
AccelUPF: Accelerating the 5G user plane using
programmable hardware

Abhik Bose∗, Shailendra Kirtikar∗, Shivaji Chirumamilla∗, Rinku Shah+, Mythili
Vutukuru∗

Indian Institute of Technology Bombay∗, Indraprastha Institute of Information Technology Delhi+
India

{abhik,shailendra,shivaji}@cse.iitb.ac.in,rinku@iiitd.ac.in,mythili@cse.iitb.ac.in

ABSTRACT
The latest generation of 5G telecommunication networks
are expected to provide high throughput and low latency
while catering to diverse applications like mobile broadband,
dense IoT, and self-driving cars. A high performance User
Plane Function (UPF), the main element in the 5G user plane,
is critical to achieving these performance goals. This paper
presents AccelUPF, a 5G UPF that offloads functionality to
programmable dataplane hardware for performance accelera-
tion. While prior work has proposed accelerating the UPF by
offloading its data forwarding functionality to programmable
hardware, the Packet Forwarding Control Protocol (PFCP)
messages from the control plane that configure the hardware
data forwarding rules were still processed in software. We
show that only offloading data forwarding and not PFCP
message processing leads to suboptimal performance in the
UPF for applications like IoT that have a much higher ra-
tio of PFCP messages to data traffic, due to a bottleneck
at the software control plane that configures the hardware
packet forwarding rules. In contrast to prior work, AccelUPF
offloads both PFCP message processing as well as data for-
warding to programmable hardware. AccelUPF overcomes
several technical challenges pertaining to the processing of
the complex variable-sized PFCP messages within the mem-
ory and compute constraints of programmable hardware
platforms. Our evaluation of AccelUPF implemented over
a Netronome programmable NIC and an Intel Tofino pro-
grammable switch demonstrates performance gains over the
state-of-the-art UPFs for real-world traffic scenarios.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’22, October 19–20, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9892-3/22/10. . . $15.00
https://doi.org/10.1145/3563647.3563651

CCS CONCEPTS
• Networks→ In-network processing; Programmable
networks; Network performance analysis; Mobile net-
works.

KEYWORDS
5G core, 5G user plane, programmable networks, in-network
computation

ACM Reference Format:
Abhik Bose∗, Shailendra Kirtikar∗, Shivaji Chirumamilla∗, Rinku
Shah+, Mythili Vutukuru∗. 2022. AccelUPF: Accelerating the 5G
user plane using programmable hardware. In The ACM SIGCOMM
Symposium on SDN Research (SOSR) (SOSR ’22), October 19–20, 2022,
Virtual Event, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3563647.3563651

1 INTRODUCTION
The mobile packet core connects the wireless radio access
network (with base stations and mobile users) to external
networks. The packet core consists of several control plane
components that process signaling messages from mobile
users (e.g., for authentication, setting up sessions to transfer
data, handling mobility-related events) and the User Plane
Function (UPF) on the data plane that forwards user traffic to
and from external networks. The two planes communicate
using PFCP (Packet Forwarding Control Protocol) messages
that are sent by the control plane to establish, modify, and
delete packet forwarding rules in the user plane, as shown
in Figure 1. The most recent fifth generation (5G) telecom-
munication networks aim to support use cases with high
throughput (∼1 Gbps/user), very low processing latencies
(<1 ms), stringent quality of service (QoS), and diverse traf-
fic characteristics, e.g., enhanced mobile broadband, dense
deployments of IoT devices, self-driving cars, AR/VR, high-
speed entertainment in a moving vehicle, and delay-sensitive
video applications [27, 42]. A high performance and low cost
UPF is necessary for meeting these requirements.
Most state-of-the-art UPFs today are built as multicore-

scalable software packet processing appliances running over

https://doi.org/10.1145/3563647.3563651
https://doi.org/10.1145/3563647.3563651
https://doi.org/10.1145/3563647.3563651

SOSR ’22, October 19–20, 2022, Virtual Event, USA Abhik Bose, et al.

Figure 1: 5G Architecture.

commodity servers, and process traffic using a high per-
formance packet I/O mechanism like the Data Plane De-
velopment Kit (DPDK) [11]. However, given the stringent
performance requirements of 5G networks, and ever increas-
ing network speeds running into a few hundreds of Gbps,
prior work has proposed accelerating the UPF by offloading
data forwarding functionality to programmable hardware [5–
8, 18, 19, 22, 24, 31, 33], leveraging the availability of high-
level programming languages like P4 [21] to program such
hardware. Prior work has quantified the performance, cost
and power savings of such offload [20]. Our evaluation com-
paring a production-grade DPDK-based software UPF with
a state-of-the-art programmable hardware accelerated UPF
(Table 1 in §5) also shows that hardware acceleration im-
proves performance per unit cost by ∼31%, and performance
per unit power consumed by ∼92%.

It is important to note that the hardware-accelerated UPFs
in prior work offload only the user data forwarding to hard-
ware. PFCP messages are still processed in software, and
standard APIs exposed by hardware vendors are then used
to configure packet forwarding rules in hardware. These
APIs have a limited capacity of installing packet forwarding
rules, which in turn limits the PFCP message processing ca-
pacity of today’s offload-based UPFs that only offload data
forwarding. Our measurements (Table 1 in §5) show that
such an offload-based UPF can comfortably forward traffic
at the 40Gbps linerate in our setup, but can process only a
few hundred PFCP messages/sec.
But is the low rate of PFCP message processing in today’s

offload-based UPFs a bottleneck for real-life traffic? Some 5G
use cases like IoT [34] or high mobility vehicular communi-
cation [32] are expected to frequently setup/reconfigure the
data plane via signaling messages, roughly in the order of
tens of seconds. For a UPF handling a few hundred thousand
users [26, 39], this can translate to a few tens of thousands of
PFCP messages to be processed every second, which is too
high for today’s offload-based UPFs to handle. Note that in
our experiments, the DPDK-based software UPF was able to
process a few thousand PFCP messages/sec on a single core,
but we have already shown that software message process-
ing is inefficient with respect to cost and power consumption.

Therefore, for 5G use cases that generate significant amounts
of signaling messages and require frequent reconfigurations
of the user plane, neither the DPDK-based UPF nor today’s
offload-based UPF can deliver high performance, low power
consumption, and low cost, all together.

So, why not simply offload the processing of PFCP messages
to programmable hardware as well? PFCPmessage processing
in programmable hardware is challenging for several reasons,
as observed by prior work [20, 33]. PFCP message headers
are variable in size, with multiple levels of nesting and sev-
eral optional fields. Parsing such complex headers within
programmable hardware is difficult because hardware is de-
signed to run at linerate and is therefore constrained with
respect to the instruction set and memory resources avail-
able. Further, the match-action tables of the programmable
hardware that are used to store packet forwarding rules in
today’s hardware accelerated UPFs are configurable only
from the software control plane via standard APIs, and can-
not be directly modified from the switch data plane. While
some switch memory (in the form of stateful register arrays)
can be modified directly from within the data plane, such
memory can only be accessed via a restricted interface of
index-based access and is not as versatile as the match-action
tables. Further, this limited switch memory may not accom-
modate the packet forwarding rules of all users, and is also
not persistent across switch failures. Therefore, offloading
the processing of PFCP messages to programmable hardware
is non-trivial, and has not been attempted before in prior
work to the best of our knowledge.

This paper proposes the design, implementation, and eval-
uation of AccelUPF, a programmable hardware accelerated
5G UPF that offloads most UPF functionality, including the
processing of most types of PFCP messages and user data
forwarding, to programmable hardware. Our key insight is to
offload the processing of the more common and simpler pat-
terns of PFCP messages to the fastpath on hardware, while
handling the more complex and infrequent PFCPmessages in
software. Our design incorporates several novel ideas to han-
dle common PFCP messages in the hardware fastpath. First,
the hardware PFCP parser in AccelUPF identifies the manda-
tory and optional fields in the variable-sized, nested PFCP
headers, and chooses the parser states dynamically based
on the fields present in the received header (§3.3). Second,
AccelUPF stores packet forwarding rules in stateful register
arrays within the switch hardware. The register arrays allow
only index-based access, so we use hash of the header fields
of received packets as an index to access the array, handling
hash collisions and switch memory overflows on the slow-
path in software. Further, because PFCP messages and data
traffic contain different header fields, we maintain packet
forwarding rules across multiple register arrays indexed in
different ways, in order to access them correctly across PFCP

AccelUPF: Accelerating the 5G user plane using programmable hardware SOSR ’22, October 19–20, 2022, Virtual Event, USA

and data traffic (§3.4). Third, we deploy a regular software
UPF in the slowpath for traffic that cannot be handled in the
fastpath within the programmable hardware, and we ensure
that the UPF state is shared correctly across the software and
hardware processing (§3.5). Finally, we use in-network repli-
cation of the register array state to protect against switch
failures (§3.6).
We implemented AccelUPF on two different P4 pro-

grammable data plane hardware: an Agilio CX Netronome
smart NIC [46] and an Intel Tofino programmable switch [25],
using an existing production-grade standards-compliant soft-
ware UPF [9] on the slowpath. Experiments with our Ac-
celUPF prototypes show that AccelUPF achieves signifi-
cantly higher PFCP message processing and data forwarding
throughput, especially when normalized by cost or power
consumed, as compared to both a pure software UPF as well
as a hardware accelerated UPF where only user data for-
warding has been offloaded. For use cases with significantly
higher fraction of PFCP messages like IoT, AccelUPF pro-
vides up to 56% higher throughput than the best performing
UPFs in prior work.

Our work makes the following contributions. (i) We show
that prior work on programmable hardware accelerated 5G
UPFs, where only data forwarding is offloaded to hardware,
does not perform well for use cases which generate a high
rate of signaling messages, because of the limited capacity
of the software control plane APIs that install packet for-
warding rules in the hardware. (ii) We design AccelUPF, a
programmable hardware accelerated UPF that offloads not
just the data forwarding but also most PFCP message pro-
cessing to programmable hardware, and experiments with
our implementation show significant performance gains over
existing state-of-the-art UPFs for real-world traffic. (iii) Our
design illustrates how one can offload complex control plane
message processing to programmable hardware and our tech-
niques are broadly applicable to other applications as well.
(iv) By identifying the challenges in offloading PFCP process-
ing to programmable hardware, our work can better inform
future standardization efforts in 6G and beyond.
The rest of the paper is organized as follows. We begin

with the background required to understand our work (§2),
and then proceed to describe the design (§3), implementation
(§4), and evaluation (§5) of AccelUPF.We then present related
work (§6) and conclusions (§7).

2 BACKGROUND
This section provides the relevant background on 5G network
architecture and programmable data plane hardware that is
required to follow the rest of the paper.
5G architecture and procedures. Figure 1 shows the 5G
architecture [4]. The 5G mobile packet core connects the

Figure 2: PDU session establishment callflow.

wireless radio access network (RAN)—which includes the
User Equipment (UE) and the base station (gNB)—to other
external networks. The packet core executes several signal-
ing procedures on behalf of the UE. When a UE connects
to a mobile network for the first time, it triggers an initial
registration procedure via the base station at the Access and
Mobility Function (AMF), which communicates with other
components in the control plane of the packet core to au-
thenticate and register the user. A registered UE that wishes
to send data through the packet core must set up one or
more PDU sessions, each with possibly different QoS require-
ments, using the PDU session establishment procedure. Such
session-related procedures are coordinated by the Session
Management Function (SMF) in the packet core. Once the
sessions are setup, the actual traffic in the user plane is for-
warded via the base station through one or more User Plane
Functions (UPFs) through the packet core. The user plane
traffic is encapsulated in GPRS Tunnelling Protocol (GTP)
headers inside the packet core, and this tunnelling helps man-
age mobility of the UE in the network. A PDU session has
two tunnels (identified by tunnel identifiers or TEID in the
GTP header), one to carry uplink traffic from the base station
and one to carry downlink traffic from external networks to
the UE. On the uplink, the base station encapsulates the in-
coming UE IP traffic into GTP headers and the last UPF in the
packet core performs the decapsulation. For downlink traffic,
the UPF performs the encapsulation and the base station
does the decapsulation. During its life time, a UE will trigger
many other signaling procedures in the packet core, e.g., AN
(access network) release procedure to move to an idle state
after inactivity, service request procedure to reactivate itself
when it wishes to communicate again, handover procedure
to move to a different location, and so on.
PFCP messages. The SMF and the UPF communicate us-
ing Packet Forwarding Control Protocol (PFCP) messages
that are exchanged over a UDP connection between both
nodes [3]. A few important PFCP messages sent by the SMF
to the UPF include the PFCP session establishment request,
PFCP session modification request, and the PFCP session

SOSR ’22, October 19–20, 2022, Virtual Event, USA Abhik Bose, et al.

deletion request, to establish, modify, and delete sessions
at the UPF respectively. After processing these messages,
the UPF sends back the corresponding response messages
over PFCP as well, indicating the status (success or failure)
of the request. A single signaling procedure of the UE such
as a PDU session establishment can trigger multiple PFCP
request/response exchanges between the SMF and the UPF.
For example, we show a simplified UE initial PDU session
establishment callflow in Figure 2. During this procedure,
the SMF first sends a PFCP session establishment to the
UPF to setup the uplink GTP tunnel, and later, after further
communication with the base station, sends a PFCP session
modification message to setup the downlink GTP tunnel. Sev-
eral other signaling procedures like the AN release, service
request, and handover will also involve one or more PFCP
request/response messages exchanged between the SMF and
UPF, e.g., to mark a session as idle/active or to switch the
tunnel to another base station. The rate of PFCP messages
received at a UPF will depend on the applications running
on the UEs being served by the UPF. Several new use cases
of 5G like dense IoT or high speed mobility are expected
to generate high rate of PFCP messages. For example, a UE
running an IoT application will frequently establish sessions,
go idle and become active again, while transferring small
amounts of data in between, leading to a relatively higher
proportion of PFCP messages in its generated traffic.
UPF processing. The UPF primarily handles two types of in-
coming traffic: PFCP messages that setup, modify and delete
various packet forwarding rules corresponding to UE data
sessions at the UPF, and user plane (GTP) traffic that is then
handled as per these established rules. There are several
types of rules at the UPF, as shown in Figure 2. Packet Detec-
tion Rules (PDRs) help match the traffic of a session based on
packet header fields, e.g., source/destination IP address/port
number, or GTP TEIDs.With each PDR, we have other associ-
ated rules that specify the action to be taken on the traffic that
matches the PDR: Forward Action Rules (FARs) specify the
forwarding action to be applied on a packet (e.g., GTP TEIDs
to use for encapsulation and decapsulation), QoS Enforce-
ment Rules (QERs) specify the QoS that must be enforced
(e.g., maximum bit rate allowed for the session), Buffering
Action Rules (BARs) specify buffering requirements when
the UE is idle, and Usage Reporting Rules (URRs) specify how
usage reporting should be performed for billing and charging.
These various PDRs and their associated FARs, QERs, BARs,
and URRs are established, modified, and deleted via PFCP
messages from the SMF to the UPF. Once these rules are in
place at the UPF, user plane GTP traffic is handled by finding
a PDR that matches the received packet, and executing the
actions specified by the associated FARs, QERs, BARs, and
URRs. Prior work that uses programmable data plane hard-
ware to accelerate the UPF [5, 7, 8, 18, 22, 24, 33] proceses

PFCP messages in the software control plane, installs the
various rules in the hardware, and offloads only the GTP
user plane traffic handling to the programmable hardware.
PFCP message structure. A PFCP message has a highly
complex structure. A PFCP message has several Information
Elements (IEs), which are used to create, modify, or delete the
packet forwarding rules at the UPF. For example, a PFCP ses-
sion establishment message contains the following IEs [3]: a
node identifier of the SMF which sent this message, a unique
session identifier (SEID) that identifies the session, followed
by one or more IEs to create PDRs, FARs, BARs, QERs, and
URRs. Now, while some IEs like the node ID, SEID, and the
IEs to create PDR and FAR are mandatory, some other IEs
are optional and need not always be specified. Furthermore,
a PFCP session establishment message can have a variable
number of IEs to create PDRs, and each of these PDRs can
cross reference the same or different FARs, BARs, and so
on. Each of these IEs to create PDRs and other rules have a
nested structure with several smaller IEs contained within,
which can further have mandatory and optional elements. To
complicate things further, the 3GPP standards allow IEs to
be present in any order inside a message. Therefore, parsing
and processing a PFCP message is a highly complicated op-
eration that is hard to fully implement within the restricted
processing available in hardware. This is the reason why no
prior work that uses programmable hardware to accelerate
UPF proposes processing PFCP messages in hardware.
Programmable hardware. Before the introduction of pro-
grammable data plane hardware, a high performance packet
processing network element like the UPF was either devel-
oped as a fixed function hardware appliance or as a software
packet processing application running over commodity hard-
ware. While a hardware implementation provided higher and
more deterministic performance, a software implementation
had the benefit of easy programmability to add new features.
In contrast to fixed function hardware, programmable dat-
aplane hardware can be easily programmed (and quickly
reprogrammed) to perform complex packet processing func-
tions, via code written in a high-level language like P4 [21].
Therefore, programmable data planes provide the best of both
worlds, with the performance of a hardware implementation
and the flexibility of a software implementation. Packet pro-
cessing specifications written in a high-level language like P4
are compiled to a variety of targets, e.g., programmable hard-
ware ASICs [1, 2, 36, 37], NPUs [13, 45], and FPGAs [10, 17].
Languages like P4 have several limitations put in place in
order to ensure linerate processing of the software speci-
fication. They have limited expressiveness in terms of the
supported instruction set and programming constructs. The
packets cannot stall during the switch pipeline processing—
they have to be either forwarded or dropped. The amount of
on-board memory on such hardware is limited in capacity

AccelUPF: Accelerating the 5G user plane using programmable hardware SOSR ’22, October 19–20, 2022, Virtual Event, USA

Figure 3: AccelUPF design.

(∼few tens of MBs) [46], and provides a restricted storage
model. Despite these limitations, researchers have observed
substantial performance benefits by offloading applications
to programmable hardware, though the functionality that
is offloaded is often something that is simple enough to be
executed within the limitations imposed by the hardware.

3 DESIGN
The goal of AccelUPF is to accelerate the performance of the
5G UPF using programmable data plane hardware. However,
unlike prior work in this area, we aim to offload not just the
GTP user plane forwarding but also the PFCP processing.
We begin with describing the technical challenges that make
this goal non-trivial to achieve.

3.1 Challenges
Complexity of PFCP processing. PFCP messages have a
very complex structure, due to factors such as variable num-
ber of information elements (IEs), a large number of optional
IEs in each message, nested structure of IEs, and the flexibil-
ity of ordering of the IEs within each message that is allowed
by the 3GPP standards specification. Given this complexity,
it is not easy to fully process all PFCP messages within the
programmable hardware platforms available today.
Updating switch state from the data plane.Most appli-
cations that offload functionality to programmable hardware
use the match-action tables available within the hardware
platforms to store application state. Incoming packets are
matched against these rules using the various fields in the
packet header as keys, and the action corresponding to the
matched rule is executed on the packet. While this key-based
matching is often implemented efficiently using fast spe-
cialised hardware that can perform exact as well as ternary
(wildcard) matches, today’s programmable data planes only
allow the match-action tables to be configured via from the
software control plane via standard APIs, which can become
a performance bottleneck under high PFCP traffic.

Hardware memory and compute limitations. The mem-
ory available to store application state in programmable
hardware is limited, and may not be enough to accommo-
date the state of all users being served by a given UPF. The
limited memory can also make some data traffic processing
(e.g., buffering of data packets for idle users or for sessions
that exceed their rate limit) hard to do within the hardware.
Finally, the failure of the switch can result in the loss of
application state stored in switch memory.

3.2 Design overview
We now provide an overview of AccelUPF’s design (Figure 3),
and the key ideas that help us address the challenges above.
Fastpath PFCP processing (§3.3). Given the complexity
of processing PFCP messages in hardware, AccelUPF splits
the PFCP processing into a fastpath in hardware and a slow-
path in software. We identify the most frequent and simple
patterns of PFCP messages that can be handled in hardware
on the fastpath, but even these simple messages have a large
number of optional IEs and several levels of nesting. To parse
such messages correctly, AccelUPF identifies the finest gran-
ularity of IEs in the various PFCP headers, and chooses parser
states dynamically based on the presence or absence of the
various optional IEs.
Hardware data structures (§3.4). AccelUPF aims to avoid
software control plane involvement in the fastpath of PFCP
processing, and uses in-switch stateful memory called reg-
ister arrays (that can be read and written from within the
data plane itself) to store packet forwarding rules present
in the PFCP messages. However, unlike match-action tables,
register array access is only index-based and not key-based.
So, AccelUPF uses the hash of header fields in received pack-
ets as an index to access packet forwarding rules within the
register arrays. Computing this index is complicated by the
fact that PFCP messages and GTP traffic have different sets
of fields in the packet headers. Therefore, the data structures
that store the packet forwarding rules in the register arrays
are carefully designed so that the rules can be looked up via
different indices for different types of traffic.
Software fallback (§3.5). AccelUPF uses the software slow-
path as a fallback for sessions that cannot be handled in
hardware. We ensure that the UPF state is shared correctly
across the hardware and software components of AccelUPF,
with clear state ownership to avoid race conditions.
Replication of switch state (§3.6). Unlike state stored in
match-action tables that can be easily made fault tolerant us-
ing replication at the software layer, application state stored
in register arrays in AccelUPF can be lost due to switch
failures. To avoid losing forwarding rules state of users, Ac-
celUPF replicates the switch state created due to hardware

SOSR ’22, October 19–20, 2022, Virtual Event, USA Abhik Bose, et al.

processing of PFCP messages across other switches in the
data plane using chain replication.

3.3 PFCP processing
AccelUPF handles the most common PFCP messages in the
hardware fastpath, and redirects the remaining PFCP mes-
sages (and their associated data traffic) to the slowpath in
software. PFCP messages that pertain to setting up and main-
taining the PFCP association between SMFs and UPFs (also
called PFCP node messages) are infrequent, happen outside
the critical path of UE applications, and do not impact user-
perceived performance in any way. Therefore, we handle all
such messages only in the slowpath. Besides these messages,
there are three main PFCP messages related to UE session
management received at the UPF, which are the PFCP session
establishment, modification, and deletion messages.

While a general PFCP session message can have a complex
structure, with a variable number of packet forwarding rules
per message, we argue that the message structure is simpler
in the common case of a single application or service at
a UE (e.g., mobile broadband or IoT) establishing a PDU
session to transfer data. To see why, consider the initial
PDU establishment callflow shown in Figure 2. Here, the
SMF first sends a PFCP session establishment request to the
UPF, which creates one uplink PDR (containing the UE’s
source IP address, GTP TEID, QoS flow identifier or QFI, and
other packet header fields that identify a session’s uplink
traffic) and its actions. Later, the SMF sends a PFCP session
modification request, which associates with the same session
a downlink PDR (containing the UE’s destination IP address
and other packet header fields to identify downlink traffic)
and its corresponding actions. Beyond these default rules,
more PDRs for other applications can be added later to the
same session via PFCP session modification messages, with
each PDR created by a separate PFCP message. Therefore,
PFCP messages in this common case do not necessarily need
to contain more than one PDR in a single message.

Given this observation, the hardware fastpath of AccelUPF
handles PFCP session establishment messages that create
exactly one PDR, exactly one FAR, and at most one (op-
tional) QER. Other PFCP session establishment messages,
e.g., those creating more than one PDRs, are handled in the
slowpath. We place similar restrictions on the PFCP session
modification request also. Note that while we can extend our
design to handle messages that create two (or any such small,
fixed number of) PDRs in the hardware fastpath, handling
an open-ended number of PDRs is infeasible in hardware.

Now, we note that designing a parser that can parse even
this restricted set of PFCP messages is non-trivial for several
reasons. First, the 3GPP specifications do not mandate a fixed
order to the various IEs within a PFCP message. To parse

Figure 4: IEs implemented in the AccelUPF fastpath.
M, C and O represent Mandatory, Conditional and Op-
tional IEs respectively.

such messages correctly in hardware, we make the assump-
tion that the various IEs within a PFCP message appear in
the exact order in which they are specified in the standards
documents. Without this assumption, the complexity of pars-
ing a PFCP message in hardware becomes intractable as the
various IEs cannot be represented as a directed acyclic graph
(DAG) anymore. Even if this assumption does not hold in
some existing 5G implementations, it is easy to enforce with
minimal changes to control plane components like SMF.

Second, PFCP messages contain a large number IEs (321 in
the latest specification version 17.5.0 [3]). Of these, some are
classified as mandatory, some optional, and some conditional
(i.e., mandatory or optional, depending on some condition
being satisfied at the time of processing themessage). Further,
many IEs are nested IEs, with each nested level having its
own set of mandatory, optional, and conditional IEs. For
example, in a PFCP session establishment request handled
by AccelUPF fastpath (Figure 4), the session identifier is a
mandatory IE, while the UE IP address is an optional IE. The
IE to create a QoS rule is a nested, conditional IE, which
will be present for UEs specifying QoS rules, and absent
otherwise. To parse such messages correctly, we identify the
smallest units (simple non-recursive IEs or even part of IEs)
that may be present or absent in a PFCP message. We classify
conditional IEs as mandatory or optional suitably according
to the PFCP message structure being handled in the fastpath.
Now, between every pair of mandatory IEs, we generate
multiple parser states and state transitions, guided by the
absence/presence of the various optional IEs. At each stage
of the parsing, if the next IE is optional, the parser looks at
the first 16 bits of the next IE, and decides the next parser
state based on which IE it finds next. For example, consider
a sequence of 4 IEs, say, A, B, C, and D, in a message. Out of
these IEs, suppose IEs A and D are mandatory, and B and C
are optional. To correctly parse these optional IEs, we create
the following parser states and state transitions: A→B→

AccelUPF: Accelerating the 5G user plane using programmable hardware SOSR ’22, October 19–20, 2022, Virtual Event, USA

C→D, A→C→D, A→D, A→B→D. The actual parser
state transitions will be guided by whether IEs B and C are
present in the received message or not. We create multiple
parser states in thismanner for all optional IEs in themessage.
Across the entire PFCP session establishmentmessage shown
in Figure 4, this results in 28 parser states, 19 distinct paths
in the directed acyclic parse graph (DAG), and 42 transitions
between parse states.
Given the challenges in parsing PFCP messages in hard-

ware identified above, we believe that future standardization
efforts must incorporate simplifications to the PFCP message
format, e.g., enforcement of a fixed IE order, a limit on the
length and/or number of IEs supported in each message, in
order to enable faster processing on hardware accelerators.

3.4 Hardware data structures
After parsing PFCP messages, AccelUPF stores the result-
ing packet forwarding rules inside stateful memory avail-
able within most modern programmable hardware platforms
called register arrays. A register array is a storage abstraction
for an array of P4 registers, where the width of the register
and the length of the array are configurable. The register
array entries can be read or written during the various stages
of a packet processing pipeline directly from the switch data
plane itself. While one can lookup entries in a match action
table using a key (either exact or ternary), a register array
entry can be accessed only using its index.
A strawman approach to store packet forwarding rules

in register arrays would be to compute a hash over some
packet header fields and use this hash as an index to access
the register array entry required to process this packet. But,
which packet header fields can we use? Every PFCP ses-
sion message has a unique session identifier (SEID), which
uniquely identifies a session. Therefore, one would think that
all session-related states, including the PDRs, FARs, and other
rules associated with a session, can be stored and retrieved
in a register array using the hash of a SEID as an index. How-
ever, user plane traffic received from the UE (downlink IP
traffic that must be encapsulated in GTP headers, or uplink
GTP traffic that must be decapsulated) does not contain this
session identifier in the GTP or IP layer headers. For exam-
ple, given only the information within a GTP data packet
(GTP TEIDs, source/destination IP addresses etc.), how does
one identify the exact session that this packet belongs to,
without knowing the index in the array at which this ses-
sion is stored, and without having the ability to loop over all
the entries in the array due to the constraints of hardware
linerate processing?
To overcome this challenge, AccelUPF stores packet for-

warding rules across multiple different register arrays, each
accessed via a different index, as shown in Figure 5. The first

Figure 5: AccelUPF hardware data structure.

data structure is called a session array, which is accessed
using the hash of the session identifier as an index. When
a PFCP session message (establishment, modification, dele-
tion) is received, we compute the hash of the unique SEID,
and use this as an index to locate the register array entry at
which this session’s information is stored. This register array
entry is then updated with information about the session as
requested in the PFCP message. The second data structure is
the uplink match array, which stores information about the
PDR and the associated actions rules like FAR correspond-
ing to uplink traffic. The index into this array is the hash of
the various packet header fields that can be obtained from
the GTP-encapsulated packets in uplink traffic (we use UE’s
source IP, TEID and QoS flow identifier, but other choices are
possible too). An analogous data structure is the downlink
match array that stores packet rules for downlink traffic of a
session, and is indexed using the hash of the packet header
fields present in downlink traffic (UE’s destination IP in our
case). Note that we will require different match arrays if we
wish to use a different set of packet header fields for index
computation. The entry of a session in the session array does
not store the PDRs directly within the entry itself; instead
it stores the indices of the uplink/downlink match arrays at
which the uplink/downlink packet forwarding rules of a ses-
sion are stored. This cross-linkage helps us avoid duplication
of information across the various register arrays.
When AccelUPF receives a PFCP message, it computes

the hash of the SEID, locates the entry corresponding to
this session, and uses the stored indices to access all the
packet forwarding rules (PDRs, FARs, etc.) of the session that
are stored in the uplink and downlink match arrays. These
various register array entries are then suitably updated to
add/delete/modify rules based on the received PFCP request.
A PFCP response indicating the status (success/failure) of
the request is generated by modifying the contents of the
request packet itself. When AccelUPF receives a data packet,
it identifies whether it is an uplink or downlink packet, and
uses the hash of the suitable packet header fields to index
into the corresponding match array. It then verifies that the
packet matches the PDR, and executes the actions specified
within the FAR and other rules in case of a match.

AccelUPF currently supports only an exact matching of
packet header fields with the information in the PDR. If

SOSR ’22, October 19–20, 2022, Virtual Event, USA Abhik Bose, et al.

one has to perform other kinds of complex matching, e.g.,
PDR specifies a prefix and we must perform a longest prefix
match, such matching cannot be performed using register
arrays. AccelUPF handles sessions with such packet rules
in the software slowpath. In addition to forwarding actions,
AccelUPF must also enforce other rules corresponding to
QoS enforcement, buffering data for idle users, and usage
reporting. Of such rules, our implementation currently sup-
ports the enforcement of a session-wide aggregate maximum
bit rate (AMBR) by computing per-flow rates using ingress
timestamps and interpacket gaps. Support for more complex
policies is deferred to future work. If a session exceeds its
configured AMBR, its data packets have to be buffered, which
is once again handled in the slowpath.
What if packets belonging to two different sessions hash to

the same index within the match array? Our current imple-
mentation stores two entries in a hash bucket using dual-
width registers and other such mechanisms available via P4
extern units on most programmable switches. We can also
use techniques such as multiple hash functions to find alter-
nate indices [38]. However, we will eventually face a hash
collision, where two different sessions are contending for the
same entry in the register array. Hash collisions are handled
in AccelUPF by handling all traffic of the colliding session in
the software slowpath.

3.5 Software fallback
Any PFCP message that cannot be handled within the hard-
ware fastpath in AccelUPF is redirected to a software UPF
running in host userspace, as shown in Figure 3. Examples
of such PFCP messages include: (i) node-related PFCP mes-
sages that are not on the critical path of user-perceived per-
formance; (ii) PFCP messages that contain a large number
of PDRs and associated action rules, which cannot be eas-
ily parsed in hardware; (iii) sessions that require complex
algorithms like longest prefix matching to match incoming
data traffic to packet forwarding rules; (iv) sessions which
hash to the same index in the register arrays. All such PFCP
messages are redirected to the slowpath software UPF, which
handles them normally, and creates suitable state in the form
of packet forwarding rules in software. All subsequent PFCP
session modification/deletion messages or GTP user plane
packets of this session will also not find a matching rule
in hardware and will thus be forwarded to, and correctly
processed in, the software slowpath.

How are the session state and packet forwarding rules shared
correctly across the hardware fastpath and software slowpath?
Note that for most sessions, the state is created, modified, and
deleted exclusively either within the hardware fastpath or in
software. Therefore, the question of ownership of state is triv-
ial to resolve in most cases. The only tricky scenario is when

a session is initially created in hardware, but needs to fallback
to the software slowpath midway due to reasons such as: (i)
a session that was being handled by the hardware fastpath
starts sending data at a rate beyond its configured maximum
bit rate, and must fallback to the software for buffering, or
(ii) we receive a PFCP session modification request for an
already established session that was being handled in the
hardware, and this PFCP message has a complex structure,
e.g., a rule that requires longest prefixmatching or one where
multiple PDRs refer to the same FAR, and must therefore
be processed in software. For such scenarios, all subsequent
PFCP message processing and GTP forwarding of the session
must migrate from hardware to software.
This state migration is accomplished as follows. When

the hardware realizes that it can no longer process a certain
session in the fastpath, it marks all the session states in the
register arrays as invalid and under migration. All subse-
quent PFCP messages and user plane packets are forwarded
to the software slowpath as a fallback. When a software
slowpath receives a PFCP session modification or deletion
message, or a GTP user plane packet, but does not find corre-
sponding state in its data structures, it probes the hardware
to find if this is a case of a session being migrated from hard-
ware to software after initially being created in hardware. If
it finds the corresponding state in the hardware register ar-
rays as marked for migration, it copies this state to software,
and deletes the corresponding invalid entry in the hardware
register array data structures. All subsequent packets of this
session will find the session and packet forwarding state in
software and will be correctly handled in the slowpath. If the
software UPF does not find the state to process a PFCP/GTP
packet either in its own software data structures or after
probing the hardware data structures, it drops the packet.
We note that an alternate design is possible where we

handle complex PFCP messages in software and install the
session rules directly to the hardware, allowing us to pro-
cess future traffic of such sessions in the fastpath. How-
ever, this approach requires more frequent updates to the
hardware rules from the software slowpath. Considering the
hardware-software communication bottleneck and limited
performance gains only for a small set of complex PFCP ses-
sions, AccelUPF has not implemented this hybrid approach.

3.6 Fault tolerance of switch state
AccelUPF stores packet forwarding rules in register arrays,
which are not persistent across switch failures. While a soft-
ware UPF, or even a hardware accelerated UPF that only
offloads GTP user plane forwarding, can use software-based
mechanisms to replicate and persist session state across
switch/host failures, AccelUPF cannot rely on software repli-
cation for hardware switch state. Therefore, AccelUPF relies

AccelUPF: Accelerating the 5G user plane using programmable hardware SOSR ’22, October 19–20, 2022, Virtual Event, USA

Figure 6: AccelUPF fastpath fault tolerance.

on techniques similar to those proposed in prior work for
replication of switch state [23, 29, 30, 49]. To maintain packet
forwarding rules in register arrays in a fault-tolerant man-
ner, every update to the register arrays is replicated at K +
1 switches arranged in a linear fashion to achieve a K fault-
tolerant system. The last switch in the chain replication acts
as the primary UPF, and sends a response to the PFCP re-
quest. We use K = 1 in our current implementation. What
if the primary switch fails before replication is completed?
In such cases, we will not generate a response back to the
SMF, and the PFCP reliability feature [3] will ensure that the
SMF will detect the loss of the PFCP message via sequence
numbers embedded on PFCP messages, and will retry the
PFCP request once again at a new switch.

Note that our replication only increases the time required
for PFCP message processing, and does not impact the per-
formance of user traffic. This is because the GTP user plane
traffic is only routed to the primary UPF from the RAN, and
is re-routed to the backup switches in the replication chain
only when the primary fails. Figure 6 shows the path taken
by PFCP messages and GTP packets in our fault-tolerant
AccelUPF design.

4 IMPLEMENTATION
This section describes the implementation of AccelUPF. The
fastpath of AccelUPF is implemented in P4, and compiled
to run on two targets: an Agilio CX Netronome 2x40GbE
smart NIC [46] and an Intel Tofino based Edgecore Wedge
100BF-32X programmable switch [36]. For a smart NIC-based
programmable data plane platform, the fastpath runs on the
NIC and the software slowpath runs in the host userspace.
For a switch-based platform, the fastpath runs inside the
switch packet processing pipeline, and the slowpath can
either run on the switch CPU or on a host connected to the
switch.
We used two different hardware platforms to implement

our hardware fastpath because these platforms have different
internal implementations of abstractions like register arrays,
on which our design depends heavily. The Netronome smart
NIC platform uses multiple packet processing engines that

process packets in a run-to-completion manner. Large reg-
ister arrays are stored in memory that is shared across all
engines, and one engine accessing a register may cause an-
other engine to stall [47]. On the other hand, the Tofino
programmable switch uses a pipelined design where the
register array can be partitioned across multiple pipeline
stages, resulting in better performance when accessing regis-
ters from the packet processing pipeline [28]. AccelUPF uses
register arrays available at different part of the P4 pipeline
(ingress, egress), and across different pipelines, provided they
are independent from each other. AccelUPF distributes the
forwarding sessions among the different sets of the register
arrays by matching the most significant bits of the register
array indices, which are generated by hashing the match
fields in the incoming PFCP and GTP packets.
Our slowpath implementation builds upon a production-

grade standards-compliant software UPF [9]. We worked
with two different flavors of this UPF for our slowpath, one
running on the kernel network stack, and another built on
top of the high-speed DPDK packet I/O framework. Both
the kernel-based and DPDK-based UPFs came with a mul-
ticore scalable design, with separate CPU cores processing
PFCP messages and GTP user plane traffic, though the GTP
forwarding throughput of the DPDK prototype was much
higher. We made minor modifications to the software UPFs
to work with our fastpath, e.g., to support migration of ses-
sion state from the fastpath in case of fallback to software.
We also use the unmodified pure software DPDK-based UPF
to serve as a baseline in our evaluation.
As another baseline, we modified the software UPFs to

offload the GTP user plane forwarding functionality to a
programmable NIC/switch. In this GTP-offloaded UPF pro-
totype, the UPF processes PFCP messages normally, and in
addition to installing session state locally, also installs the
packet forwarding rules within the NIC/switch hardware
using the programmable data plane hardware APIs provided
by the hardware platform vendors. We optimized this rule
installation to work at the maximum rate supported by the
hardware, by using multiple threads in the software control
plane to install rules in parallel.

The software UPF also came with a load generator, a multi-
threaded DPDK application that emulates the functionality
of the UEs, RAN, and the packet core control plane. The load
generator generates PFCP messages and GTP user plane
traffic on behalf of emulated UEs, and provides knobs to vary
the relative mix of PFCP messages and GTP traffic in the
generated traffic.

5 EVALUATION
Setup.We use two different programmable hardware plat-
forms to evaluate AccelUPF, shown in Figure 7. The setup

SOSR ’22, October 19–20, 2022, Virtual Event, USA Abhik Bose, et al.

Figure 7: Experimental setup.

with the Netronome smart NIC contains three servers (AMD
Ryzen 9 5950X processors@3.4GHz, 16 cores 32GB RAM),
each connected to an Agilio CX 1/2x40GbE programmable
smart NIC [46]. The first server hosts the load generator that
generates PFCP and data traffic on behalf of emulated UEs,
the second hosts the various UPFs we test, and the third
hosts a sink that serves as the destination for the traffic gen-
erated from the load generator. The setup with the Tofino
programmable switch consists of two servers (Intel Xeon
Gold 6234 CPUs@3.30GHz processors, 24 cores, 128GB RAM)
with 40Gbps NICs connected via an Intel Tofino Edgecore
Wedge 100BF-32X programmable switch [25]. In this setup,
the first server runs the load generator and the second server
runs the sink. The slowpath software UPF runs on an inter-
nal Intel Pentium CPU D1517 @ 1.60GHz CPU connected to
the data plane of the switch over the PCI bus.
Parameters and metrics. Across all experiments, we vary
the mix of PFCP messages to GTP data packets in the UPF
traffic by varying the knobs provided in the load generator.
We measure the peak PFCP message processing throughput
(messages/sec) and peak GTP data forwarding throughput
from the load generator. We also measure the average PFCP
processing latency and GTP forwarding latency at saturation.
All experiments were run for a duration of 300 seconds, and
we ensured that the load generator and the sink were not
the performance bottleneck.
UPF variants. We compare the performance of AccelUPF
(running on Netronome/Tofino) with the following baseline
UPFs described in §4: a pure software DPDK-based UPF, a
GTP offloaded UPF (with data forwarding offloaded to the
Netronome/Tofino programmable hardware platforms).

5.1 Microbenchmarks
We first conduct several simple microbenchmarking experi-
ments on all our UPF variants, and compare the PFCP mes-
sage processing throughput/latency and GTP data forward-
ing throughput/latency. We also normalize the PFCP and
GTP throughputs by the cost and power consumption of
the corresponding commodity server or programmable hard-
ware platforms [12, 14, 15], in order to measure performance
per unit cost or power consumed. For the normalization,

we scaled the cost of the server/switch/NIC according to
the number of cores/ports actually used. All the results are
shown in Table 1. We highlight some observations below.
PFCP throughput and latency.We first generate session
establishment and deletion requests from emulated UEs in
the load generator, and measure the maximum PFCP mes-
sage processing throughput and average message processing
latency or RTT for all UPFs, for a workload consisting only
of PFCP messages. We find that AccelUPF has much higher
PFCP performance (4.3M PFCP messages/sec on Tofino) as
compared to the baseline UPFs, which could process only a
few thousand PFCP messages/sec.

A few observations on the results shown in Table 1. (i) We
note that the software UPF in our experiment was processing
PFCP messages on a single core. One could argue that the
performance of the software UPF can scale to a higher PFCP
processing capacity by adding more CPUs, but this scaling
would increase the overall cost and power consumption of
the system. For example, one would need over 500 cores on
our server hosting the software UPF for it to match the per-
formance of AccelUPF. The PFCP performance normalized
by cost or power consumed shows that AccelUPF is still more
efficient than the software UPF, even if one were to scale the
software UPF to a higher number of CPU cores. (ii) AccelUPF
also performs much better than the GTP-offloaded UPF, both
in terms of throughput and latency, because processing PFCP
messages in hardware is much more efficient than process-
ing them in software and installing the packet forwarding
rules in hardware. To confirm that the hardware rule installa-
tion is indeed the bottleneck in the GTP-offloaded UPFs, we
installed packet forwarding rules from a multi-threaded soft-
ware controller program and measured the maximum rate
at which the programmable hardware platform can install
packet forwarding rule. This rule installation capacity turned
out to be the equivalent of 4448 PFCP msg/s for Netronome
and 11406 PFCP msg/s for Tofino, which provides an op-
timistic upper bound for the PFCP processing capacity on
these platforms, even if one were to disregard all other pro-
cessing overheads. (iii) AccelUPF performs much better on
Tofino than on Netronome, because of the higher overhead
of register access in Netronome (see §4). Reading and writ-
ing a single register takes around 150-590 clock cycles on
the Netronome platform [47], and processing a PFCP mes-
sage involves a few tens of register accesses. This explains
the higher latency (and lower throughput) of AccelUPF on
Netronome as compared to Tofino, which allows a much
faster access to registers via its pipelined design [28].
GTP forwarding throughput and latency. Next, we es-
tablish sessions for 1K users ahead of time, and measure only
the maximum GTP data forwarding throughput and average
forwarding latency or RTT for all UPFs. We use IMIX packet
size [16] and only uplink traffic (results for other packet

AccelUPF: Accelerating the 5G user plane using programmable hardware SOSR ’22, October 19–20, 2022, Virtual Event, USA

UPF design
PFCP GTP

Tput (msg/s) msg/s/USD msg/s/Watt RTT (us) Tput (Mpps) Kpps/USD Kpps/Watt RTT (us)

SoftwareUPF 8309 85.51 949.60 40 11.93 17.53 194.77 85

GTPOffload Netronome 1953 6.39 78.12 1470 10.51 17.20 210.20 71

GTPOffload Tofino 499 1.91 31.23 447 11.94 22.91 373.12 49

AccelUPF Netronome 794849 2601.80 31793.96 114 4.83 7.91 96.60 115

AccelUPF Tofino 4389254 16841.26 274328.37 35 11.94 22.91 373.12 49

Table 1: PFCP processing and GTP forwarding performance of UPFs.

sizes and downlink forwarding were similar). We find that
all UPFs, with the exception of AccelUPF on Netronome, are
able to process packets at the linerate of 40Gbps. Further-
more, the hardware-accelerated UPFs have a much better
packet processing performance per unit cost or power con-
sumed, as compared to the pure software UPF. The only
outlier is the poor GTP forwarding throughput of AccelUPF
on Netronome, which is once again due to the higher over-
head of register access on the Netronome smart NIC platform.
While the GTP offloaded UPF on Netronome stores its packet
forwarding rules in match-action tables, AccelUPF uses in-
switch register arrays which are shared across all packet
forwarding engines in the smart NIC, leading to frequent
stalls and poor packet processing performance. However,
AccelUPF on Tofino has no such issues, and performs on par
with the other state-of-the-art UPF variants. This experiment
highlights the importance of choosing a good programmable
data plane hardware platform to deploy AccelUPF on. If the
underlying hardware platform cannot support efficient reg-
ister access, AccelUPF may not be suitable for UPFs that see
a large share of GTP traffic and relatively small PFCP traffic.
Overhead of chain replication. The above microbench-
marks of AccelUPF were obtained with the replication of
switch state (along a chain of K+1 switches for a K-fault tol-
erance system) turned off. We measured performance with
replication turned on, and we found no noticeable degrada-
tion in PFCP or GTP processing throughputs of AccelUPF.
However, the PFCP latency of AccelUPF when replicating
switch state at one other backup switch was 60% higher than
that of AccelUPF with no fault tolerance. However, given the
extremely low latencies of message processing in AccelUPF
(few tens of microseconds in most cases), we do not expect
this overhead to be a big concern.
Maximum number of user sessions. The maximum num-
ber of user sessions that can be supported by AccelUPF de-
pends on the size of the register array memory available to
store packet forwarding rules of a session, the number of
separate pipelines available for the hardware platform with
distinct register array, and the size of the hash computed
by the hardware platform. Across both hardware platforms,
we found that we could support 64K entries in each register

Figure 8: Rate of hash collisions.

array. This translates to a maximum of 64K user sessions for
our Netronome platform, considering it has a single func-
tional copy of each register array. Tofino has disjoint registers
for its ingress and egress pipelines, so we can support 128K
users in our current implementation. Note that for workloads
generating frequent PFCP messages (say, every 10 seconds,
which is the common value of the inactivity timer after which
a session is marked as idle), the PFCP traffic generated by
128K users can only be comfortably and efficiently handled
by AccelUPF, and by not any other UPF design we have eval-
uated. It is possible to increase capacity of AccelUPF further
by using multiple pipelines present in switches. The Tofino
switches support up to 4 pipelines (2 in our model), so it is
possible to increase the capacity of AccelUPF to 512K users,
which we plan to explore as part of future work.

However, as the number of users approaches capacity,
hash collisions can become a problem. Figure 8 shows the
percentage of sessions that see a hash collision as the number
of active sessions at the UPF increases. These measurements
were obtained from the AccelUPF prototype running on
Tofino in two different cases. First, we store a single entry in
a hash bucket using single width Tofino registers. In this case,
we see that the number of hash collisions is relatively low
until the system has about 32K users, and the hash collisions
increase afterwards reaching to as high as 43% at the full
capacity of 65k users. This would be a significant load for
the slowpath software UPF. However, with using dual width
registers, storing 2 entries in each hash bucket, we can bring
the hash collisions to a low value (under 10%), and we can
comfortably support 64K users in each register array.

SOSR ’22, October 19–20, 2022, Virtual Event, USA Abhik Bose, et al.

Overhead of software fallback. AccelUPF needs to mi-
grate an established session from hardware to software in
certain scenarios, e.g., when a session exceeds its config-
ured maximum bit rate. In such cases, when the processing
needs to fallback to software, the first packet of the flow after
migration will incur a high overhead, due to the software
probing the hardware state and migrating it to the slowpath.
We measured this overhead and found that the first packet
processed in a session immediately after software fallback
incurs a processing latency of around 2.4 milliseconds, as
compared to the average case latency of around 100microsec-
onds. We argue that this migration overhead is not a major
concern. The two main cases where a user session has to be
migrated are when a user sends traffic beyond the configured
rate limit, or when a session is modified using complex PFCP
messages that cannot be parsed in the fastpath. In the former
case, we argue that the user’s traffic will suffer long delays
due to buffering anyways, and the extra overhead of migra-
tion will not adversely impact performance. In the latter case,
we expect future implementations of the SMF working with
AccelUPF to evolve towards simpler PFCP messages, at least
for UEs with stringent performance guarantees.

5.2 Real world traffic
We now present an evaluation of AccelUPF on real-world
traces. We choose an IoT application that is likely to see
a larger fraction of PFCP messages to GTP data, because
an IoT device performs frequent signaling while sending
small amounts of data intermittently. We obtained IoT packet
traces from 5 different IoT applications [44]. These traces
contain the packet sizes and timestamps of when packets
were generated by various IoT applications. We then extrapo-
late the traces to add PFCPmessages, to simulate the scenario
where these IoT devices would be connected over a mobile
telecom network as follows. We add PFCP messages corre-
sponding to PDU initial session establishment for each IoT
device at the start of the trace. Further, when an IoT device
goes inactive after an idle period, we add PFCP messages
corresponding to the AN release procedure that transitions
a user from a connected state to the idle state. We also add
PFCP messages corresponding to a service request when
the user resumes activity once again. The inactivity timer
is usually set to a few seconds [34] by network operators to
reclaim radio resources of inactive users. We use a value of
10 seconds. After adding the emulated PFCP messages, the
relative mix of PFCP and data traffic in the 5 traces (named
trace A to trace E) is as shown in Table 2. We now generate
PFCP and GTP traffic from our load generator in these ratios,
obtaining other metrics like average packet sizes also from
the trace.Wemeasure the total packet processing throughput
of the various UPF variants for these IoT workloads.

Figure 9: Comparison of UPFs for IoT traffic.

IoT Trace A B C D E

PFCP % 3.65 12.53 19.63 28.86 35.79

Table 2: PFCP messages in IoT traces.

Figure 9 shows the PFCP and GTP processing through-
puts (in pps) for the various UPFs (we omit GTPOffloadUPF
Netronome and AccelUPF Netronome for clarity). We note
that the average packet size in the IoT traces decreases from
trace A to trace E, which resulted in an increased throughput
(in Mpps) from left to right. The PFCP processing capacity
of GTPOffload designs and software UPF was too low to be
visible on top of the GTP throughput in our representation
in Figure 9. We find that AccelUPF has around 57% higher
throughput than SoftUPF or GTPOffloadUPF on Tofino for
the trace E, which had 35.79% PFCP messages, and the in-
creased throughput was primarily due to the higher PFCP
message processing capacity of AccelUPF compared to the
other two designs.

We note that under high PFCP traffic coming from a large
number of UEs (beyond the capacity of the hardware fast-
path), the AccelUPF slowpath will still have to support a high
PFCP throughput. The software UPF on the slowpath (whose
PFCP throughput per core is much lower than AccelUPF
hardware, see Table 1) is scaled to run on multiple cores in
such cases, to effectively handle the traffic coming to the
slowpath. However, the number of cores required will be
much lower than in the case of a pure software UPF, because
the fastpath is expected to handle a bulk of the traffic.

6 RELATEDWORK
State-of-the-art UPFs. Most production grade UPFs are
built over kernel-bypass techniques like DPDK to achieve
high user plane throughput in software. Neutrino [19] pro-
poses a DPDK-based edge solution that replaces the 5G
standards-based components by a 5G non-compliant con-
trol plane solution which is fast, reliable, and fault-tolerant.
Metaswitch [6] uses a specialized processing engine (CNAP)
in the software itself to achieve high throughput. Some UPFs

AccelUPF: Accelerating the 5G user plane using programmable hardware SOSR ’22, October 19–20, 2022, Virtual Event, USA

also use programmable hardware or specialized processing
engines to offload some part of the UPF processing to hard-
ware. Few proposals [7, 8, 18, 22, 24] offload the GTP en-
cap/decap based forwarding to hardware, while some [31]
offload packet steering to cores via deep packet inspection
(DPI) of the inner IP header. Kaloom [5] offloads a subset of
QoS processing (bit rate policing) along with GTP processing
to the programmable hardware. TurboEPC [40] offloads the
subset of 4G core signaling messages to the programmable
hardware, but the proposed changes are not standards com-
pliant. uP4 [33] offloads the 5G UPF user plane processing
to programmable hardware and uses microservices that run
on commodity hardware to process the corresponding PFCP
signaling messages.

Our previous position paper [20] evaluated the costs and
benefits of multiple 5G UPF designs (with and without hard-
ware offload) and quantified the performance gains of user
plane traffic offload. The work also identifies the PFCP pro-
cessing bottleneck of the programmable data plane acceler-
ated UPF when only data handling is offloaded, and proposes
the offload of PFCP processing as well to programmable
hardware.
Control plane offload.Much like AccelUPF, prior work has
also proposed offloading the control plane logic of network
functions (and not just the data plane) to programmable
hardware, and highlighted the challenges with the same.
Mantis [48] designs a control plane architecture over pro-
grammable switches that can react to data center network
conditions within tens of 𝜇s to resolve congestion events that
are microscopic in duration. Molero et al. [35] achieves line
rate for internet routing by processing failure detection, dis-
tributed path-vector computations (shortest-path and BGP-
like policies), and forwarding state updates, entirely within
the data plane. D2R [43] implements fast reroute during
network failure by performing route computation without
control plane intervention. Lucid [41] presents a framework
that simplifies the in-network implementation of control
plane constructs such as stateful table data structures, pe-
riodic event triggers and event handler processing, packet
buffering, traffic shaping, and synchronized state writes. Lu-
cid also proposes a high-level language for writing control
function code, and the compiler translates this code to the
optimized target code for Intel Tofino switches. AccelUPF is
complementary to, and strengthens the case for, frameworks
like Lucid.
Fault-tolerance of switch state. With many stateful ap-
plications offloaded to the programmable data planes, pro-
tecting application state under switch failure conditions and
concurrent state access is essential. Prior work has proposed
state replication and fault tolerance solutions for such ap-
plications, some of which we leverage for fault tolerance of
switch state in AccelUPF. Netchain [29] proposes protocols

and algorithms that ensure strong consistency and fault-
tolerance for an in-network key-value store. Choi et al. [23]
and SwiSh [49] introduce new replication protocols for in-
network state. Redplane [30] implements a fault-tolerant
state store that ensures consistent application state access
even if the switch fails or traffic is rerouted to another switch,
while offering two consistency modes; strong consistency
and bounded-inconsistency.

7 CONCLUSION
This paper presented the design, implementation, and eval-
uation of AccelUPF, a programmable data plane hardware
accelerated 5G user plane function. Prior work on using pro-
grammable hardware to accelerate the mobile packet core
user plane was restricted to offloading only the GTP user data
forwarding functionality to hardware, while continuing to
process PFCP messages that configure the packet forwarding
rules in software. These designs perform badly when applica-
tions frequently reconfigure packet forwarding rules while
sending little data in between (e.g., IoT applications), because
the software control plane APIs that reconfigure hardware
rules have a limited capacity. To overcome this bottleneck,
AccelUPF offloads the processing of most PFCP messages
to the programmable hardware as well, carefully working
around the memory and compute constraints of the hard-
ware platformswhen processing the complex PFCPmessages.
Our experiments show that AccelUPF significantly improves
UPF packet processing performance as compared to previous
offload-based UPF designs, especially when the traffic has
a high proportion of PFCP messages. Our work highlights
the challenges in processing a complex protocol like PFCP
in programmable hardware. Given the significant perfor-
mance gains that accrue from processing PFCP messages
in programmable hardware at the UPF, our work provides
guidance on how the future versions of PFCP for 6G and
beyond can evolve to make them amenable for acceleration
using programmable dataplane platforms.

ACKNOWLEDGEMENTS
We thank our shepherd Hyojoon Kim, and the anonymous
reviewers, for their insightful feedback. We thank the 5G
testbed project, funded by the Department of Telecommu-
nications, Govt. of India, for access to the various 5G core
components. We thank Dr. Venkanna U. and his research
team at IIIT Naya Raipur, especially Suvrima Datta, for pro-
viding access to their hardware setup during our initial work.
We also thank the Fast Forward Initiative Hardware Grant
Program by Intel® Connectivity Research Program (ICRP)
for their grant of a programmable switch.

SOSR ’22, October 19–20, 2022, Virtual Event, USA Abhik Bose, et al.

REFERENCES
[1] 2013. Cisco highlights next big switch. https://www.biztechafrica.com/

article/cisco-announces-next-big-switch/5448
[2] 2015. Cavium Xpliant ethernet switch product line. https://

people.ucsc.edu/~warner/Bufs/Xpliant-cavium.pdf
[3] 2017. 3GPP Ref #: 29.244. 2017. System architecture for the 5G System

(5GS). https://www.3gpp.org/ftp/Specs/archive/29_series/29.244
[4] 2017. 3GPP Ref #:23.501. 2017. System architecture for the 5G System

(5GS). https://www.3gpp.org/ftp/Specs/archive/23_series/23.501
[5] 2019. The Kaloom 5G User Plane Function (UPF). https:

//www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-
Brief-Kaloom-5G-UPF-v1.0.pdf

[6] 2019. Lighting Up the 5G Core with a High-Speed User Plane on Intel Ar-
chitecture. https://builders.intel.com/docs/networkbuilders/lighting-
up-the-5g-core-with-a-high-speed-user-plane-on-intel-
architecture.pdf

[7] 2020. 5G User Plane Function (UPF) - Performance with AS-
TRI. https://networkbuilders.intel.com/solutionslibrary/5g-user-
plane-function-upf-performance-with-astri-solution-brief

[8] 2020. Optimizing UPF performance using SmartNIC of-
fload. https://www.mavenir.com/app/uploads/2020/11/
Mavenir_UPF_Solution_Brief .pdf

[9] 2022. 5G testbed at IIT Bombay. https://www.cse.iitb.ac.in/~5gtestbed
[10] 2022. Altera. https://www.mouser.in/manufacturer/altera
[11] 2022. DPDK Overview. https://doc.dpdk.org/guides/prog_guide/

overview.html
[12] 2022. Edgecore Wedge 100BF-32X 32-Port 100GbE Bare Metal

Switch with ONIE - Part ID: Wedge100BF-32X-O-AC-F-US.
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=
3485&idcategory=

[13] 2022. EZchip. https://www.radisys.com/partners/ez-chip
[14] 2022. Intel XL710-BM2 Dual-Port 40G QSFP+ PCIe 3.0 x8, Ethernet

Network Interface Card. https://www.fs.com/products/75604.html
[15] 2022. Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz. https:

//www.intel.com/content/www/us/en/products/sku/91767/intel-
xeon-processor-e52650-v4-30m-cache-2-20-ghz/specifications.html

[16] 2022. Internet Mix (IMIX) Traffic. https://en.wikipedia.org/wiki/
Internet_Mix

[17] 2022. Xilinx. https://www.xilinx.com
[18] Ashkan Aghdai et al. 2018. Transparent Edge Gateway for Mobile

Networks. In IEEE 26th International Conference on Network Protocols
(ICNP).

[19] Mukhtiar Ahmad, Syed Usman Jafri, Azam Ikram, Wasiq Noor Ah-
mad Qasmi, Muhammad Ali Nawazish, Zartash Afzal Uzmi, and Za-
far Ayyub Qazi. 2020. A Low Latency and Consistent Cellular Control
Plane. In Proceedings of the Annual Conference of the ACM Special In-
terest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication.

[20] Abhik Bose, Diptyaroop Maji, Prateek Agarwal, Nilesh Unhale, Rinku
Shah, and Mythili Vutukuru. 2021. Leveraging Programmable Data-
planes for a High Performance 5G User Plane Function. In 5th Asia-
Pacific Workshop on Networking (APNet).

[21] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
independent Packet Processors. SIGCOMM Computer Communication
Review 44 (2014).

[22] Carmelo Cascone and Uyen Chau. 2018. Offloading VNFs to pro-
grammable switches using P4. In ONS North America.

[23] Sean Choi, Seo Jin Park, Muhammad Shahbaz, Balaji Prabhakar, and
Mendel Rosenblum. 2019. Toward Scalable Replication Systems with

Predictable Tails Using Programmable Data Planes. In Proceedings of
the 3rd Asia-Pacific Workshop on Networking (APNet).

[24] Zhou Cong, Zhao Baokang, Wang Baosheng, and Yuan Yulei. 2022.
CeUPF: Offloading 5G User Plane Function to Programmable Hard-
ware Base on Co-Existence Architecture. In Proceedings of the ACM
International Conference on Intelligent Computing and Its Emerging
Applications.

[25] Edge-core. 2022. Quick Start Guide 32-Port 100G Ethernet Switch
Wedge100BF-32X. https://www.edge-core.com/_upload/images/
Wedge100BF-32X_QSG-R01_EN-SC_0114.pdf

[26] Michaela Goss. 2022. Macrocell vs. small cell vs. femtocell: A 5G in-
troduction. https://www.techtarget.com/searchnetworking/feature/
Macrocell-vs-small-cell-vs-femtocell-A-5G-introduction

[27] R. E. Hattachi. 2015. Next Generation Mobile Networks,
NGMN. https://www.ngmn.org/wp-content/uploads/
NGMN_5G_White_Paper_V1_0.pdf

[28] Intel. 2021. P416 Intel® Tofino™ Native Architecture – Public Ver-
sion. https://github.com/barefootnetworks/Open-Tofino/blob/master/
PUBLIC_Tofino-Native-Arch.pdf

[29] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-
RTT Coordination. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

[30] Daehyeok Kim, Jacob Nelson, Dan R. K. Ports, Vyas Sekar, and Srini-
vasan Seshan. 2021. RedPlane: Enabling Fault-Tolerant Stateful in-
Switch Applications. In Proceedings of the ACM SIGCOMM Conference.

[31] DongJin Lee, JongHan Park, Chetan Hiremath, John Mangan,
and Michael Lynch. 2018. Towards achieving high perfor-
mance in 5G mobile packet core’s user plane function. https:
//builders.intel.com/docs/networkbuilders/towards-achieving-high-
performance-in-5g-mobile-packet-cores-user-plane-function.pdf

[32] Yuanjie Li, Qianru Li, Zhehui Zhang, Ghufran Baig, Lili Qiu, and
Songwu Lu. 2020. Beyond 5G: Reliable Extreme Mobility Management.
In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM).

[33] MacDavid, Robert and Cascone, Carmelo and Lin, Pingping and Pad-
manabhan, Badhrinath and ThakuR, Ajay and Peterson, Larry and
Rexford, Jennifer and Sunay, Oguz. 2021. A P4-Based 5G User Plane
Function. In Proceedings of the ACM SIGCOMM Symposium on SDN
Research (SOSR).

[34] Foivos Michelinakis, Anas Saeed Al-Selwi, Martina Capuzzo, Andrea
Zanella, Kashif Mahmood, and Ahmed Elmokashfi. 2021. Dissecting
Energy Consumption of NB-IoT Devices Empirically. IEEE Internet of
Things Journal 8, 2 (2021), 1224–1242.

[35] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. 2018.
Hardware-Accelerated Network Control Planes. In Proceedings of the
17th ACM Workshop on Hot Topics in Networks (HotNets).

[36] Barefoot networks. 2018. NoviWare 400.5 for Barefoot Tofino
chipset. https://noviflow.com/wp-content/uploads/NoviWare-Tofino-
Datasheet.pdf

[37] Recep Ozdag. 2012. Intel Ethernet Switch FM6000 Series - Software
Defined Networking. https://people.ucsc.edu/~warner/Bufs/ethernet-
switch-fm6000-sdn-paper.pdf

[38] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing.
Journal of Algorithms 51 (2004).

[39] Javan Erfanian Rachid El Hattachi. 2015. NGMM 5G
white paper. https://www.ngmn.org/wp-content/uploads/
NGMN_5G_White_Paper_V1_0.pdf

[40] Rinku Shah, Vikas Kumar, Mythili Vutukuru, and Purushottam Kulka-
rni. 2020. TurboEPC: Leveraging Dataplane Programmability to Accel-
erate the Mobile Packet Core. In Proceedings of the Symposium on SDN

https://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448
https://www.biztechafrica.com/article/cisco-announces-next-big-switch/5448
https://people.ucsc.edu/~warner/Bufs/Xpliant-cavium.pdf
https://people.ucsc.edu/~warner/Bufs/Xpliant-cavium.pdf
https://www.3gpp.org/ftp/Specs/archive/29_series/29.244
https://www.3gpp.org/ftp/Specs/archive/23_series/23.501
https://www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-Brief-Kaloom-5G-UPF-v1.0.pdf
https://www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-Brief-Kaloom-5G-UPF-v1.0.pdf
https://www.mbuzzeurope.com/wp-content/uploads/2020/02/Product-Brief-Kaloom-5G-UPF-v1.0.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://builders.intel.com/docs/networkbuilders/lighting-up-the-5g-core-with-a-high-speed-user-plane-on-intel-architecture.pdf
https://networkbuilders.intel.com/solutionslibrary/5g-user-plane-function-upf-performance-with-astri-solution-brief
https://networkbuilders.intel.com/solutionslibrary/5g-user-plane-function-upf-performance-with-astri-solution-brief
https://www.mavenir.com/app/uploads/2020/11/Mavenir_UPF_Solution_Brief.pdf
https://www.mavenir.com/app/uploads/2020/11/Mavenir_UPF_Solution_Brief.pdf
https://www.cse.iitb.ac.in/~5gtestbed
https://www.mouser.in/manufacturer/altera
https://doc.dpdk.org/guides/prog_guide/overview.html
https://doc.dpdk.org/guides/prog_guide/overview.html
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3485&idcategory=
https://www.colfaxdirect.com/store/pc/viewPrd.asp?idproduct=3485&idcategory=
https://www.radisys.com/partners/ez-chip
https://www.fs.com/products/75604.html
https://www.intel.com/content/www/us/en/products/sku/91767/intel-xeon-processor-e52650-v4-30m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/91767/intel-xeon-processor-e52650-v4-30m-cache-2-20-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/91767/intel-xeon-processor-e52650-v4-30m-cache-2-20-ghz/specifications.html
https://en.wikipedia.org/wiki/Internet_Mix
https://en.wikipedia.org/wiki/Internet_Mix
https://www.xilinx.com
https://www.edge-core.com/_upload/images/Wedge100BF-32X_QSG-R01_EN-SC_0114.pdf
https://www.edge-core.com/_upload/images/Wedge100BF-32X_QSG-R01_EN-SC_0114.pdf
https://www.techtarget.com/searchnetworking/feature/Macrocell-vs-small-cell-vs-femtocell-A-5G-introduction
https://www.techtarget.com/searchnetworking/feature/Macrocell-vs-small-cell-vs-femtocell-A-5G-introduction
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://builders.intel.com/docs/networkbuilders/towards-achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function.pdf
https://builders.intel.com/docs/networkbuilders/towards-achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function.pdf
https://builders.intel.com/docs/networkbuilders/towards-achieving-high-performance-in-5g-mobile-packet-cores-user-plane-function.pdf
https://noviflow.com/wp-content/uploads/NoviWare-Tofino-Datasheet.pdf
https://noviflow.com/wp-content/uploads/NoviWare-Tofino-Datasheet.pdf
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
https://people.ucsc.edu/~warner/Bufs/ethernet-switch-fm6000-sdn-paper.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf

AccelUPF: Accelerating the 5G user plane using programmable hardware SOSR ’22, October 19–20, 2022, Virtual Event, USA

Research (SOSR).
[41] John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker.

2021. Lucid: A Language for Control in the Data Plane. In Proceedings
of the ACM SIGCOMM Conference.

[42] Gábor Soós, Ferenc Nándor Janky, and Pál Varga. 2019. Distinguishing
5G IoT Use-Cases through Analyzing Signaling Traffic Characteristics.
In 2019 42nd International Conference on Telecommunications and Signal
Processing (TSP).

[43] Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni,
and Aditya Akella. 2021. D2R: Policy-Compliant Fast Reroute. In
Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR).

[44] UNSW Sydney. 2021. IOT TRAFFIC TRACES. https://
iotanalytics.unsw.edu.au/iottraces.html

[45] Netronome systems. 2020. Agilio CX 2x10GbE SmartNIC. https:
//www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE-
7-20.pdf

[46] Netronome systems. 2022. Agilio CX 2x40GbE SmartNIC. https://
colfaxdirect.com/store/pc/viewPrd.asp?idproduct=2871

[47] Pablo B. Viegas, Ariel G. de Castro, Arthur F. Lorenzon, Fábio D. Rossi,
and Marcelo C. Luizelli. 2021. The Actual Cost of Programmable
SmartNICs: Diving into the Existing Limits. In Advanced Information
Networking and Applications.

[48] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive
Programmable Switches. In Proceedings of the Annual Conference of the
ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication.

[49] Lior Zeno, Dan R. K. Ports, Jacob Nelson, Daehyeok Kim, Shir Landau-
Feibish, Idit Keidar, Arik Rinberg, Alon Rashelbach, Igor De-Paula, and
Mark Silberstein. 2022. SwiSh: Distributed Shared State Abstractions
for Programmable Switches. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22).

https://iotanalytics.unsw.edu.au/iottraces.html
https://iotanalytics.unsw.edu.au/iottraces.html
https://www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE-7-20.pdf
https://www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE-7-20.pdf
https://www.netronome.com/media/documents/PB_Agilio_CX_2x10GbE-7-20.pdf
https://colfaxdirect.com/store/pc/viewPrd.asp?idproduct=2871
https://colfaxdirect.com/store/pc/viewPrd.asp?idproduct=2871

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Challenges
	3.2 Design overview
	3.3 PFCP processing
	3.4 Hardware data structures
	3.5 Software fallback
	3.6 Fault tolerance of switch state

	4 Implementation
	5 Evaluation
	5.1 Microbenchmarks
	5.2 Real world traffic

	6 Related Work
	7 Conclusion
	References

