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ABSTRACT
Text-based specifications are the de-facto standard for specifying
complex multi-tier systems. For example, 3GPP specifications de-
fine various interfaces, messages, and message processing at the
multiple inter-connected nodes of a 5G system. These standards
documents tend to be verbose, and may be ambiguous or inconsis-
tent in places, increasing programmer effort to implement them in a
general purpose language. This paper presents Pyramis, a Domain
Specific Language (DSL) with suitable high-level abstractions for
specifying the interfaces, messages, and processing in a multi-tier
system. Pyramis allows programmers to specify multi-tier systems
in a concise and precise manner, and enables easy development
of software based on the specifications. We also develop a trans-
lator with Pyramis that automatically generates optimized, multi-
threaded C++ code for the various components of the multi-tier
system from the specification, and also generates eBPF-based mea-
surement code for computing various performance metrics. We
use Pyramis to build several components in the 5G mobile packet
core. We show that the specifications written in Pyramis are 2–
3× smaller than the actual reference implementation, while the
auto-generated C++ code performs on par with a hand-optimized
implementation. We believe that Pyramis can eventually replace
verbose text specifications like the 3GPP standards documents in
telecom systems.
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1 INTRODUCTION
Modular software is made up of different components that are func-
tionally interlinked with each other. In a multi-tier system, these
components (or nodes) are physically separated into different tiers,
and each node is assigned a specific functionality. For the various
components of a multi-tier system to inter-operate seamlessly, all
nodes in the system should adhere to a common specification, which
specifies various aspects, e.g., the network connection parameters
of each interface exposed by every node in the system to receive
messages on (e.g., transport protocol, server port number), message
formats for the requests and responses exchanged between nodes
on each interface, and how to process each request in order to
generate a response.

An example of a multi-tier system, that serves as a compelling
motivation for our work, is the 5G mobile packet core [9]. The
packet core connects the wireless radio access network to the Inter-
net and other external networks, and serves several critical func-
tions in a mobile network, like registering and authenticating mo-
bile users, managing data sessions, and handling the mobility of
users. The 5G packet core is composed of several software network
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Figure 1: 3GPP Spec Documents Reference Tree

functions (NFs) running on commodity hardware, in accordance
with the principle of Network Function Virtualization (NFV) [33].
Each NF in the 5G core handles a separate functionality, and the
various NFs communicate with each other over well-defined inter-
faces to handle any given signaling procedure of a mobile user, e.g.,
to authenticate a user.

Text specifications are the de-facto standard for specifying com-
plex multi-tier systems, but these specifications tend to be very
verbose in nature. For example, the information required to build
individual NFs in the 5G packet core is distributed among tens of
different documents maintained by 3GPP [3–9], and each of these
documents run into several hundreds of pages. Figure 1 shows the
3GPP documents that need to be referred to in order to understand
just one of the many steps in the session establishment callflow, that
is initiated when a user establishes a data session with the mobile
network. Specification document 23.502 [8] describes the message
to be exchanged between two nodes at that particular step in the
callflow, but details on how to fill the different fields of that message
are spewed across several other documents as shown in the figure.
These specifications are also revised every few months for every
new release, and the large text documents are very hard to maintain
in a consistent state across changes in each release. The sheer scale
of these documents are not only hard for the specification writers
to keep track of, but are also a burden on the programmer assigned
with the task of implementing these nodes in a general purpose
language (GPL) code.

Text-based specifications can also be ambiguous in nature. Our
experience with building a few components of the 5G core has
exposed us to several such ambiguities. For example, in the 5G
packet core, a user must set up multiple resources in the data plane
before sending the actual data [2]. The specification states that a
failure message should be sent in the case of “failure of user plane
resource setup”, but fails to mention which user plane resource(s)
is it talking about, leaving the statement ambiguous. Badly written
text-based specifications also tend to specify systems which are
hard to implement efficiently, because the authors are only writing
text and not actual code. The 5G packet core specifications for
some request-response message pairs do not include an identifier
of the request in their corresponding response messages. In such
a scenario, every request/response exchange must be performed
on a separate transport layer connection, and multiple requests
cannot be multiplexed on the same connection, which leads to
an inefficient implementation. The programmers can choose to
overcome these obstacles by resolving such ambiguities in their
implementations with some local decisions. However, doing so
makes implementations across different vendors incompatible, and
requires significant testing and debugging effort.

Our work addresses the problem of writing concise and precise
specifications for large, complex multi-tier systems that are at a
higher level of abstraction than a reference implementation, but
lend themselves easily to an efficient implementation. To this end,
we seek to develop a DSL to specify multi-tier systems that can
bridge the gap between non-programmer domain experts specifying
the system, and the programmers implementing it. We introduce
Pyramis, a DSL to specify multi-tier networked systems. Pyramis
allows the system developer to describe the architecture of the
multi-tier system in terms of the interfaces at every node, messages
exchanged between nodes, and the processing done at every node,
using high-level abstractions and keywords. Pyramis also includes
a translator which converts Pyramis code to various pieces of soft-
ware that can be derived from the specifications. Our translator uses
Pyramis specifications to generate efficient multicore-scalable C++
code to realize a working implementation of all the components in
the multi-tier system. The translator also allows users to generate
eBPF-based measurement code that calculates various node-level
performance metrics from the message format specifications.

Previous work on DSLs for networking systems mainly consists
of DSLs that specify network protocol stack processing at a single
node [13, 20, 23, 24, 27], and DSLs that give the programmer the
ability to specify and generate parsers for L7 application proto-
cols [26, 28, 29, 31], both of which are not sufficient to completely
specify a complex multi-tier system. While the motivation for our
work has been to develop a better way of specifying complex multi-
tier systems like the 5G packet core, we believe that our language
is extensible to specify multi-tier systems in any domain.

We evaluate the benefits of Pyramis by developing complex NFs
in the 5G packet core using Pyramis. Our results when comparing
Pyramis code with that of an optimized production-grade imple-
mentation of the 5G core [1] written without Pyramis show that
Pyramis code has at least 2–3× fewer lines of code than the base-
line implementation, while the performance of the translated C++
code auto-generated by Pyramis is on par with that of the base-
line. We also demonstrate the correctness of Pyramis generated
measurement code. Pyramis is completely open-source, and lan-
guage description along with the translator code can be found at
https://github.com/synerg5g/Pyramis.

2 LANGUAGE DESIGN
We design the Pyramis language keeping the following objectives
in mind. (i) The language should have suitable abstractions
to completely capture multi-tier systems like the 5G packet
core. A complete definition of a multi-tier system contains infor-
mation about the nodes in the system, the interfaces each of these
nodes expose to receive messages on, the format of each message
flowing through every node in the system, and the processing to
be done at each node on receiving a certain message (request). We
would like our specifications to be more precise than text-based
specifications (which can be ambiguous at times), and more con-
cise than a reference implementation in a GPL. (ii) The language
should enable auto-generation of software based on the spec-
ification. Multi-tier system specifications are used by developers
to write code for the system components themselves, as well as
auxiliary supporting code for various measurement and monitoring
tasks in the multi-tier system. We aim to develop a translator for
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1 {
2 "Node_A": {"Interfaces": [...]},
3 "Node_B": {
4 "Interfaces": [{
5 "Name": "I2",
6 "Protocol": "TCP",
7 "Port": 2222,
8 "Processing": ["http_processing"]}]
9 },
10 "Node_C": {"Interfaces": [...]}
11 }

Listing 1: Interface File

1 EVENT http_processing (request)
2 DECODE(decode_request_A, message, request)
3 IF (message.header.uri == "/requestA")
4 CALL (request_from_A, message)
5 ...
6

7 EVENT request_from_A (message)
8 STORE (contextMap, message.key, field2, message.fieldy)
9 STORE (contextMap, message.key, field1, message.fieldz)
10

11 CREATE_MESSAGE (newMsg, type_response_A)
12 UDF (fetch_value, value, message.fieldx)
13 SET (newMsg.field1, value)
14 ...
15 ENCODE(encode_response_A, msg_response_A, newMsg)
16 SEND (msg_response_A, "8.9.10.11", NODE_B, NODE_A,

InterfaceA)

Listing 2: Processing File

Pyramis which generates C++ code for NF implementations, as
well as eBPF [19] measurement code, from Pyramis specifications.
The translator should perform various syntax checks on the input
Pyramis code, and should automatically generate high-performance
software from the specifications. (iii) The language should be
extensible. It should be easy to add new abstractions or primi-
tives to Pyramis to extend the language to use cases that we have
not foreseen. We also aim to provide abstractions that enable pro-
grammers to insert custom C++ code either to describe parts of the
system that are hard to specify using Pyramis abstractions or to
insert legacy code that the developer wishes to reuse.

We now describe the design of Pyramis that satisfies the above
goals. The programmer writes specifications in Pyramis in the
following files using the abstractions (or keywords) provided by
Pyramis. The first three of these files (interfaces, messages, and
user-defined functions) are common to all nodes, while the last two
(processing and query) must be written separately for each node
in the system, to generate the processing code and measurement
code at each node.

(1) Interface specification: Listing §1 shows a sample interface
specification written in Pyramis. The Pyramis programmer lists
out nodes, and the interfaces at each of the nodes, in the interface
file written in JSON. A node definition consists of a list of interface

1 # filter on request URI
2 FILTER(http_header.uri,"/ueAuth/security")
3 # filter on value inside a field in message
4 FILTER(message.field_X, value_X)
5 # groupby on a value inside a field in message
6 # and count number of messages in each group
7 GROUPBY(message.field_Y, [COUNT()])

Listing 3: Query File

definitions that it exposes. Each interface definition consists of an
identifier for the interface, the transport layer protocol and the port
number on which the node expects to receive messages on, and the
processing event to be triggered on receiving a message on said
interface.
(2) Message specification: All messages exchanged between
nodes are listed in the message file by the Pyramis programmer.
Message specifications should list out every field in a message, and
the data type of the corresponding field. The Pyramis programmer
is also expected to provide C++ functions to encode (i.e., convert a
message structure into a byte stream) and decode (i.e., convert a
byte stream buffer into message structure) each message.
(3) UserDefined Functions: Keeping the extensibility and reusabil-
ity goals inmind, Pyramis allows programmers to write user defined
functions in C++, which can be called from the message processing
code written in Pyramis.
(4) Processing specification: A key part of Pyramis specification
is the processing file that specifies the processing performed at
each node upon receiving a message. Listing 2 shows a snippet
of the processing file at a node B that receives a HTTP request
from a certain node A, and sends a response back to A. All message
processing code in Pyramis is written in event blocks using the
EVENT keyword. Events are triggered either on receiving a mes-
sage (http_processing event in the listing), or from another event
inside the processing file using the CALL keyword. The DECODE
and ENCODE keywords call C++ functions written by the Pyramis
programmer as part of the message specifications to decode/encode
a message. The STORE keyword is used to store a value against a
key in a C++ hashmap, and the complementary LOOKUP keyword
fetches values from that map. These two keywords together allow
programmers to maintain application state. The UDF keyword is
used to call user-defined functions written by the Pyramis pro-
grammer in C++. The CREATE_MESSAGE keyword instantiates a
message definition whose type is defined in the message file. The
SET keyword is used to set values of various fields in a particular
message. Finally, the SEND keyword is used to send a message
to another node in the multi-tier system, optionally specifying a
callback event when a response is received. The language also has
keywords like conditional if/else statements, loops, and allows for
statements to be written in a Python-like syntax. We omit a de-
tailed discussion on the complete language syntax due to space
constraints. However, we would like to mention that the language
is complete enough to handle the processing of various messages
in several signaling callflows of the 5G packet core.
(5) Query specification: Pyramis specifications can be used for
several purposes besides just specifying message processing in
the system. To showcase the power of writing specifications in a
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Figure 2: Translator Design

DSL, we add a few extra keywords to Pyramis specifications that
allow developers to write node-level queries (see listing 3) to gather
meaningful metrics from requests and responses seen at a node.
The query specification builds on the message structure in the mes-
sage file, and uses various SQL-like keywords to extract various
metrics from the fields of a message. For example, the FILTER key-
word is used to identify a subset of messages to process for metric
extraction. The COUNT keyword counts messages that match the
filter, whereas the STORE keyword extracts the value of a field from
the message and stores that value in a hashmap. The GROUPBY
keyword is used to group messages by the value of a certain field,
and then perform other operations (filter, count or store) on each
of those groups. We want to emphasize that the list of keywords
provided to write the query specification is not exhaustive, but only
serves to show that the Pyramis specification of the system can
also be used for auxiliary monitoring and measurement tasks with
minimal effort.

3 TRANSLATOR DESIGN
Given a Pyramis specification, the Pyramis translator auto-generates
various pieces of code that would have been manually written by
developers from a text-based specification. In order to keep the Pyra-
mis specification lighter than a complete implementation, users
need not specify complete data types in the Pyramis specification,
and the translator auto-infers data types of variables used in the
Pyramis code to generate complete C++ code. Using the insight
that all variables used during application processing at nodes origi-
nate from some message received at the node, the translator uses
information about the variables embedded in the message formats
to infer their data types. Using a translator instead of manually
writing NF code has two advantages. First, the translator ensures
that the specification is consistent, error-free, and implementable
without ambiguities. The translator performs various syntax and
semantic checks on the specification, and throws errors at compile-
time in case the specification has bugs. Second, the translator allows
generation of optimized high-performance code with minimal pro-
grammer effort, since the performance optimizations can be baked
into the translator logic, and need not be performed by each system
developer separately.

Figure 2 shows overview of the Pyramis translator that gener-
ates C++ code for the various components of the system. 1 The
programmer writes Pyramis specification in the specific files using
the abstractions (or keywords) provided by Pyramis (see section
§2). 2 The processing file first passes through a pre-processing en-
gine which converts code written in Pyramis to Python-like syntax.

Use Cases LOC LOC factorPyramis code GPL code
AMF (Initial Reg-
istration)

711 2307 3.24

SMF (Session Es-
tablishment)

891 2362 2.65

Table 1: Lines of Code (LoC) Comparison: Pyramis specifica-
tions vs. non-Pyramis C++ implementations

3 We pass this Python code through the Python AST library to
generate an Abstract Syntax Tree (AST) representation of Pyramis
code. The AST is an intermediate representation of the source code
in a tree-like structure that is generated by compilers during the
compilation phase. It is useful in semantic analysis and correctness
checking of the code. We reuse the Python AST library to build our
translator in order to avoid reinventing the wheel in developing our
own translator from scratch. 4 The AST intermediate representa-
tion along with the interface file pass through a syntax verification
engine which detects any syntax errors in the specification, e.g., in
the names of interfaces or event handling functions invoked. Finally,
5 the Pyramis translator parses the Pyramis code by traversing the
AST, and translates it to C++ code. In this step, the translator uses
information from the interfaces, messages, and UDF files as well to
generate the complete reference implementation. The interface file
is used by the translator to auto-generate the code for communica-
tion between nodes using standard network primitives like sockets.
The auto-generated code uses multi-threading to achieve higher
performance on multicore systems.

We use a similar translator design to generate code that extracts
performance metrics from the requests and responses seen at the
node. While this code could have been generated as part of the
application code itself, we choose to generate eBPF code to col-
lect performance metrics, in order to integrate our measurement
module with other eBPF based network telemetry systems in the fu-
ture [15, 17, 18, 21, 30]. The translator autogenerates eBPF code that
runs at the TC [12] hook as it can inspect both ingress and egress
messages. Each query keyword can be viewed in the same breadth
as an operation (filter, count, groupby), wherein the specified field
of a particular message is the operand on which the operation is to
be performed. Pyramis translator parses the entire query file to as-
certain mentioned fields and their respective messages, after which
it inspects the message file to calculate the offset of those fields
inside the corresponding messages. Finally, it uses these offsets to
generate eBPF code which extracts values from every calculated
offset, and performs the corresponding operations in the order in
which they are present in the query file.

4 EVALUATION
We now evaluate the benefits of using Pyramis in several ways.
First, we show the expressiveness of Pyramis by using it to write
specifications for several key components of the 5G packet core.
Next, we evaluate the reference implementations auto-generated
by the Pyramis translator and show that they perform at least as
well as hand-optimized implementations.
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5G Procedures Throughput (req/sec)
Proprietary

Implementation
Pyramis

Implementation
Initial Registration 329 391

Session Establishment 116 130

Table 2: Performance of Pyramis generated code

4.1 Pyramis specifications
Using Pyramis, we write the specification of two components, Ac-
cess and Mobility Function (AMF) and Session Management Func-
tion (SMF), the main components in the control plane of 5G packet
core. We do not implement all the signaling messages of 5G, but
focus on the initial registration procedure that is used by a mobile
user to register and authenticate with the network, and the session
establishment procedure that is used to set up a data session be-
fore data transfer through a mobile network. We write the code
to handle all messages of the initial registration callflow at AMF,
and all steps of the session establishment callflow at SMF using
Pyramis. Note that the specification for a single step in the session
establishment callflow that was spread across various documents
as described in §1 was captured in a single place using Pyramis.
The fact that we could implement these packet core components
in Pyramis shows that Pyramis is expressive enough to describe
complex multi-tier systems.

We now evaluate how writing specifications in Pyramis com-
pares with writing code directly in a general purpose programming
language (GPL), in terms of Lines of Code (LoC). For the AMF and
SMF 5G core components described above, we consider the code
for only the simplified initial registration and session establishment
callflows from the proprietary production-grade 5G core implemen-
tation [1], and compare the LoC in this implementation with the
LoC in the Pyramis DSL code written for these two callflows at
AMF and SMF. Table 1 shows the LoC comparison between Pyramis
DSL code and the conventional implementations written without
Pyramis. Note that we omit common code like the message descrip-
tions (message files), complex application layer logic (UDF files)
which are present in both implementations from our calculations.
We see from this table that the programmer has to write 2–3×more
code without Pyramis for the 5G core components, which shows
that the high-level abstractions of Pyramis can reduce developer
effort when building complex systems. In addition to LoC savings,
the code written in Pyramis is also more readable and has fewer im-
plementation details, making it more accessible to domain experts
without programming expertise.

4.2 Pyramis auto-generated code
Next, we use the Pyramis translator to auto-generate C++ code from
the Pyramis specification of the AMF and SMF. We test our Pyramis
generated components with other components of the packet core
obtained from a proprietary production grade 5G core implementa-
tion [1], and we find that the AMF and SMF code auto-generated
by Pyramis can inter-operate with the other 5G core components
seamlessly. We also evaluate the performance of our auto-generated
AMF and SMF, and compare it with the performance of the opti-
mized production-grade AMF and SMF components. We use the

Figure 3: Multicore Scalability

(a) COUNT query (b) GROUPBY query

Figure 4: Measurement code correctness

load testing harness that was part of the production 5G core imple-
mentation. We test the AMF with a workload of initial registration
requests and we test the SMF with a workload of session estab-
lishment requests. We measure the maximum throughput of the
components in terms of number of registration or session setup
requests handled per second. Table 2 shows the throughput of the
Pyramis generated components and the production-grade compo-
nents, both running on a single CPU under similar test conditions.
We see from this table that the C++ code generated by the Pyramis
translator is able to perform as well as a production-grade optimized
implementation of AMF and SMF. Next, we repeat the load test on
AMF by giving increasing number of cores to the AMF component.
Note that the programmer does not have to do anything differ-
ent in the Pyramis specification, and the translator automatically
performs multi-threading for multicore scalability. Figure 3 shows
the throughput for the Pyramis generated AMF. We see from the
figure that Pyramis can generate multicore scalable components
out-of-the-box without any additional programmer effort. These
result show that building multi-tier systems with Pyramis does
not hurt performance in any way. In fact, the Pyramis translator
is an ideal place to plug in various performance optimizations and
logic for multi-threading, so that they can be reused across multiple
system implementations.

We now evaluate the correctness of eBPF measurement code
generated using the Pyramis translator. We generate measurement
code for two queries in the context of the 5G packet core. After
a certain period of inactivity, the RAN may decide to release the
wireless resources assigned to the idle UE, which triggers the AN
release procedure in the packet core. The AN release procedure
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marks the various data sessions of a UE as dormant and some state
pertaining to the UE is released.

Query 1 uses the FILTER keyword to identify AN release packets
belonging to the mobile subscriber of interest, and then simply
counts the number of packets passing that filter using the COUNT
keyword. Figure 4a shows the percentage of packets measured using
Pyramis generated measurement code as opposed to the actual
generated load. Pyramis generated measurement code is able to
count every packet correctly until the CPU bottlenecks (utilization
100%), after which packets are dropped at the NIC. Query 2 uses
the GROUPBY keyword to group AN release packets belonging to
each mobile subscriber, and then uses the COUNT operation to
count the number packets for every subscriber. Figure 4b compares
the actual number of packets sent for a fixed number of mobile
subscribers by the load generator to the number calculated by
Pyramis generated measurement code. Figures 4a and 4b show
the correctness of the generated measurement code as the count
matches the exact number of packets of interest generated by the
load generator.

5 RELATEDWORK
Frameworks for modular network packet processing. Prior
work has proposed several DSLs that allow for fast development of
modular packet processing software by providing high-level con-
structs that abstract out the common tasks required in network
packet processing. The Click [24] router has been a seminal work
in this space. Click enables users to build a modular router using
reusable elements for packet classification, queuing, scheduling,
and other such functions. FastClick [11], ClickNF [20], ClickNP [25]
extend the Click router to work in various different settings. Ru-
bik [27] is a DSL written in Python which provides abstractions to
build network protocol stacks for middleboxes. P4 [13] is a DSL to
specify packet processing in a target-independent manner that can
be compiled to run on a variety of targets from software switches
to programmable hardware. mOS [23] is a framework over the
mTCP network stack that allows the programmer to build stateful
middleboxes by exposing high-level abstractions related to TCP
level flow processing and allowing programmers to write event
blocks for various TCP flow level events. All of these systems deal
with specifying network packet processing at a single node in a
multi-tier system and are complementary to our work that seeks
to specify the interfaces, messages, and processing across multiple
nodes in a multi-tier system.
L7 protocol parsers. Prior work also proposes high-level specifica-
tions for L7 (application layer) protocol messages, which can then
be compiled into efficient packet parsers. Binpac [31] provides a
declarative language along with a compiler to semantically analyse
complex L7 network protocols. Protocol parsers built using Binpac
were used in the Bro [32] network intrusion detection system. Ul-
traPAC [28] builds on BinPAC to provide compiler optimizations.
FlowSifter [29] introduces a new grammar model (Counting Reg-
ular Grammars) and a corresponding automata model (Counting
Automata) to parse and extract fields from context sensitive ap-
plication protocols. Work in this field also does protocol reverse
engineering [14, 16, 34] to automatically infer application level pro-
tocol specifications. Our work is complementary to such efforts,

and we can leverage such ideas to parse/encode/decode messages
in our translator as well.
RPC frameworks. Popular RPC frameworks like Thrift [10] and
gRPC [22] also provide abstractions to define and expose services.
Both of these frameworks expect the programmer to define mes-
sage formats, which are then compiled to a binary protocol during
runtime facilitating encoding and decoding. These frameworks al-
beit powerful, only help in defining a message interface to another
service running on another node in the multi-tier system, and gen-
erate code to serialize/deserialize messages received on the wire
according to the defined interfaces, which as we have discussed
before is only a part of the multi-tier system definition. Having
said that, code generated by these frameworks to decode/encode
messages into their respective transmission formats on the wire,
could easily be used along with Pyramis using the ENCODE and
DECODE keywords.
6 CONCLUSION
This paper describes Pyramis, a DSL to ease the specification and
development of large multi-tier systems. Developers write the sys-
tem specification using the high-level abstractions and language
constructs provided by Pyramis. These specifications can then be
used to auto-generate optimized C++ reference implementations of
the various components by the Pyramis translator. The translator
can also autogenerate other software that depends on the specifi-
cations, e.g., we generate eBPF-based performance measurement
code from the message specifications and user-specified queries.
Specifications written using Pyramis are more concise and easier
for non-programmers to work with as compared to a reference
implementation in a general purpose language, because the Pyra-
mis translator automatically infers several implementation details
without requiring them to be specified in the DSL code. Specifica-
tions in Pyramis are also precise and unambiguous by construction,
unlike verbose text-based specifications that may be difficult to
interpret and implement sometimes. We show that reference imple-
mentations auto-generated from Pyramis perform at least as well
as hand-optimized implementations.

We envision a future where a specification language like Pyramis
is adopted to write easy-to-understand and unambiguous specifica-
tions of large multi-tier systems like the mobile telecom systems.
The standardization bodies like 3GPP will come up with Pyramis
specifications to describe the system, and competing vendors will
optimize the translator to differentiate their implementations from
each other. Translators can also be developed to autogenerate other
auxiliary software besides the performance measurement code we
have shown, e.g., compliance checking code that is often used by
telecom regulators to verify that the various telecom software com-
ponents adhere to the specifications. Such software is developed at
significant manual effort today, but can be easily auto-generated
when specifications are written in a DSL. We plan to open-source
the Pyramis language and translator and evangelize the adoption
of this specification language in various 3GPP fora.
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