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Abstract—Recent advances like P4 programmable hardware
switches in the network, and eBPF programs in the endhost
network stack, have significantly improved the ability to cus-
tomize packet processing pipelines in middleboxes and endhosts,
and have enabled the offload of some simple application layer
processing to the network. These programming frameworks are
typically used for parsing mostly fixed-format network or trans-
port layer headers, and are considered unsuitable for parsing
complex application layer headers with variable formats. This
paper characterizes the feasibility and limits of parsing complex
application layer messages within the restrictive programming
environments of P4 switches and eBPF kernel programs, a
question that has not received much attention in prior work. We
evaluate the feasibility of parsing different types of application
message formats on the forwarding path using existing parsing
techniques and quantify the overhead of such parsing on the
application performance using our optimized implementations of
the parsing techniques in eBPF and P4. We use on-path applica-
tion telemetry, where application layer metrics are extracted by
parsing application headers on the packet forwarding path, as a
case study to evaluate our implementation. Our evaluation shows
that, within the limits of feasibility, on-path network telemetry
is more efficient and makes the metrics available sooner than
state-of-the-art off-path telemetry systems that mirror packets
and analyze them in userspace software.

Index Terms—eBPF, P4, L7 parsing

I. INTRODUCTION

Networked applications communicate with each other using
complex application layer messages that are encapsulated in
various standardized network protocol headers. Networking el-
ements on the forwarding path of the packet (endhost network
stacks, routers and switches, and various types of middleboxes
like NATs and firewalls) parse information present in these net-
work protocol headers and perform designated actions. Several
network telemetry frameworks also analyze packet headers
to compute network-level performance metrics that provide
insights about the network to the operators. Two recent ad-
vances in networking, P4-programmable network switches [1]
and eBPF programs [2] on the endhost network stack, have
enabled flexible and efficient packet header processing on the
forwarding path of the packet. P4 switches enable network op-
erators to configure custom packet header parsing, and custom
actions for packets that match certain patterns. eBPF allows
similar programmability of packet processing pipeline in the
endhost kernel network stack. Prior work has offloaded the
functionality of various middleboxes and network telemetry
frameworks to P4 enabled programmable switches [3], [4] or
to eBPF programs [5], [6], [7], [8].

Given the ease of embedding custom packet processing
in P4 and eBPF, recent work has also found merit in of-
floading various L7 applications to P4 switches [9], [10],
[11] and eBPF programs [12], [13] in order to accelerate the
performance of applications running on the endhosts. Parsing
application layer headers is more complicated than parsing
standardized network headers because the fields of application
headers are often of variable width, in variable order, and
sometimes optional. Parsing such headers is difficult within
the P4 programming framework because the P4 parser tries to
extract header information into pre-defined headers. Similarly,
the eBPF verifier, which ensures that eBPF code running in
the kernel does not crash the kernel itself, limits the number
of conditional statements and the number of codepaths in
the program to limit verification time. As a result of such
restrictions, prior work has managed to offload only a small
subset of the application logic, or processing of a few simple
messages, to P4 switches or eBPF programs. Application layer
processing that requires parsing complex application layer
headers in the payload, e.g., HTTP messages with embedded
JSON, has so far not been attempted within P4 switches or
eBPF programs to the best of our knowledge.

In this paper, we consider the problem of parsing com-
plex application layer messages in P4-based programmable
switches and in eBPF programs on endhosts, the two com-
mon frameworks used for flexible packet processing on the
forwarding path. While prior work has always assumed that
such parsing is infeasible, or has a prohibitive cost, our work
seeks to quantify the costs and feasible limits of application
layer parsing. We believe that exploring the feasibility of such
parsing is interesting for several reasons. For example, know-
ing the limits of feasibility could let us offload more complex
application layer processing to P4 switches or eBPF programs
in the future. More interestingly, the ability to easily parse
application layer headers in switches or the kernel enables
use cases like on-path application layer telemetry. Existing
telemetry systems deal with the collection and analysis of
network/transport layer metrics, but do not usually collect
application layer metrics, due to the difficulties of parsing
application headers efficiently on the packet forwarding path.
Instead, application layer metrics are extracted directly within
applications or are computed off-path, wherein packets are
sampled and forwarded to a specialized analysis server, which
parses and extracts useful information from the packets. How-
ever, on-path application layer telemetry is better than the other
options when the extraction of such metrics is feasible on
the packet forwarding path, because the metrics are availableISBN 978-3-903176-63-8 ©2024 IFIP



in real time as compared to off-path telemetry, without the
overhead of mirroring packets to the analysis server. Further,
because applications can be treated as blackboxes, network
operators do not need to depend on application vendors to
expose suitable metrics to optimize network operations. A
compelling example of on-path application layer telemetry is
5G analytics, where a mobile network operator can analyze
the packets exchanged between several software components
of the 5G network on the packet forwarding path, and gain
real-time insights to optimize the performance of mobile
networks, without depending on any information exposed by
the equipment vendors [14].

We begin by analyzing the suitability of existing P4 and
eBPF parsing techniques used in the context of network layer
headers for parsing application layer payloads. We establish
the conditions under which such parsing is feasible in P4
and eBPF for different application layer header structures.
Next, using optimized implementations of application layer
packet parsing algorithms in P4 and eBPF, we quantify the
overhead of on-path application layer message parsing on the
performance of endhost applications. We also evaluate the use
case of on-path application layer telemetry performed at P4
switches or eBPF programs and compare it with state-of-the-
art off-path telemetry techniques. Our results show that, when
operating within feasible limits, on-path application telemetry
can achieve upto 36% higher throughput than state-of-the-art
off-path telemetry techniques while adding negligible delays to
the packet forwarding path. The delay in obtaining the perfor-
mance metrics is also several orders of magnitude lower with
on-path telemetry, making it suitable for real-time applications.
Our results help to clearly understand the costs and benefits of
parsing application layer headers within P4 switches or eBPF
programs on the packet forwarding path. The insights from our
work can help in making informed decisions about offloading
various types of application layer processing to P4 switches
and eBPF programs, and also in realizing interesting use cases
like on-path application layer telemetry.

II. RELATED WORK
While parsing application layer payload on the packet

forwarding path in P4 or eBPF is challenging, some prior
work has tackled this problem in the context of parsing
some simple application layer requests within P4 switches
or kernel eBPF code, in order to offload some userspace
application processing to network switches or the kernel on the
endhost, thereby accelerating the userspace application itself.
P4DNS [10] and P4DDPI [15] offload parts of or complete
DNS query processing onto a programmable switch using
P4 [1]. AccelUpf [9] offloads parts of UPF onto programmable
hardware. DeeP4R [11] offloads a firewall onto a switch.
PPS [16] performs string matching on application payloads us-
ing a simplified Aho-Corasick algorithm [17] for Deep Packet
Inspection applications. At the end host, BMC [12] offloads
parts of memcached [18], Katran [5] offloads a load balancer,
and Electrode [13] offloads parts of a distributed protocol to
an eBPF program running in the kernel. All of this prior work
either parses structured and well defined application layer

headers like DNS [19], or they perform restrictive application
payload parsing, e.g., DeeP4R only looks at the URL of a
certain size. Offloading more complex parts of the application
requires parsing more complex application layer messages,
and our work helps quantify the limits and feasibility of such
processing.

A compelling use case for parsing application layer headers
on the packet forwarding path is on-path application layer
telemetry. Recent research in network telemetry deals with
several problems around collecting and aggregating network/-
transport layer performance metrics in P4 switches [20], [4],
[3], [21]. Apart from this, there are a plethora of eBPF [2]
based tools like coroot [22], cilium [7] and deepflow [8],
which perform on-path network monitoring and debugging.
Conflou [23] and Langlet et al. [24] provide a framework to
collect telemetry data from the network in a scalable fashion.
All such prior work has usually worked with network layer
or transport layer headers to extract metrics, while our work
aims to quantify the feasibility of parsing application layer
messages, so that future research can extend the scope of such
ideas to application layer metrics as well. In contrast to on-
path telemetry, off-path network telemetry systems use several
techniques to mirror packets from switches [25], [26], [27],
[28] to analysis servers, and frameworks at such servers (e.g.,
[29]) can currently analyse over 100 Gbps of traffic. Parsing
complex application layer headers to extract application met-
rics is much easier in such off-path userspace software, but the
overhead and delay due to mirrored packets make such systems
unsuitable for real-time use cases of application telemetry.

III. APPLICATION MESSAGE PARSING ALGORITHMS

An application layer payload in a network packet can con-
tain several pieces of structured or unstructured information,
e.g., HTTP URL, embedded JSON or XML payload, or even
well defined L7 protocol headers like the DNS protocol. In
most cases, the application payload can be thought of as a
list of attributes, e.g., each key-value pair in a JSON or XML
message, each query parameter inside an HTTP URL, or each
field inside an L7 protocol header could be an attribute. In
order to offload application processing or to compute any
application layer metrics for telemetry, one must be able to
identify and extract one or more attributes of interest in the
payload and take suitable action based on the value of the
attribute. Without loss of generality, we will refer to the
attribute of interest in the application payload as the query
attribute. Extracting the query attribute will involve parsing the
application payload of the incoming packet first to determine
the starting offset of the query attribute in the payload and then
using the length of that attribute to extract the value present
in the attribute.

Network layer or transport layer information is present in
well defined, structured headers (e.g., TCP/UDP/IP headers),
wherein most required information is present at fixed offsets
from the start of the corresponding header. This makes packet
parsing on the critical forwarding path in hardware packet
processing pipelines tractable at linerate. In contrast, for most



Fig. 1: Payload Parsing Techniques

application layer protocols, the query attribute may be present
at variable offsets inside the application payload.

We now consider well established parsing algorithms and
identify the suitability of each algorithm to parse application
payloads under different constraints on the size and order of
the attributes in the application payload (see Figure 1).
Direct single jump for fixed starting offset: If both the size
and order of all attributes are fixed in the application payload,
then the starting offset of the attribute being queried will
always be a fixed value, and we can easily extract the attribute
by jumping to the desired offset during packet processing.
Most network and transport layer headers are parsed in this
manner in hardware/software packet processing pipelines, but
this simple algorithm may not be applicable for most usecases
of application layer telemetry and application offloading.
Skip ahead and check with partial information: If the size
of all attributes in the payload is fixed, but the attributes can
appear in any order in the payload, identifying the starting
offset of the query attribute will involve parsing the minimum
number of bytes needed to identify every attribute, skipping
ahead if it is not our required attribute, and repeating this
process until we arrive on the starting offset of the query
attribute. While not as efficient as the direct single jump, this
parsing algorithm lets us skip parsing unnecessary bytes by
leveraging information about the known set of attributes in
the application payload. This technique is used to parse net-
work/transport layer headers when there is some uncertainty
in the header structure, e.g., with TCP options. This technique
has also been used to parse certain application layer headers
in hardware in limited settings [9].
Byte-by-byte parsing for fully unknown starting offset: If
the size of attributes is not fixed, and we do not know the
order in which attributes appear in the payload, or even which
attributes may be present or absent, then we essentially have
no information about the starting offset of the query attribute.
In such cases, we have to examine each byte to determine the
start location of the query attribute by having a match window
slide over the entire packet one byte at a time. Such parsing is
not considered suitable for linerate packet processing when
parsing network and transport layer headers, but has been
employed with some modifications for parsing a small number
of bytes in application payloads for specific applications [11].

Note that the parsing algorithms required to parse applica-
tion payload get progressively complex from a single direct

jump to byte-by-byte parsing as we go from highly structured
to fully unstructured application payload. While the algorithms
described above are fairly intuitive and commonly employed
to parse network and transport layer headers in software and
hardware packet processing pipelines (albeit with slightly dif-
ferent names or implementations), it is not clear how well these
algorithms will perform when parsing complex application
layer payloads in real time on the forwarding path. To answer
this question, we will first implement the above algorithms
within the P4 and eBPF frameworks, solving challenges as
they arise (§IV), and then use our implementations to evaluate
the performance overhead and feasibility (§V).

IV. IMPLEMENTATION

We now describe the implementations of the various parsing
techniques discussed in §III, and challenges in realising them
within eBPF programs in the endhost network stack, and in
P4 programmable switches. While the implementation can
perform any operation of its choosing (e.g., count the number
of instances when a specific value is present in the attribute,
or send a response packet based on the value of the attribute)
after extracting the attribute from the packet, without loss of
generality, we assume that both eBPF and P4 implementations
described in this section count the number of instances the
query attribute matches a specific pre-defined value in the
application layer payload.

A. eBPF-based implementation
eBPF is a framework that lets users safely inject packet

processing code at various “hooks” in the Linux packet
processing pipeline [2]. Before loading an eBPF program into
the kernel, it is checked against a verifier to ensure that the
program cannot crash the kernel. The verifier poses several
restrictions on the eBPF program, e.g., loops must be bounded
by a constant value, and programs must contain no more than
8192 jumps. Further, the verifier traces all possible execution
paths in the program and allows only programs with under 1
million verified instructions to be loaded into the kernel. We
now describe how we implement complex application layer
payload parsing in eBPF within this restricted framework.
Direct single jump. We know that the query attribute is
located at an offset of, say att bytes, so we add att to
the pointer pointing to the start of the packet to obtain a
pointer to the starting offset of the query attribute. Now we
need to match the attribute with a pre-defined value and
on a successful match, increment a counter. In an eBPF
program, we can only match a maximum of 8 bytes at a
time, as long data type is the longest primitive data type
available in an eBPF program. For this reason, we loop for
req match value length/8 iterations matching 8 bytes from
the packet at offset att with the required match value. It’s
important to note that the req match value length must be a
constant as the eBPF verifier only supports constant bounded
loops [30]. This is not an unrealistic requirement as the user
writing an eBPF program to do application level telemetry will
be aware of the query and, in turn, the match value size, and
hence can make it a constant in the program.



Byte-by-byte parsing. In the case of byte-by-byte parsing,
we touch each byte in the application payload in an outer
loop running for application payload length iterations. Because
the loop bound should be a constant value, we loop over the
largest possible application payload and break out of the loop
when we try to access an offset inside the packet beyond the
data end pointer, which is a pointer pointing to the end of
the packet. Starting at every byte offset, we try to match the
application payload with the pre-defined value of the query
attribute. The limitation on the number of jumps allowed in
an eBPF program limits the size of the application payload
and matching attribute length we can parse.

Assuming that the value for maximum application payload
is 1000 bytes, our logic can support a maximum match value
length of 48 bytes, as the program will contain 1000* (48/8
+ 2) jumps, which is just under the maximum 8192 jumps
allowed in an eBPF program.
Skip ahead and check. In this case of the skip-ahead and
check parsing technique, we parse and match the minimum
number of bytes needed to identify an attribute uniquely from
the list of attributes present in the packet payload. We have an
outer loop running for iterations equalling number of attributes
present, and we break out of this loop as soon as we reach
the starting offset of the required attribute. Inside this loop,
we have a list of if statements which match the attribute at
the current offset with the query attribute. On a mismatch,
we increment the pointer by the size of the matched attribute
(assuming it is known) such that the pointer points at the
starting offset of the next attribute during the next iteration
of the for loop. Once we identify the starting offset of the
query attribute, we match the value in the attribute with a
pre-defined value.

Assuming the number of attributes in the payload is N ,
the skip ahead and check technique has lesser number of
jumps (N2 to be exact) as compared to the case of byte-by-
byte parsing, which has jumps proportional to the number of
bytes being parsed. Therefore, it is possible to parse longer
payloads by skipping ahead over unnecessary bytes. However,
the logic of skipping ahead and checking has NN execution
paths which it may take during execution. The eBPF verifier
will completely go down each individual path and verify
instructions encountered along each path. The total verifiable
instructions limit being 1 million, we can only support a
handful of attributes before the total number of paths an eBPF
program can take, multiplied by the number of instructions
along each path, crosses that limit, and the verifier fails.
Therefore, both parsing techniques becomes unfeasible for
longer application layer headers, but for different reasons, as
we show in §V.
B. P4-based implementation

P4 is a high-level language that allows us to configure a
programmable parser in hardware to extract custom fields
from network packets and match-action tables across multiple
stages of the pipeline to match extracted fields and take
suitable actions. To ensure packet processing at near line-
rate, the P4 programming language and the underlying devices

impose certain constraints similar to eBPF. For example, a P4
parser can process headers only in a directed acyclic graph
(DAG) and cannot go back to a previously parsed header.
Unlike eBPF, P4 completely lacks the ability of any loop
execution. Besides the language constraints of P4, the limited
on-board memory on programmable hardware imposes further
restrictions on packet processing, the number of headers that
can be extracted and so on.
Direct single jump. Assuming that the query attribute is at an
offset of att bytes from the start of the application payload, the
P4 parser extracts headers worth att bytes to reach the required
attribute and then extracts the next match value length bytes
into a P4 header, after which we try to match that specific
P4 header with the required value. On a successful match, we
increment the counter or take other suitable action.

Note that because hardware platforms impose restrictions
on the number of bytes that can be extracted into a header,
we can try to use multiple P4 headers to parse the packet upto
att bytes if required. However, other hardware limitations on
the total bytes available to store headers may limit the size of
application payload we can parse even with this workaround.
We evaluate all such limitations in §V.
Skip ahead and check. The P4 parser first extracts a small
part of each attribute into a P4 header and then tries to match
the extracted bytes with attributes from the attribute list of the
application payload. On a successful match, we further extract
the remaining bytes of the attribute until its end (assuming we
know the length of each attribute in the application payload),
then perform a match of the completely extracted query
attribute with a pre-defined specific value and increment a
counter on a successful match. If the first few extracted bytes
match some other attribute which is not the query attribute,
we extract the exact amount of bytes into another P4 header in
order to reach the start of the next attribute in the payload, after
which we repeat the same procedure until we hit the required
attribute. This P4 implementation is limited by the number of
parser states, which grows as N2, where N is the number of
attributes in the payload, due to the need to check for a match
with all N attributes when parsing each attribute. As we end
up creating more headers in the implementation of this parsing
logic (albeit probably smaller in size compared to the direct
single jump design), we also might end up hitting the limit on
space available to store headers inside the hardware.
Byte-by-byte parsing. Because we have no information about
the attributes in the payload, we extract the application payload
into 1-byte sized headers until a delimiter or something
signifying the end of an attribute is found. The P4 program
collects these 1-byte headers into groups, transitioning from
one group of headers to the other when a delimiter is found.

The packet processing pipeline then matches these groups of
1-byte headers, say H11,.., H1n for the first attribute, H21, ...,
H2n for the second attribute, and so on, against the required
query attribute value using match-action tables, and updates
suitable counters accordingly. Once again, the number of bytes
of the application payload we can parse using this technique
depends on the hardware limitations on parser states and



header storage available.
Byte-by-byte parsing with recirculation. We also implement
another variant of the byte-by-byte parsing algorithm, adapted
from Deep4R [11]. In this variant, the incoming packet travels
the programmable switch multiple times using recirculation,
and 1 byte of the application payload is extracted during each
traversal. The incoming packet is first cloned, and the cloned
packet is processed byte-by-byte while the original packet
passes through the switch untouched. The extracted byte is
discarded at the end of the P4 pipeline to allow the parser
to extract a new byte in each recirculation, thus essentially
implementing a byte-by-byte parsing approach, but by using
only one parser state to store the extracted byte in each
round. Information about previously extracted bytes is stored
as metadata in the packet, and this metadata, along with the
current byte is matched using match-action tables to decide the
action for the next recirculation. The key benefit of this design
over the original byte-by-byte parsing is that it consumes fewer
parser states and header space. However, the tradeoff is that
recirculated packets consume switch bandwidth and can hurt
performance at high load.

V. EVALUATION

We now evaluate our implementations of the various parsing
algorithms over varying sizes and structures of application
payloads to analyze the feasibility and overheads of parsing
application layer headers in P4 switches and eBPF programs.
Setup. We use two servers, each having 24 Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz CPUs on board, which can
run 48 threads with hyperthreading enabled, on Linux kernel
version 5.15. Both machines have Intel 40G QSFP+ NICs on
board. We generate network traffic from one of the servers
using MoonGen [31]. We run a sink application on the
other server, which receives the network traffic from the load
generator and selectively echoes back some of the packets for
round trip latency (RTT) measurement at the load generator.
To parse application payloads at the end host, we connect
both servers directly without any switches in between and
run our eBPF application-payload parsing code in the kernel
of the destination server. To parse application payloads in
P4 switches, we connect the load generator and sink server
via an Intel Tofino switch (Netberg Aurora 610), which runs
our application payload parsing P4 code. In addition, we also
evaluate P4-based application payload parsing on a second
hardware platform by running it on a Netronome Agilio 2x10
GbE SmartNIC connected to the sink server. We maintain a
tolerable 0.1% packet loss across all experiments presented in
this section.
Prototypes. In addition to the on-path application parsing pro-
totypes described in §IV, we also implement an off-path moni-
toring application using the state-of-the-art AF PACKET [32]
packet capture library to serve as a baseline for evaluating
the on-path application telemetry usecase. This monitoring
application registers a packet socket, which sets up an alternate
packet buffer inside the kernel, into which incoming packets
are copied by the device driver. These copied packet buffers
are memory mapped into the user application to save an addi-

Num bytes parsed 0 200 400 800 1200 1400
Throughput
(Gbps)

eBPF 4.9 4.4 3.9 3.1 2.5 2.3
in-application 4.9 4.4 3.9 3.0 2.5 2.3

TABLE I: Overhead of on-path parsing in eBPF

(a) Increasing Payload (b) Increasing attributes

Fig. 2: Throughput for different parsing techniques
tional packet copy and processed suitably by the monitoring
application to extract application layer metrics.

A. Overhead of on-path parsing

Parsing application payloads on the packet forwarding path
increases the length of the packet processing pipeline and can
potentially impact the application performance. We quantify
the impact on the single-core saturation throughput and end-to-
end application latency of the sink application when an eBPF
program parsing application payload is running on the same
CPU core. Table I shows how the saturation throughput of the
application falls by around 10% as we increase the number of
bytes parsed in the eBPF program from 0 to 200 bytes. We
also see similar overheads of performing this parsing inside the
application itself. We see a decrease in throughput by 50% in
the rare case of having to parse all 1400 bytes (complete MTU
payload). We found the impact to be smaller in the case of end-
to-end application latency, with the additional latency added
by the eBPF program being only 4us when parsing 1400 bytes
compared with incurred latency in the case of no application
layer parsing. We believe that a drop in throughput by 10% is
acceptable when parsing application headers in eBPF because
such parsing can enable application offload to eBPF and lead
to further performance acceleration for the application. We
experience similar overheads at higher linerate throughputs
when we scale our application to multiple cores, and we skip
those results in the interest of space.

In contrast, parsing application payloads at the P4 pro-
grammable switch or smartNIC had no impact on application
throughput or latency, irrespective of the number of bytes
parsed, as expected with the more efficient hardware linerate
processing. The only exception was that application layer
P4 processing in the smartNIC, while having no impact on
throughput, added a maximum of an additional 150us to the
application RTT. We did not observe this impact with the
more powerful Intel Tofino programmable switch platform and
attribute this additional delay to the differences in the hardware
architecture of the two platforms.

B. Comparison of parsing techniques
We now compare the various parsing algorithms discussed

in §III with respect to their suitability to parse different types
of application layer headers. Figure 2a plots the single-core
saturation throughput of the sink application as a function of



application payload length when an eBPF program implement-
ing the specified parsing algorithm is running on the same
core. The query attribute is present in the last 25 bytes of the
application payload in all cases. As expected, the direct single
jump and the skip ahead and check techniques have the least
impact on the application throughput because the processing
involved is lower, while the byte-by-byte parsing has the most
impact. Next, Figure 2b plots the saturation throughput against
increasing number of attributes in the payload while keeping
the payload size fixed at 1400 bytes. Once again, the direct
single jump technique performs the best, and the byte-by-byte
parse technique performs the worst. The increasing number of
attributes has no effect on the throughput of both techniques, as
the number of bytes to be parsed remains constant. However,
for the skip ahead and check technique, the number of jumps
in the eBPF program increases with the number of attributes,
and the eBPF verifier does not even allow the program to
load beyond 8 attributes. These results demonstrate the tradeoff
between the skip ahead and check and byte-by-byte parsing
techniques when parsing complex application payloads. While
the skip ahead and check technique is more efficient as it skips
parsing unnecessary bytes, it also requires more jumps and
may become infeasible due to eBPF verifier constraints when
the payload contains a large number of attributes.

Next, we compare the various parsing algorithms on our P4-
based programmable switch and Netronome setups. As long as
the P4 programs compile and load on the switch or smartNIC,
we found that all parsing techniques performed comparably
and imposed no overhead on application performance, as
expected with hardware linerate processing. However, different
techniques hit different hardware limitations as application
payload size and complexity increase. The direct single jump
technique is limited by the maximum application layer payload
parsing capability of the programmable hardware, which is
580 bytes for the Tofino-based switch and 508 bytes for the
Netronome smartNIC, because of the limitations on the space
available to store packet header vectors (i.e., PHV bits) on
the hardware. Similarly, the byte-by-byte parsing technique is
also limited by the PHV bits in the hardware, and because it
has to parse more number of 1-byte headers, we found that
we could parse an application payload of only 50 bytes for
the switch and 85 bytes for the smartNIC. The skip ahead
and check parsing technique is limited by the number of
parser states (which scales as N2 where N is the number
of attributes) in addition to the PHV bits, and we are able
to support an application payload containing a maximum
of 9 attributes of size 12 bytes each for the switch. These
results indicate that while hardware-based on-path application
telemetry in P4 switches has a lower impact on end-to-end
application performance, it can parse smaller number of bytes
as compared to the software-based on-path telemetry in eBPF,
due to stricter hardware constraints.

We now evaluate the variant of byte-by-byte parsing based
on recirculation. Figure 3a and 3b plot the application through-
put and RTT as a function of the number of application
payload bytes parsed when performing recirculation based

(a) Telemetry throughput (b) Telemetry RTT
Fig. 3: Byte-by-byte parsing with number of recirculation

Num of bytes parsed 200 400 800 1200 1400
Throughput
(Gbps)

eBPF 4.4 3.9 3.1 2.5 2.3
AF PACKET 3.2 2.6 2.4 2.2 2.0

TABLE II: Single Core Throughput: on-path vs off-path
byte-by-byte parsing of the application payload. We see from
the figure that the recirculation based design can parse the
entire application payload, in theory, without running into
limitations on parser states or PHV bits because it parses
only one byte at a time. However, in practice, parsing be-
yond 100 bytes in this manner with recirculation leads to a
steep and unacceptable drop in the application throughput on
both the switch and smartNIC platforms. We also notice a
corresponding steep increase in latency. These overheads are
because the recirculated packets choke even the high switch
bandwidth (2Tbps for our Tofino switch) when the number
of recirculations is large. So, while the recirculation based
design can parse longer application payloads at low load,
it also imposes an unacceptably high burden on end-to-end
application performance at high load levels.
C. On-path vs. off-path telemetry

We now compare the performance of on-path application
layer telemetry, a compelling use case for parsing application
headers on the packet forwarding path, to the state-of-the-
art off-path telemetry implementation. We use a simple eBPF
based on-path application telemetry prototype built on top of
our parsing technique implementation and compare it with
the off-path telemetry prototype built using the state-of-the-
art AF PACKET framework. Both telemetry systems run the
simple query of counting the number of packets where the
query attribute matches a specific value. Table II shows the
application throughput when concurrently running one of the
two telemetry methods that parse application payload (on-path
eBPF and off-path AF PACKET) as a function of the number
of bytes parsed. In all cases, the metric computation logic
shares CPU resources with the application itself. We see from
the figure that eBPF-based on-path telemetry is significantly
better, leading to 36% higher throughput when parsing 200
bytes, than off-path telemetry. However, the gap between the
on-path and off-path techniques narrows as the number of
bytes parsed increases. This is because AF PACKET needs
to perform a packet copy into the monitoring application
and hence always touches each byte of the packet, whereas
eBPF only touches the required number of bytes. Therefore,
eBPF telemetry incurs lower overhead when the query attribute
is present earlier on in the packet. Next, Table III plots
throughput when performing on-path vs off-path telemetry as
a function of the number of cores running the telemetry and



Num of cores 1 2 4 8 12

Throughput (Gbps) eBPF 3.9 7.8 12.6 24.4 33.2
AF PACKET 3.2 5.3 8.9 17.5 24.4

TABLE III: Multicore scalability: on-path vs off-path

Bytes Parsed Telemetry availability delay (in us)
eBPF AF PACKET

200 9.77 4266
1400 11.69 5767

TABLE IV: Telemetry data availability
application processing. We see from the table that eBPF-based
on-path telemetry scales better than AF PACKET based off-
path telemetry, achieving close to linerate (40 Gbps) and 36%
higher throughput than off-path telemetry at 12 cores, primar-
ily due to avoiding the packet copying overheads associated
with off-path telemetry.

Finally, we measure the delay, after which the extracted
application layer metric is made available with both on-path
and off-path telemetry techniques. Recall that our telemetry
systems run a simple query counting the number of packets
where a specific value is present in the query attribute in the
application payload. We update this count in an eBPF map
from the on-path eBPF telemetry program, monitor this map
from a userspace program, and measure the delay from the
time the packet arrives in the host and the metric is available
in userspace. We compare this delay in obtaining the metric
from on-path telemetry with the delay in mirroring the packets
and computing metrics in the off-path monitoring application.
Table IV shows the average delay in the availability of
telemetry data of both approaches at two different numbers of
bytes parsed. We see from the figure that the on-path telemetry
system makes metrics available within microseconds, while
off-path telemetry needs several milliseconds to copy packets
to userspace and parse them. In summary, on-path application
layer telemetry is more efficient than off-path telemetry and
delivers performance metrics quicker for analysis, as long as
the application payload parsing lies within the feasible limits
of packet processing frameworks like eBPF and P4.

VI. CONCLUSION

In this paper, we study the problem of parsing complex
application layer headers in the packet forwarding path, in-
side P4-programmable switches and kernel eBPF programs,
and quantify the overheads of existing parsing techniques
when applied to parsing application layer headers. We also
identify several challenges when parsing complex application
layer headers within the restricted programming framework
of eBPF and P4, and propose solutions for the same. Our
work shows that parsing application layer headers on the
packet forwarding path is feasible and efficient for upto a
certain size of application payload, beyond which such parsing
can become infeasible due to the hardware and software
constraints imposed by the P4 switch or eBPF framework.
We also analyze the tradeoffs between on-path and off-path
telemetry techniques and show that when performed within the
realms of the feasibility of the P4 switch or eBPF framework,
on-path application telemetry is more efficient than off-path
telemetry, and makes performance metrics available with a
much lower delay.
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