. https://github.com/twitter/
twemproxy.

[51] Ubuntu. 2020. PRADS. http://manpages.ubuntu.com/manpages/eoan/
en/man1/prads.1.html.

[52] Varnish-Cache. 2020. Varnish Cache. http://varnish-cache.org/.
[53] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert.

2016. StackMap: Low-Latency Networking with the OS Stack and Ded-
icated NICs. In 2016 USENIX Annual Technical Conference (USENIX
ATC 16).

8

https://zeek.org/
https://www.qualcomm.com/invention/5g/what-is-5g
https://www.qualcomm.com/invention/5g/what-is-5g
http://seastar.io/
http://www.squid-cache.org/
http://www.squid-cache.org/
https://github.com/twitter/twemproxy
https://github.com/twitter/twemproxy
http://manpages.ubuntu.com/manpages/eoan/en/man1/prads.1.html
http://manpages.ubuntu.com/manpages/eoan/en/man1/prads.1.html
http://varnish-cache.org/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 5G Core VNF Design
	4 Evaluation
	4.1 Network stack comparison
	4.2 Lockfree VNF design

	5 Conclusion
	References

