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Abstract—The 5G core is an important part of a 5G network,
and with the exponential growth of connected devices and
dynamic traffic conditions, it is essential for the 5G core to
be scalable and fault-tolerant. This requirement is even more
important with the softwarization of the packet core and cloud-
based deployments. This paper presents a comparison of design
choices when building a scalable and fault-tolerant 5G core on
a Kubernetes-orchestrated cloud platform. Prior work in this
direction does not fully explore all design choices, or is not
compliant with 3GPP standards. In contrast, we start with a
3GPP-compliant production-grade 5G core, and build multiple
variants of cloud-native 5G core components. We leverage Kuber-
netes’ automatic failover, and auto-scaling capabilities in different
ways to make the 5G core scalable and fault-tolerant. We conduct
extensive experiments to evaluate the scalability and resilience of
various design choices, and to quantify the overheads of cloud
deployments. Our work exposes tradeoffs between performance
and fault tolerance, and provides insights on how best to design
a scalable and fault-tolerant 5G core on Kubernetes.

Index Terms—5G core, Cloud-Native, Docker, Fault Tolerance,
Kubernetes, Scalability

I. INTRODUCTION

The introduction of 5G is a remarkable milestone in mobile
communication, with the entire network architecture being
redesigned to support improved broadband capability, low
latency, and machine-to-machine communication. The most
important component of the 5G infrastructure is the 5G core,
which connects the wireless radio access network to other
networks, and manages connectivity and data flow of user
devices. The 5G core consists of multiple network functions
(NFs) that handle registration, authentication, session manage-
ment, and mobility, among other things. In 5G, these compo-
nents are expected to be built as modular software, running on
virtual machines or containers on a cloud, in accordance with
the principles of Network Function Virtualization (NFV).

To handle the enormous growth in the number of connected
devices and the highly variable nature of traffic patterns, the
5G core should be able to scale its performance dynamically
in response to input load. The high availability expected
of telecommunication networks requires the 5G core to be
resilient to failures. In the traditional stateful architecture of
the mobile packet core in 4G and earlier, the state and the
processing were tightly coupled within a component, which
makes achieving scalability and fault tolerance difficult. For
example, the failure of a component can lead to loss of
critical state and service disruption, and horizontally scaling
a stateful component requires synchronization of state across

multiple replicas. The 5G architecture makes two provisions
for addressing these challenges. First, the standards prescribe
a separate data store component to be used with the various
NFs, allowing the NFs to be built as stateless entities that can
scale and failover easily. Second, the standards recommend
a cloud-native deployment, to leverage the auto-scaling and
auto-healing capabilities of cloud orchestration systems.

To this end, there have been several proposals on how to
design and deploy the 5G core on cloud platforms like Kuber-
netes. Some work in this direction [1], [2] proposes refactoring
the 5G core, e.g., to consolidate multiple network functions
into one stateless worker. However, such designs limit the
capability of the network functions to scale independently, and
deviate from the 3GPP specifications, making them impractical
to deploy in real-world scenarios. The open-source SD-Core
implementation in the Aether project [3] adopts a stateless
design that is aligned with the 3GPP standards, but the state
checkpointing is done infrequently (once per control plane
procedure), limiting the resilience of the system. But, to the
best of our knowledge, there is no work that comprehensively
explores the various design decisions when building a scalable
and fault-tolerant 5G core, a gap that this paper seeks to bridge.

This paper designs and implements a scalable and fault-
tolerant 5G core on the Kubernetes cloud platform. We
begin with a stateful implementation of a production-grade
5G core [4], and add support for checkpointing state to an
external data store. This decoupling of state from the NFs
allows the stateless NFs to scale and failover easily, using
the auto-scaling and auto-healing features of the Kubernetes
orchestration framework. We experiment with different gran-
ularities of checkpointing state, from the infrequent (once per
procedure) granularity used in Aether’s SD-Core to the fine-
grained granularity of checkpointing state for every message
and evaluate the performance and resilience tradeoffs. We find
that more frequent state checkpointing leads to up to 75%
lower throughput, but provides perfect fault tolerance in the
face of failures. We evaluate several Kubernetes configurations
for 5G core deployment, and find that using Kubernetes for
orchestration of the 5G core imposes a minimal overhead of
1.5% in terms of throughput and latency. Our work also iden-
tifies and addresses several questions that arise when building
a practical, standards-compliant 5G core on Kubernetes, e.g.,
how to assign identifiers to mobile subscribers in a scaled-out
5G core design, and what type of load balancer to use.

Our work makes the following contributions: (a) design,



implementation, and evaluation of a scalable and fault-tolerant
5G core on Kubernetes (b) comparison of various design
choices when developing and deploying 5G core on Kuber-
netes, leading to useful insights for designers and developers
of future cloud-native mobile packet core systems.

II. BACKGROUND

A. 5G core

Fig. 1: 5G Network

The 5G core has been standardized, starting with 3GPP
Release 15 [5], to serve the requirements of increased through-
put, low latency, and reliability of modern 5G networks. As
shown in Figure 1, a 5G network consists of the Radio
Access Network (RAN), comprising the base station (gNB)
and the User Equipment (UE), and the packet core. The 5G
core consists of multiple Network Functions (NFs) that help
connect the RAN to external networks. Some important NFs in
the control plane of the 5G core are the Access and Mobility
Management Function (AMF) which manages registration and
mobility of UEs, the Authentication Server Function (AUSF)
which handles authentication, and the Session Management
Function (SMF) which handles the setup and teardown of
data sessions through the core. All NFs can optionally use
the Unstructured Data Storage Function (UDSF) [6] to store
and manage application state generated during the various
signaling procedures. The data plane of the 5G core consists
of the User Plane Function (UPF) that forwards user traffic to
the internet in accordance with the forwarding rules configured
by the SMF. The AMF interacts with the RAN using 5G
protocol messages exchanged over a persistent SCTP connec-
tion, whereas the control plane components communicate over
REST-based HTTP messages exchanged over TCP.

The 5G core implements multiple signalling procedures on
behalf of mobile users for registration, session management,
and mobility management [7]. Each procedure consists of a
series of messages exchanged in a call flow across multiple
NFs in the RAN and the packet core. When the 5G core
connects with the RAN, the gNB and the AMF execute
the NG Setup [8] procedure over NGAP (NG Application
Protocol) [9] to establish and configure the communication
channel between them. Subsequently, all control plane requests
of users connected to a base station are communicated to the
core through this channel. Figure 2 presents a simplified call
flow of the registration procedure. In this process, a new UE
initiates an initial registration request via NAS (Non-Access
Stratum) [10] signaling through the base station to the AMF.

Fig. 2: UE Registration Call Flow

The AMF then interacts with several control plane NFs to
complete the registration. For instance, the AMF obtains an
authentication challenge from the AUSF, forwards it to the
UE, and subsequently sends the UE’s response back to the
AUSF for verification. By the end of this procedure, the UE
and the network mutually authenticate each other, and setup
security parameters for further communication.

All control plane NFs, and the AMF in particular, maintain
context for every UE connected to the packet core. This con-
text is created during the registration, updated in subsequent
procedures, and held as long as the UE is active. The UE
context consists of several details about the UE, such as the
UE’s identity, security credentials, and session information,
which are required to maintain service continuity throughout
the lifecycle of the UE. Every UE has several identifiers, e.g.,
AMF UE NGAP ID assigned to each active UE by the AMF,
which can be used as unique keys to retrieve the UE context
across different signaling procedures. Another important point
to note is that the 5G core tracks the stage of the UE within
its lifecycle (e.g., whether registered or not, whether actively
connected or idle) via a finite state machine (FSM), and the
FSM state of the UE stored in its context helps the core to
enforce only valid transitions for the UE (e.g., the UE can
setup sessions only after it has registered).

B. Docker and Kubernetes

Containers have redefined the way modern cloud-native
applications are deployed. They provide lightweight, portable
environments for software to run consistently irrespective of
the underlying architecture. They combine an application and
its dependencies into a single unit. Docker [11] is the most
popular containerization platform. It provides a simple way
to create images and run containers. A “dockerfile” provides
blueprint for a container, and contains definitions of all the
dependencies and configurations required to run the container.
Once dockerfiles are built, we can easily share and deploy the



image on any machine as a container by using a “docker run”
command with the image as the argument.

Kubernetes [12] is an open-source container orchestration
platform that automates containerized workload deployment
and scaling. It groups containers into smallest deployable units
called “pods” and runs them on “nodes” (physical or virtual
machines that run the containers). Usually, a pod consists of
one or more containers that share resources, such as storage
and networking. Kubernetes allows developers to easily expose
applications running inside pods, and enable communication
between pods and external systems, by abstracting the under-
lying dynamic IP addresses of pods with stable virtual IPs. A
YAML manifest file is used to specify the Kubernetes objects
used in a deployment, including the number of replicas (copies
of a pod), configuration settings for networking, exposed
ports, and so on. Kubernetes also supports load balancers to
distribute incoming traffic evenly across multiple replicas of
a service, ensuring availability and redundancy. Additionally,
Kubernetes provides self-healing capabilities by automatically
replacing failed pods. Using all these components, Kubernetes
automates scaling, load balancing, and self-healing for con-
tainerized applications, streamlining application deployment
and management at scale.

III. RELATED WORK

A. Redesigning the 5G core

Prior work such as [13], [14], [15], [16], [17], [18], [19],
and [20] proposed frameworks that leverage microservices,
virtualization, and parallel processing to improve performance,
scalability and fault tolerance of the Evolved Packet Core.
While some of these ideas have been incorporated into the 5G
architecture, researchers continue to work on improving the
5G architecture for specific use cases. SkyCore [21] proposes
relocating the RAN and EPC to edge locations, and adapting
them for UAV hardware, to enhance network accessibility in
remote areas. SpaceCore [22] focuses on providing connec-
tivity in locations where establishing static base stations is
impractical. Neutrino [23] aims to optimize data serialization
and deserialization with flat-buffers and manage handovers
via geo-replication, although state replication remains complex
and challenging. On the other hand, this paper limits itself to
the standards-compliant 5G core architecture, and addresses
the issues to make it more scalable and fault-tolerant.

Some recent proposals refactor the 5G core, towards im-
proving its performance and resilience. L25GC [24] leverages
shared memory to minimize message serialization and process-
ing overheads, achieving resiliency through replica synchro-
nization, along with packet buffering. However, its scalability
is limited by the complexity and overhead of maintaining
consistency as the number of replicas increases. Our approach,
utilizing a data store (UDSF) for state storage, simplifies
the system by eliminating the need for individual NF syn-
chronization, thereby ensuring both reliability and scalability.
PP5GS [2] adopts a procedure-based functional decomposition
of the 5G core, which reduces procedure completion time
but sacrifices reusability and modularity. The tight integration

within a single NF creates a scalability bottleneck and a single
point of failure under high network load. In contrast, our
standards-compliant modular approach distributes tasks across
multiple NFs, enabling parallel execution and independent
scaling, thus enhancing both reliability and scalability.

CoreKube [1] consolidates core network functions (AMF,
AUSF, SMF) into a single stateless worker, with a frontend
load balancer managing message distribution, and deploys
them on Kubernetes. While this design is fault-tolerant and
stateless, it does not allow scaling individual NFs indepen-
dently. Furthermore, it is non-compliant with the 3GPP stan-
dards, as it uses UDP communication between the frontend
and the AMF. Similarly, ML-SLD [25] implements a non-
3GPP defined NF that acts as a middleware between RAN
and AMF, which accepts requests from RAN over SCTP
and communicates with AMF over HTTP. In contrast, our
implementations adhere to 3GPP specifications, and supports
independent scaling of NFs.

FlexCore [26] utilizes an XDP-SCTP load balancer to route
packets to designated AMF instances. While it supports both
stateful and stateless architectures, it necessitates modifications
in the RAN, and does not address how the load balancer
updates its endpoint configuration when new AMF instances
are dynamically added. We address these issues by enabling
dynamic scaling of AMF instances using a Kubernetes load
balancer. Other works, such as [27], [28], [29], and [30],
explore containerization and orchestration with Kubernetes,
but they often overlook key aspects of statelessness, scalability,
and fault tolerance.

B. Open-source implementations

Most open-source 5G core implementations, such as
Free5GC [31], Open5GS [32], and OpenOAI [33], do not
support a stateless NF implementation using UDSF, as of
September 2024. The closest to our own work is SD-Core [34],
a cloud-native mobile core with stateless AMF and SMF
components, which is used in the open-source 5G platform
Aether [3]. Unlike our implementation, SD-Core does not
include a UDSF, and instead utilizes MongoDB [35] directly
within the AMF and SMF to manage transient unstructured
data. Additionally, SD-Core incorporates an L7 SCTP load
balancer that directs SCTP connections from the gNB to avail-
able AMFs. Most importantly, as described in [36], SD-Core
adheres to procedural statelessness, storing state information
only upon completion of the entire registration procedure.
This design makes SD-Core less resilient to network function
failures, as it risks losing data for users that are mid-way
through procedures. In our work, we also explore the design
of fine-grained state checkpointing at the message level. In
the event of a procedure interruption, this allows network
functions to continue precisely where they left off, resulting
in greater resilience, albeit at the cost of lower performance.

Unlike aforementioned works, this paper comprehensively
examines various stateless and fault-tolerant 5G core designs,
presenting extensive experimental analysis across multiple
metrics to compare these architectural choices.



IV. SYSTEM DESIGN AND IMPLEMENTATION

Fig. 3: Our system architecture
A. Architecture of a 5G core NF

A typical 5G core network function is a multi-threaded
application that exchanges messages with other NFs using
sockets or other such communication mechanisms. Every NF
maintains application state in the form of UE context, and
every step of a procedure’s call flow updates the context to
reflect the current status of the ongoing procedures. For this
paper, we will mainly focus on the AMF and the registration
procedure, but the same principles apply to the other NFs and
procedures in the 5G core. There are two designs possible
with respect to how the applications maintain context. In
a stateful design, context is maintained locally in the NF.
However, stateful designs face challenges such as complexity
in replication and fault tolerance. In contrast, a stateless NF
does not store any state locally, but in an external data store
like the UDSF. This allows the NF to scale horizontally, where
every incoming request can be served by a different replica of
the NF. Each replica retrieves context from the UDSF before
processing the request, and saves it back into the UDSF after
processing the request. While stateless architectures are more
fault-tolerant and easily scalable, they suffer from performance
penalty due to the overhead of storing and retrieving context.

Consider a stateless AMF that checkpoints user context
during the registration procedure. There are two options for
when to checkpoint state: either after completing the entire
registration procedure (procedure granularity) or after each
individual message exchanged during the call flow of the
procedure (message granularity). With procedure granularity,
the AMF stores the UE context in the UDSF after the entire
procedure is successfully completed, allowing it to be utilized
for future procedures of the UE, like session establishment.
This design imposes lesser overhead because there are fewer
state updates to the remote data store. However, when the AMF
crashes, all ongoing UE registrations fail, placing undue load
on the newly spawned AMF since all UEs need to retry the
registration procedure again. An alternate design choice would
be for the AMF to checkpoint UE context at the message
granularity. In this approach, the AMF stores the UE context

in the UDSF after processing, and before sending a response
to each request message in the call flow of a procedure. AMF
sends a response to the RAN only after receiving a response
from UDSF that the context has been successfully stored.
This design enhances resilience by allowing the system to
recover from the last checkpoint instead of restarting the whole
procedure. But due to the increased amount of state updates,
the network overhead is higher, resulting in a higher procedure
completion time (PCT). This approach also requires a more
complex implementation because of checkpointing the state of
the UE at every step.

We modified a proprietary production-grade 5G core im-
plementation [4], which used a stateful design, to build out
these variants of the stateless 5G core. The original imple-
mentation used a service-based, multi-threaded architecture in
C++ over an event-driven Linux epoll framework. Figure 3
shows our system architecture with stateless NFs deployed
on a Kubernetes-based environment. We have so far ported
the AMF and AUSF to a scalable, fault-tolerant design,
while porting other NFs is ongoing work. Having outlined
the general approaches to statelessness, we now describe the
specific mechanisms needed for scalability and fault tolerance.

B. Mechanisms for Scalability and Fault Tolerance

We now describe some specific challenges that arise when
we wish to use multiple replicas of a stateless NF (we use
AMF as an example in the discussion below) to enable
horizontal scalability and fault tolerance in the 5G core, and
the mechanisms we propose to address the same.

Retry mechanism. Any fault-tolerant server implementa-
tion requires a robust retry mechanism on the client side. When
an AMF fails during a registration procedure, we require the
UE to retry the procedure once again, so that it can succeed
at the new AMF replica. To this end, we implement two
types of retry mechanisms in the 5G RAN emulator that came
along with our 5G core implementation. When any step of the
registration procedure fails, the UE retries that particular step
again, in the hope that it may succeed. After a certain number
of retries is exceeded, the UE assumes the registration has
failed, and tries to register again. A similar retry mechanism
is implemented at the gNB as well. When an AMF fails,
the connected gNBs detect the failure through timeout of the
SCTP connection and resend NG Setup Requests over a new
SCTP connection, in the hope that they will find new AMF
replicas to associate with. Once the NG Setup is complete
with the new AMF, timed-out UE requests resume from the
exact step of registration that failed (when checkpointing at
message granularity), or from the beginning of a procedure
(when checkpointing at procedure granularity), ensuring the
registration process completes seamlessly.

Saving AMF response. The registration procedure in the
AMF involves the UE’s finite state machine moving through
various stages with each step of the call flow. When the
AMF fails after saving the UE context in the UDSF but
before sending the response to the RAN, or if the response
it sent to the RAN has gotten lost, then we can have a



Fig. 4: AMF failure leading to inconsistent state

situation where the UE and the core have an inconsistent
view of the FSM state of the UE, as shown in Figure 4.
In this example, when the UE retries the failed request, the
new AMF instance fetches the UE context from the UDSF.
However, the retrieved FSM state does not match the expected
FSM state based on the current request from the RAN. This
means that the new AMF is unable to correctly process the
UE’s request, resulting in a registration failure. To solve this
issue, our implementation saves both the UE context and the
response that the AMF will send to the UE atomically in the
UDSF. This ensures that if the AMF fails before responding
to the RAN, the new AMF can fetch both the context and
the last processed response if required. The new AMF can
detect inconsistencies by checking the FSM state and current
request from the RAN; if a mismatch is detected, it retrieves
the last response from the UDSF and sends it to the UE. This
approach maintains consistency in the UE state throughout the
registration procedure, preventing failures due to mismatched
information between UE and AMF. Moreover, it is easier to
implement and results in lower network overhead compared
to two-phase commit and versioning mechanisms.

Fig. 5: AMF UE NGAP ID collision problem
Partitioning NGAP ID space. When an initial UE message

is received at the AMF, each UE is assigned an AMF UE
NGAP ID by the AMF, which is expected to be unique within
the UEs connected to a single AMF, but not across AMFs.
The AMF UE NGAP ID is used as a key to store the UE
context and response in the UDSF by each AMF. Now, when
we have multiple stateless AMF replicas, and each uses its own

numberspace for the AMF UE NGAP ID, then we can have
collisions when UEs having the same identifier get associated
to the same AMF due to failure of some replicas or due to
scaling out the AMF replicas. For example, in Fig. 5, we see
that two UEs with the same identifier get associated with the
same AMF due to a replica failure. This results in overwriting
and incorrect update of the UE state for both UEs, potentially
resulting in registration failures for both. To address this issue,
we partition the AMF UE NGAP ID space across the multiple
AMF replicas. When a new AMF instance is initialized, the
UDSF assigns it a unique range of AMF UE NGAP IDs from
a list it maintains. Once a range is allocated, the UDSF marks
it as used. This eliminates the risk of ID collision, ensuring
that each AMF operates within its own distinct range.

C. Unstructured Data Storage Function (UDSF)

The UDSF provides a flexible API that allows other network
functions to save and retrieve unstructured data. We imple-
mented a subset of the UDSF APIs mentioned in the 3GPP
specifications, which we invoke from our modified stateless
implementations of AMF and AUSF, which are: (i) record
creation API, which provides an endpoint to NFs to store data
like UE context in our case, (ii) record retrieval API, for NFs to
retrieve the stored data. We use Redis as the backing data store
for the UDSF, since it offers low latency which is essential
for systems like 5G core. Redis also offers a straightforward
mechanism for namespacing using key patterns to store and
fetch data efficiently. To support the mechanisms mentioned
in the previous section, we use three distinct Redis key
patterns: {ueContext/id} to store context, {ranReply/id} to
store AMF’s response to RAN and {AmfUeNgapIdRange/id}
to store the AMF UE NGAP ID Range information. Creating
these namespaces helps in optimal key management and allows
scalable data access. We built this UDSF from scratch in
C++ using a multi-threaded, event-driven architecture with
Linux epoll. Additionally, Redis offers high availability and
cluster versions for deployment on Kubernetes, enabling the
replication of stored data across the cluster nodes in either
sharded or non-sharded form. We currently use in-pod redis-
server with UDSF for prototyping, but the above features could
be further used to scale UDSF and make it fault-tolerant.

D. Other Network Functions

The mechanisms that have been used to make the AMF
stateless, scalable, and fault-tolerant can also be applied to
other NFs. We have so far completed our changes in AUSF,
and plan to make SMF stateless in the near future. While the
basic mechanisms (checkpointing UE context at procedure or
message granularity, retries in the downstream, partitioning
numberspaces, etc) remain the same across all NFs, we have
also found that some internal implementations of the NFs need
some change in a few cases. One such example is, when the
AMF requests validation of authentication details of a UE from
the AUSF, the AUSF validates the details, sends a response,
and deletes all associated data for that UE. According to the
standards, AUSF does not need to maintain context beyond this



step. But, if the AMF fails after receiving this response and
before responding to the UE, the UE retries the same request
and a new AMF retries the validation, then the AUSF, lacking
the necessary data, may respond with a failure. Addressing
this issue requires AUSF to delay data deletion for some time
period, perhaps by setting UE context to timeout in the Redis
data store. The call flows of procedures have several such
unintended interactions between NFs, and a complete fault-
tolerant 5G core design must address all such cases.

E. 5G core on Kubernetes

Having described our design of stateless NF implementa-
tions, we now describe how we deploy the NFs on Kubernetes
to bring multiple advantages in terms of scalability, flexibil-
ity, and fault tolerance. Migrating baremetal applications to
the cloud-native architecture has its own challenges. When
deploying stateless NFs on Kubernetes, there are two main
design options: placing all NF containers (except the data store
UDSF) in a single-pod, or deploying each NF container in
separate pods. In the single-pod design, multiple stateless NF
containers like AMF and AUSF are grouped together in a
single-pod. These containers share the same Linux network
namespace, allowing for local communication between the
control plane NFs without any network overhead. This design
has advantages like reduced network latency, and simplified
management (since there is only one pod to manage). But
this approach has limited scaling capabilities and isn’t cost
efficient. Even if only one NF experiences higher traffic,
the entire pod must scale together. Additionally, all NFs are
tightly coupled, and if a pod crashes, all NF containers fail
simultaneously. In the multi-pod design, each NF runs inside
its own individual pod, with Kubernetes managing the com-
munication between them. This design enables independent
scaling of the NFs based on the traffic demand, and faults
are isolated since failure of one NF does not impact the other
NFs. We can also tailor resources to meet the unique needs
of each NF, for example, by giving more resources to AMF
which handles much more control plane operations, thereby
enhancing the system efficiency. But this design has a higher
network overhead since communication between NFs is done
over the network. Further, deployments can get complex since
each pod needs to be managed and orchestrated separately.

We used Docker to build the NF images and orchestrated
them using Kubernetes. We started by first writing the dock-
erfile for each NF. We pushed these images to Docker Hub,
accessible to our Kubernetes cluster. With the cluster set up,
we configured Flannel [37] as the CNI plugin (Container Net-
work Interface) [38] to enable networking between pods and
nodes. YAML files were created to define pod specifications
and services with static IPs and port mappings. To manage
replicas and ensure consistency with the YAML specifications,
we deployed the pods using Kubernetes deployment.

F. Load Balancing

Load balancing is critical in 5G core to efficiently man-
age traffic across multiple replicas of NFs as they scale.

When we deploy multiple replicas of an NF like AMF, we
must distribute traffic evenly to prevent overloading a single
instance. We can classify the traffic in 5G core into two
types: short TCP connections between the control plane’s
NFs and long-lasting SCTP connections between the AMF
and the RAN. Kubernetes services can effectively manage the
short TCP connection, but it is not enough to manage the
long-lasting SCTP connection. So, for SCTP traffic, we have
used LoxiLB [39], which is an open-source cloud-native load
balancer and can be deployed for Kubernetes cluster.

A load balancer can redirect traffic either at layer 4 (by
rewriting packet headers) or at layer 7 (by terminating trans-
port layer connections, and acting as a proxy). We have an
option to deploy LoxiLB in either L4 or L7 mode, and we
compare both options. We employ a round-robin strategy in
LoxiLB in L4 mode, assigning new RAN connections to the
next available AMF replica and redirecting all subsequent
requests to it. LoxiLB uses eBPF [40] for efficient packet
processing and load balancing in the L4 mode. We also de-
ployed LoxiLB in L7 mode, in which LoxiLB, upon receiving
an SCTP connection request from RAN, establishes SCTP
connections with all the AMF replicas. It redirects the NG
Setup from the RAN to these replicas and then forwards the
UE registrations to a specific AMF based on the hash of
the RAN UE NGAP ID. This setup was used to assess the
performance overhead of LoxiLB in L7 mode. In contrast, the
SCTP load balancer component of Aether’s SD-Core takes a
different approach, by maintaining gRPC [41] connections to
a pool of backend AMFs. Upon receiving a request from the
RAN, it selects an AMF and forwards the message over gRPC
to it. The AMF’s response is then relayed back to the RAN
through the SCTP connection by the load balancer. In either
of our designs, note that, since all requests of a particular UE
from a RAN are directed to the same AMF instance in L4 or
L7 mode, the UE context is only retrieved from UDSF when
the data is not locally available or if the connection has shifted
to a new AMF. This approach minimizes latency by avoiding
unnecessary data retrievals in our design.

V. EVALUATION

We now compare the performance of the various design
variants of the scalable, fault-tolerant 5G core we have de-
scribed so far. Our results provide insights on the best practices
of building a cloud-native 5G core on Kubernetes.

Setup. We use two servers, each having 16 Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.60GHz CPUs on board, which can
run 32 threads with hyperthreading enabled, on Linux kernel
version 5.15. We configured the Kubernetes cluster on these
two baremetal servers, one for the control plane and another
for the worker node, using Kubeadm v1.29.5. We conducted
all the experiments, both on baremetal and on Kubernetes, on
these two servers. The worker node runs the RAN emulator
and the network functions (AMF, AUSF, and UDSF). We
have used simplified stubs for other network functions that
are not being evaluated. We generate a closed-loop workload
of UE registrations from emulated UEs in the RAN. In all



experiments, we ensure that all NFs, except for the one
being tested (i.e., AMF), have sufficient CPU and RAM to
avoid becoming performance bottlenecks. We then measure the
average throughput (number of registration requests processed
per second) and procedure completion time (time taken to
finish the registration procedure), over 300 seconds of the test.

Prototypes. We compare the performance of the following
design variants of the 5G core: the completely stateful design
that was present in the original, unmodified 5G core code
we started with; the fully stateless design where each NF
checkpoints state at the UDSF after every procedure, and keeps
a local copy for use as an optimization; and the procedurally
stateless design where state is saved in the UDSF after one
procedure (say, the registration procedure) is completed. We
show only the performance of the initial UE registration
procedure at the AMF in our evaluation, and omit results for
other NFs due to lack of space.

A. Stateful vs Stateless designs
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Fig. 6: Avg. throughput of various 5G core designs
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Fig. 7: Avg. PCT of various 5G core design
In this section, we discuss the performance implications

of the various designs described in the design section. The
Fig. 6 and Fig. 7 shows the average throughput and procedure
completion time of the registration procedure as the number
of user equipments (UEs) varies. We see that the throughput
of the AMF running on a single core saturates with 4–5 UEs
running in closed loop mode with zero think time. In the fully
stateless variant, throughput drops by 75% compared to the
stateful variant due to the overhead of serializing UE context,
deserializing responses to and from UDSF into JSON, and

saving the data in Redis. The fully stateless variant checkpoints
the state three times during the registration procedure, adding
network calls from AMF to UDSF, resulting in a threefold
increase in procedure completion time at saturation. The
metrics for stateful and procedurally stateless variants are
similar because the procedurally stateless AMF saves state
only after receiving the registration complete message from
the RAN, and the RAN doesn’t wait for an AMF response
after sending it. However, the performance will vary for real
scenarios where UEs perform multiple procedures like session
establishment. So the results shown in the Fig. 6 and 7 are the
best possible scenarios for the procedurally stateless variant.
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Fig. 8: Fault tolerance of various 5G core designs
Fig. 8 depicts the fault tolerance of three 5G core variants:

the original stateful design, Aether’s SD-Core, which is pro-
cedurally stateless, and our stateless implementation deployed
on Kubernetes. In an experiment with 100 sequential UE
registration iterations, we simulate a fault at around the 20th
iteration. The stateful variant experiences 80% registration
failures, while Aether’s SD-Core has a 5% failure rate due to
the lack of state-saving for ongoing registrations. Aether’s SD
Core suffers from delays in spawning a new AMF instance and
its discovery by the L7 SCTP load balancer. The fully stateless
implementation achieves 100% successful registrations. By
saving UE state at each step, the state is retrieved from UDSF
when a new AMF spawns, allowing seamless recovery and
completion of the registration process. As the network scales
and AMFs handle millions of UEs with parallel registrations,
the failure rates in procedurally stateless and stateful variants
would increase significantly, while the fully stateless approach
would ensure continuous reliability.

In summary, while the fully stateless 5G core introduces
performance overhead, it offers a crucial tradeoff, i.e., superior
fault tolerance and 100% successful registrations. This ensures
seamless recovery under faults, making it more reliable than
stateful and procedurally stateless variants, especially at scale.
Fig. 8 also shows the time series throughput graph, which
depicts the performance of a fully stateless AMF with faults
induced at two points. Despite the interruptions, the system
demonstrates rapid recovery, resuming request processing and
achieving pre-fault throughput levels within 2 seconds after
each failure. This showcases the resilience and fault-tolerant
capabilities of our fully stateless design. Such quick recovery
ensures minimal impact on overall performance and highlights
the system’s ability to maintain high availability even under
fault conditions. This makes it highly suitable for environments



requiring low downtime and consistent throughput.

B. Baremetal vs Single-Pod vs Multi-Pod variants
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Fig. 9: Avg. throughput across different deployment models
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Fig. 10: Avg. PCT across different deployment models
We evaluate the performance overhead introduced by con-

tainerization and orchestration when deploying a fully stateless
5G core on Kubernetes compared to a bare-metal environment.
In our experiments, we pinned the AMF to a single core and
saturated it to assess both configurations. Fig. 9 and Fig. 10
presents the observed overhead when using Kubernetes as
the orchestration layer. In the bare-metal setup, all network
functions (NFs) communicate directly without any additional
layers of abstraction. In contrast, the Kubernetes deployment
consists of two configurations: a single-pod setup, where AMF
and AUSF are colocated within the same pod, and a multi-
pod setup, where each NF, including RAN, is isolated in its
own pod. UDSF is in a separate pod in both the cases. Our
load testing revealed a 1.5% increase in procedure completion
time (PCT) and a 1.5% decrease in throughput when tran-
sitioning from the bare-metal deployment to the single-pod
Kubernetes setup. We also analyzed the impact of Kubernetes
managed networking, which became evident when comparing
the single-pod and multi-pod configurations. The shift from
single-pod to multi-pod increased PCT by 0.25% and reduced
throughput by 0.25%. This minor difference is attributed to
the network calls to AUSF in the multi-pod setup. Overall,
the overhead introduced by containerization, orchestration, and
intra-cluster networking in Kubernetes is minimal, resulting
in negligible performance degradation. This demonstrates the

viability of Kubernetes for deploying a stateless 5G core with
only marginal impact on system throughput and latency.

C. L4 vs L7 Load Balancing
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Fig. 11: CPU utilization of L4 vs L7 load balancer
To assess the performance differences between L4 and L7

load balancers, we deployed both variants of the LoxiLB load
balancer in Docker containers outside the cluster along with
our fully stateless variant of the 5G core in the Kubernetes
cluster. These load balancers route requests from a RAN
emulator to 2 replicas of our fully stateless AMF over SCTP.
Figure 11 illustrates the performance overhead of the L7 load
balancer compared to its L4 counterpart, measured in terms
of CPU usage at the load balancer. Our evaluation shows that
the L4 load balancer consistently outperforms the L7 in CPU
usage when both AMFs are saturated with UE registration
requests. Specifically, the L7 variant consumes 15% CPU
compared to 5% for the L4, indicating a nearly threefold
increase in overhead due to the additional processing required
for parsing application layer messages and hashing the RAN
UE NGAP ID for AMF redirection. However, we point out that
LoxiLB’s L7 limitation to load balance requests to pods placed
across different nodes restricted our ability to test both modes
of the load balancer at saturation. In conclusion, the significant
CPU overhead associated with the L7 load balancer makes
the L4 load balancer, the more efficient option, particularly in
scenarios requiring large-scale handling of UEs.

VI. CONCLUSION

In this paper we consider the problem of designing a
scalable and fault-tolerant 5G core over the Kubernetes cloud
orchestration platform. We started with a production-grade
stateful implementation of the 5G core, and modified the
NFs to store application state and UE context in an external
Redis-backed UDSF data store, thereby making them stateless.
We then added several mechanisms to make these stateless
NFs scalable and fault-tolerant, and ported these NFs to the
Kubernetes cluster. This paper documents the several design
and implementation decisions we had to make in our work,
and also compares the performance of the various design
choices via experiments on our prototypes. Our results provide
valuable insights to future designers of mobile packet core
architectures, e.g., to understand the tradeoff between per-
formance and fault tolerance when checkpointing application
state in the 5G core NFs, or when deploying on Kubernetes.
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