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Abstract—To leverage the full potential of high-speed network
interface cards (NICs), it is essential for network applications to
use high-performance packet I/O frameworks. However, porting
applications to use these specialized frameworks is a tedious
task. While prior work has proposed frameworks to ease the
development of network functions over fast packet I/O mecha-
nisms, there has not been much work done to ease the porting
of applications that are built to run on the kernel network
stack. This paper presents Fastlane, a framework to easily port
the “fast path” of traditional network applications to use fast
packet I/O mechanisms while retaining the “slow path” to run on
the traditional network stack. Fastlane provides APIs by which
application developers can configure, use, and switch between
different fast packet I/O mechanisms like DPDK and CNDP in
the application’s fast path. Additionally, Fastlane provides APIs
for the fast path to communicate with the slow path running
on the kernel network stack. Fastlane also allows applications
to be deployed in an unprivileged Kubernetes pod, easing
application development for cloud deployments. We evaluate the
effectiveness of Fastlane by porting a production-grade 5G user
plane function to use our framework. Our evaluation shows that
Fastlane enables developers to build high-performance network
applications easily and imposes minimal performance overheads.

Index Terms—Network Function Virtualization, Middleboxes,
Cellular Networks, Zero-Copy Networking

I. INTRODUCTION

High-speed network interface cards (NICs) offer bandwidths
of tens or hundreds of gigabits per second. However, tra-
ditional network stacks are inefficient for such speeds [1],
especially in cloud environments where virtualized networks
require packet traversal through both host and container
stacks [2]. These stacks were originally designed for Layer
7 applications and are not optimized for Layer 2 and Layer 3
network functions, like L4 firewalls and L3 load balancers.

Many high-speed applications use kernel-bypass or in-
kernel-offload techniques such as Data Plane Development
Kit (DPDK) [3] or eXpress Data Path (XDP) [4] to address
these inefficiencies. In cloud environments, these techniques
are paired with hardware virtualization methods like Single
Root I/O Virtualization (SR-IOV) [5] to achieve performance
comparable to bare-metal deployments [6]. However, porting
applications built on traditional network I/O to these frame-
works can be complex and require significant development
effort [7]. Moreover, in multi-tenant cloud deployments, con-
figuring fast I/O paths may require privileges that are not
available.

Prior work [8]–[12] has focused on easing the development
of applications over fast packet I/O frameworks but has pri-

marily addressed L2/L3 or L4/L7 network functions. However,
applications like the 5G User Plane Function (UPF) require
both L2/L3 processing (for routing packets using GTP header
manipulation) and L4/L7 processing (for communicating with
control plane nodes over HTTP/TCP and UDP). In most UPFs
used today, there exists a fast path which handles the high-
speed L2/L3 user traffic using optimized frameworks like
DPDK, while the slow path uses the kernel’s TCP/IP stack
for lower-rate L4/L7 communication. Porting such complex
applications to fast I/O mechanisms requires significant man-
ual code changes. Cloud environments add further challenges,
as setting up the fast path may require privileged operations,
and choosing between packet I/O mechanisms may not be
obvious, requiring substantial rewrites. To the best of our
knowledge, no prior work has eased this porting effort for
complex applications like the UPF that span L2/L3 and L4/L7
functionalities.

This paper introduces Fastlane, a framework that enables
developers to port traditional network applications to fast I/O
mechanisms while retaining complex slow-path processing on
the kernel TCP/IP stack. The implementation of our frame-
work supports porting to two fast I/O mechanisms: DPDK
and the CNDP [13] that is based on AF XDP [14]. Fastlane
abstracts out the setup and usage details of these fast I/O
mechanisms with simple APIs and configuration files, allowing
application developers to port to and switch between the fast
I/O mechanisms with only changes to the configuration file.
Furthermore, Fastlane provides APIs for easy communication
between fast and slow paths and manages privileged packet
I/O operations in cloud environments through a Kubernetes
device plugin, allowing unprivileged containers to run ported
applications seamlessly.

To demonstrate Fastlane’s utility, we ported a basic network
application that swaps L2 headers (macswap) and UPF from
a production-grade 5G packet core [15]. With minimal code
changes (less than ∼ 10%), the traditional UPF seamlessly
transitioned to operate as the slow path. In contrast, the
new Fastlane API-based code, which reused the UPF packet
processing logic from the traditional socket API, facilitated
the implementation of a fast path. Performance measurements
show that Fastlane introduces minimal performance overhead,
making it a practical solution for high-speed packet processing
applications. Fastlane is completely open-source and can be
found at https://github.com/rickydebojeet/fastlane.git.
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II. BACKGROUND & RELATED WORK

Fast packet I/O mechanisms. The Linux kernel network
stack is not optimized for high-speed packet processing due to
bottlenecks like packet copying, context switching, and bulky
data structure allocations [8]. Kernel bypass techniques like
DPDK resolve this by allowing direct, zero-copy access to
NIC packets in userspace, offering high performance but with
downsides such as high CPU usage and reduced compatibility
with kernel tools.

Understanding the requirement of high-speed packet pro-
cessing, the Linux kernel introduced extended Berkeley Packet
Filter (eBPF) [16], enabling custom userspace programs to run
in a sandboxed, event-driven environment. The XDP hook [4],
located in the driver, allows efficient packet handling before
entering the kernel stack, enabling actions like dropping, trans-
mitting, or redirecting to AF XDP sockets. AF XDP offers
an alternative to kernel bypass by enabling zero-copy packet
redirection to userspace using XDP, balancing performance
and CPU utilization. It supports both event-driven and busy-
polling modes, with the latter offering better performance at
the cost of higher CPU usage [17].

Cloud Native Data Plane (CNDP) [13], built on AF XDP,
accelerates network applications without custom drivers or
memory pinning, ensuring compatibility with cloud orches-
tration platforms like Kubernetes [18]. DPDK also supports
AF XDP as an alternative to its poll-mode drivers but requires
memory pinning and huge pages.

So, which of these different fast I/O packet mechanisms must
an application use? This question has no clear, correct answer,
and each mechanism has its own pros and cons. Busy-polling
modes generally provide higher performance, but interrupt-
based AF XDP modes are more CPU efficient, especially in
cloud environments. We compare the performance of DPDK
and AF XDP-based CNDP in different polling modes using
a simple “macswap” application running on a single CPU.
Figure 1 compares throughput when different polling modes
(userspace denoted as US , polling denoted as POLL, or
busy polling denoted as BP) were used in DPDK and CNDP.
Figure 2 shows CPU usage as a function of load in a different
experiment for some subset of these fast I/O mechanisms. Our
findings show that DPDK’s userspace polling achieved the
highest throughput, with AF XDP-based CNDP offering lower
performance but better CPU efficiency under low loads. Thus,
the optimal mechanism varies with the deployment context,
and applications should be adaptable to different mechanisms
with minimal code changes.
Cloud deployments. When deploying network applications in
the cloud on containers or VMs, packet traversal through two
network stacks can be bypassed using hardware virtualization
techniques like SR-IOV. SR-IOV allows containers to share
physical NIC resources by passing them directly as Virtual
Functions (VFs). This enables multiple containers with a
DPDK application to run inside them over SR-IOV VFs.
However, configuring VFs requires privileges, as does running
eBPF-based AF XDP applications. Kubernetes device plugins
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Figure 1: Performance comparison of DPDK vs. CNDP
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Figure 2: CPU usage of DPDK vs. CNDP

for SR-IOV [19] and AF XDP [20] enable unprivileged con-
tainers to offload these privileged operations to the plugin,
allowing fast network I/O applications to run in unprivileged
environments. Hence, to support Fastlane, this setup needs to
be extended to support our fast-path, slow-path design.
5G User Plane Function. The 5G mobile packet core connects
the user equipment (UE) and the radio components to external
networks and consists of a control plane and a data plane. The
control plane is responsible for managing UE connections, and
the data plane forwards UE traffic. When a UE wants to send
data, it sets up one or more “sessions” in the packet core. The
packet forwarding rules corresponding to these sessions are
sent to the UPF via the Packet Forwarding Control Protocol
(PFCP) by the control plane. These rules contain Packet
Detection Rules (PDRs) to find matching packets, Forward
Action Rules (FARs), and other rules that tell the UPF how
to handle the matching packets. When a UE sends or receives
data to and from an external network, the IP datagrams are
encapsulated in GPRS Tunnelling Protocol (GTP) headers and
transmitted over UDP to the UPF, which then uses the rules
received from the control plane to suitably route the packet.
Related work. Many network applications leverage DPDK
for its kernel-bypass benefits [21], [22], but porting tradi-
tional network stack applications to DPDK requires substantial
effort. To address this, frameworks like OpenNetVM [9]
provide abstractions that simplify building L2/L3 network
functions over DPDK. Other frameworks [10], [12] support
high-performance applications using XDP by filtering packets
for L2/L3 applications and passing others to the kernel stack.
Nethuns [23] offers common abstractions for different network
I/O mechanisms but lacks support for DPDK and cloud-
native deployments. LemonNFV [24] consolidates various fast
network I/O techniques but, unlike Fastlane, does not enable
easy porting of complex functions like the UPF to multiple
packet I/O mechanisms across both bare-metal and cloud
environments.

For L4-L7 network functions, userspace TCP stacks like
mTCP can be used alongside the above L2/L3 frameworks
for fast packet I/O, although these stacks cannot match the
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Figure 3: Fastlane Design
functionality of the Linux network stack. Thus, it is desirable
to allow L4/L7 functions that do not require high performance
to run natively on the Linux stack, a feature supported by
Fastlane.

Middlenet [11] is closest to Fastlane, building L2/L3 and
L4/L7 functions on the same machine using SR-IOV VFs.
However, Fastlane addresses a slightly different problem,
where the same application has an L2/L3 fast path and an
L4/L7 slow path and where application developers wish to
port existing applications easily to fast I/O mechanisms and
switch between different packet I/O mechanisms with no code
changes. Junction [7] offers compatibility for unmodified apps
but lacks support for multiple packet I/O mechanisms.

III. SYSTEM DESIGN & IMPLEMENTATION

Fastlane has been designed to meet the following goals:
• The developer should be able to port applications written

for traditional kernel stack to the Fastlane framework with
minimal changes.

• The API provided by the library should be agnostic to the
underlying packet I/O framework so that the developer
can write code to use or switch between fast packet I/O
mechanisms without worrying about their internals.

• The library should provide mechanisms to communicate
and share state between the fast and slow paths.

• The library should allow deployments in cloud platforms
like Kubernetes without requiring privileged operations
within the container.

Figure 3 shows the high-level architecture of a Fastlane
application, consisting of independent fast and slow path
components, with the former running on a fast packet I/O
mechanism like DPDK or CNDP and the latter on the Linux
kernel. Fastlane allows the setup of a TUN/TAP device and
optional shared memory to exchange messages and share ap-
plication states between the fast and slow paths. For example,
in the case of UPF, the packet forwarding rules are shared
between the fast and slow paths using the shared memory.

The application developer writes a JSON configuration file
to specify several parameters of the fast packet I/O mechanism,
including the framework to use for the fast path, the details
of the logical ports (which can be PCIe address of physical
devices or SR-IOV VFs for DPDK, and interface for CNDP)
and its queues which are used for the fast path, the port filters
that identify fast path traffic from slow path traffic (e.g., UDP
port number on which GTP traffic is received at the UPF) and
many other such parameters. The Fastlane framework reads
the configuration file and seamlessly sets up the plumbing for

each packet I/O mechanism. Packets destined for the fast path
are suitably filtered in the hardware via NIC filtering rules or in
software via the eBPF program at the XDP hook and delivered
to the fast path packet processor. The remaining packets are
injected into the kernel stack and reach the slow path.

Fastlane currently supports DPDK (high performance but
high CPU utilization) and CNDP (AF XDP based, more
compatible with Linux tools, but lower performance) packet
I/O mechanisms, but support for more packet I/O methods
can be added easily. Figure 4 shows two different example
setups of the packet I/O path based on different DPDK and
CNDP configurations. In Figure 4(a) using DPDK, packet
filtering is set in a way that all packets are delivered to the
fast path, and packets destined to the slow path are injected
into the kernel using a TUN/TAP device by the fast path code
itself. In Figure 4(b) using CNDP, the packet filtering and
redirection are handled in an eBPF program running at the
XDP hook of the device driver. The fast path packets are
sent to the AF XDP program, and the slow path packets are
passed on to the traditional network stack. Note that these are
just two example configurations of the packet I/O path, and
several other possible configurations can be easily realized via
Fastlane using its rich set of parameters exposed in the JSON
configuration file with no additional development effort.

In addition to specifying configurations, Fastlane developers
must also write (or port) fast path and slow path components
using the Fastlane APIs. Fastlane provides developers with
a comprehensive suite of APIs for writing fast-path packet
processing code, including managing framework setup, shared
memory allocation, inter-path communication, and packet
buffer operations. These APIs are agnostic to the packet I/O
mechanism, and Fastlane invokes suitable code in the DPDK,
CNDP, or other packet I/O libraries automatically. Slow path
code can be written using traditional kernel APIs, but Fastlane
APIs must be used to communicate with the fast path.

Fastlane supports building multithreaded fast path appli-
cations with ease. Our library supports two models for the
packet processing callback invocation via the threads: run-
to-completion and master-worker. In the run-to-completion
model, Fastlane spawns one processor thread for each queue
in the logical port, invoking the callback function upon packet
reception and handling transmission if needed. In the master-
worker model, the master processor threads manage packet
reception and transmission. When a packet is received, the
master threads distribute the packets to the worker threads for
application processing.

To address the challenge of running a DPDK or CNDP-
based fast path packet processor within an unprivileged con-
tainer, Fastlane sets up a device plugin to configure the
privileged operations for the packet processor. For AF XDP,
the device plugin performs operations like XDP program
loading and XSK map creation, which then passes the map
file descriptor to the fast path packet processor via a Unix
Domain Socket (UDS). The device driver also makes similar
modifications to set up the SR-IOV VF, which can be used by
the DPDK application running inside the container. To support
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Figure 4: Fastlane internal implementation
our fast path/slow path model, we have used the plugin to
configure the TAP device on behalf of the Fastlane application.

To showcase the benefits of Fastlane, we have ported
5G UPF obtained from a production-grade 5G packet core
implementation [15], built on the kernel network stack, to
Fastlane. We rewrote the GTP packet processing fast path of
the UPF using Fastlane APIs so that the data plane operation
of forwarding user traffic happens over a fast packet I/O
mechanism. The remaining part of the UPF, which registers
with the mobile packet core, participates in node discovery,
and exchanges packet forwarding rules with the 5G packet
core control plane, was left to run on the kernel network
stack as the slow path. Note that the slow path processes
complex HTTP/JSON messages over REST APIs, and porting
this code to a fast packet I/O mechanism is difficult. Neither
was it necessary, given the low traffic rate the slow path is
expected to handle. We made minimal changes to the slow
path to share packet forwarding rules and other application
states using shared memory. Overall, we needed to change
only about 472 lines of code (out of 4954 lines in the main
UPF packet processing logic) to port the UPF to act as a
slow path for Fastlane. Additionally, 311 lines of code were
modified in the GTP packet processing logic from the slow
path to create the new fast path using Fastlane APIs.

IV. EVALUATION

In our evaluation, we first measure the performance over-
head of using Fastlane. We also evaluate the multicore scalabil-
ity that Fastlane provides. Finally, we evaluate the performance
of the 5G UPF ported to Fastlane.

The System Under Test (SUT) running Fastlane applications
was equipped with Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz, 128 GB RAM, and Intel XL710 NICs with 40
Gbps line rate. The SUT was running on Ubuntu 22.04
with Linux kernel 5.15.0-25-generic; the SUT was optimized
with hyperthreading disabled and CPUs explicitly isolated for
the application’s execution. The underlying frameworks were
configured to use 2MB hugepages to improve Translation
Lookaside Buffer (TLB) misses, ensuring optimal perfor-
mance. To generate the load, we used a DPDK-based Pktgen
traffic generator [22], which generates traffic using six RX-TX
queue pairs with a burst size of 32 packets. For the evaluation
of Fastlane DPDK deployment, we have only used custom user
space polling drivers, and for the Fastlane CNDP deployment,
we have used the busy polling mechanism.
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Figure 5: Throughput of macswap operation

Framework Latency (µs)

64B 256B 512B
DPDK 13.34 15.15 18.76
Fastlane-DPDK 13.56 15.24 18.86
CNDP 33.54 33.68 35.21
Fastlane-CNDP 36.95 37.12 37.21

Table I: Latency of macswap operation

A. Overhead and multicore scalability

We first perform microbenchmarks to analyze the Fastlane
overhead and ensure that Fastlane applications do not perform
any worse than when executed natively using DPDK or CNDP.
We generated line rate traffic from the load generator to
a Fastlane application that performs “macswap” operations
while running on a single core, with the packet then sent back
to the load generator. Similarly, we used native CNDP and
DPDK-based “macswap” applications and tested the maximum
achievable throughput of the application with less than 1%
packet drops. We maintained identical configurations and
setups across Fastlane and native deployments to facilitate
a fair comparison. The latency was also noted to ensure
that Fastlane does not add significant processing time to the
native processing time of the framework. Note that we only
present fast path performance results and do not focus on the
performance of the slow path because the slow path running on
the Linux kernel is not expected to have a very high throughput
in any case. We also omit results of the performance of
Fastlane applications running inside containers, as the findings
and conclusions were similar to the baremetal experiments
described below.

Figure 5 shows the comparison of the throughput of the
macswap network function when running with and without
Fastlane. Table I shows the corresponding end-to-end latency.
The results show that DPDK and our Fastlane-DPDK im-
plementation achieved a line rate for packet sizes of 1024B
and 1400B. Similarly, CNDP and Fastlane-CNDP exhibited
nearly identical performance levels. However, all fast packet
I/O versions performed significantly better than the same
application running on the Linux kernel stack, which achieved
a throughput of only 55 Mbps for 64B packets and 498 Mbps
for 1400B packets. Our results show that applications built
over Fastlane perform similarly to those built directly over the
fast packet I/O mechanisms like DPDK or AF XDP. Also, the
performance overhead of Fastlane in terms of throughput or
latency is minimal.

Next, we measure the throughput of the same application
using 128B packets and with increasing CPUs. Figure 6 shows

192



1 2 3 4
No. of cores

0

10

20

30
Th

ro
ug

hp
ut

 (M
pp

s)

FASTLANE-CNDP
FASTLANE-DPDK

Figure 6: Scaling of macswap operation

64 256 512 1024 1400
Packet Size (Bytes)

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Th
ro

ug
hp

ut
 (M

pp
s)

FASTLANE-DPDK-UPF
FASTLANE-CNDP-UPF

64 256 512 1024 1400
Packet Size (Bytes)

0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s)

Figure 7: Throughput of 5G UPF using Fastlane

the throughput of the macswap application with increasing
cores. We see that the throughput of the macswap application
increased almost linearly until it reached the line rate of
the NIC, showing that Fastlane allows easy development of
multicore scalable fast path applications.

B. 5G UPF with Fastlane

To evaluate the performance of the Fastlane UPF, we
performed load testing within the proprietary production-grade
5G core implementation environment, simulating a scenario
with 10K concurrent 5G users transmitting data to the 5G
core, with 20K PDRs and 20K FARs stored in the UPF.
Figure 7 depicts the performance of the UPF after it was
ported to Fastlane, with four cores in the fast path and
the slow path running the original single-threaded UPF with
minimal changes. For 1024B and 1400B packets, Fastlane’s
DPDK-based UPF achieved a line rate performance, whereas
Fastlane’s CNDP-based UPF achieved ∼ 2.9 Mpps. The results
show that Fastlane is useful for easily porting the fast path
of complex network applications like UPF to fast packet I/O
mechanisms while allowing the slow path to remain on the
kernel.

V. CONCLUSION & FUTURE WORK
This paper introduces Fastlane, a framework designed to

port the fast path of network applications to use a high-
performance packet I/O mechanism while allowing the slow
path to continue running on the traditional network stack
with minimal modifications. Application developers can use
Fastlane APIs, which are agnostic to the underlying packet
I/O mechanism, requiring only minimal changes to their appli-
cations. They can switch between packet I/O mechanisms by
modifying a configuration file without altering the application
code. Fastlane abstracts the complexities of packet path setup
and internal details of packet I/O mechanisms, managing
them seamlessly in both bare-metal and cloud environments

platforms like Kubernetes. Our evaluation demonstrates that
complex applications like the 5G UPF can be easily ported
to Fastlane with negligible overhead. We plan to integrate
Fastlane with the auto-scaling framework in Kubernetes and
explore the possibility of switching from DPDK to CNDP
framework at runtime based on resource availability.
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