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Abstract—This paper describes a system for improving user
experience when accessing overloaded web servers. While several
techniques exist today to build high-capacity web servers, little
attention is paid to the fact that servers often crash when
faced with transient overload, causing user experience to degrade
sharply when incoming load exceeds capacity. Existing overload
control mechanisms focus on some form of admission control
to protect the web server from overload. However, all such
techniques result in user requests failing, either due to timing out
or receiving a “service unavailable” message. More importantly,
there is no feedback to the frustrated user about when to retry
again, leading to adhoc retries. This paper describes WebQ, a
system consisting of two web proxies, that together simulate a
virtual queue of web requests, and shape incoming load to match
server capacity. Users accessing a server protected by WebQ
receive a HTTP redirect response specifying a wait time in the
virtual queue, and are automatically redirected to the web server
upon expiration of the wait time. The wait times are calculated
using an estimate of the server’s capacity that is computed by
WebQ. Users in the virtual queue are provided with a secure
cryptographic token, which is checked to guarantee that the user
has waited his prescribed time in the queue. We evaluate the ideas
of WebQ using a real prototype implementation and a simulation
model. Our experiments show that, with WebQ in place, users
experience zero server failures and significantly better response
times from a web server, even when the peak load is several times
the provisioned capacity of the server.

I. INTRODUCTION

The problem of websites “crashing” due to server overload
persists to date, despite huge advances in server technologies.
Some recent examples include the crash of AT&T’s servers
due to simultaneous activations from iPhones in 2011 [5], and
the overload of the U.S. government healthcare website in
2014 [7]. Server crashes can happen even when the website
capacity has been planned well, because websites may
sometimes receive an unexpected peak load that significantly
exceeds capacity (e.g., when a website is “slashdotted”).
Further, even if the peak load can be anticipated, it may be
expensive and impractical to provision a website for peak load
that occurs only for a short period of time. For example, the
online ticketing portal of the Indian Railways is provisioned
to serve a few thousand users a minute. However, for a short
period everyday when a block of last-minute tickets go up for
sale, about a million users visit the website [6]. In such cases,
unless an explicit overload control mechanism is in place
that protects the servers, a crash is nearly certain, resulting in
website unavailability.

Several solutions have been proposed to address the
problem of web server overload (§II). Most overload control
solutions involve some form of traffic policing and admission

control to protect the web servers, and do not aim to ensure
that user requests are eventually served. Requests coming in
during the overload period are simply dropped, and the user
receives some form of a “service unavailable” error message
or his connection times out. It is up to the user then to
retry such a request, which the user does arbitrarily, further
amplifying the load on the server. The end result from the
user’s perspective is a non-deterministic wait time with no
guarantee of eventual service.

This paper presents WebQ, a system to improve user
experience when accessing overloaded web servers. The goal
of WebQ is to ensure that every request to an overloaded
server is eventually served, without the user having to resort
to adhoc retrying. Our solution (§III) consists of two front-end
web proxies, TokenGen and TokenCheck, that together shape
incoming load to match server capacity. New requests coming
to the website first arrive at TokenGen. This proxy computes
a wait time for every request, proportional to the amount
of overload at the server. TokenGen replies to every request
with a HTTP “redirect after timeout” response, that redirects
the user to the website after the wait time. TokenCheck is
an inline web proxy that intercepts and forwards this request
to the web server. The TokenGen proxy also generates a
cryptographic token that can be checked by TokenCheck
to verify that the client did wait its prescribed duration.
Together, the two proxies simulate a “virtual queue” of web
requests to an overloaded web server. The proxies do not
maintain any per-user state, and rely on aggregate statistics
and cryptographic mechanisms to compute and enforce wait
times. This stateless queuing of users makes the proxies
themselves scalable and robust to overload.

WebQ improves user experience by making response
times more predictable, and by eliminating server crashes
that occur due to transient overload. When the web server is
not overloaded, users are immediately redirected to the server
with negligible overhead. During periods of overload, users
are informed of their wait time in the queue, are automatically
redirected to the web server after the wait time expires, and
receive predictable service from the web server once their
turn comes up. All this improvement in user experience is
achieved without modifying the clients or the server. Note
that our solution is complementary to numerous techniques
that increase the capacity of the web server itself, e.g., load
balancing traffic over several replicas. While such techniques
improve the capacity of the server itself, our solution improves
user experience during those times when the incoming load
exceeds server capacity for various reasons.

The ability of WebQ to shape incoming traffic significantly
depends on having a correct estimate of the server capacity.



To this end, TokenGen and TokenCheck monitor the
server’s response time and goodput and run a simple
capacity estimation algorithm (§IV) to dynamically discover
the server’s capacity. Unlike existing server provisioning
algorithms [23], [19], WebQ’s capacity estimation algorithm
treats the server and the service itself as a “black box”. It
does not rely on any measurements at the server, nor does
it require knowledge of customer Service Level Agreements
(SLAs) on response times. Instead, WebQ’s proxies monitor
the average goodput and response time of the server, and
schedule requests to the server at a load level that maximizes
the power ratio (ratio of goodput to response time) of the
server as observed at the proxies. Further, the WebQ proxies
also detect changes in server capacity and adapt to it quickly;
thus our solution works in scenarios where the capacity of the
website might be changing with time. Note that while WebQ
provides a solution to estimate and track server capacity,
it can easily integrate with any other capacity estimation
algorithm or with a manual capacity input from the web
server administrator.

We have prototyped our solution by modifying existing
web proxies (§V). We have also run extensive simulations of
our system using existing application-layer simulators. Our
experiments and simulations (§VI) show that a web server
protected by WebQ can easily handle a peak load that is 10×
its capacity, with 100% of the arriving requests eventually
getting served. Further, after the users wait for a known
duration prescribed by WebQ, subsequent server response
times are up to 20× lower and have low variability.

We summarize the contributions of our work as follows:
• A system to improve user experience when accessing

overloaded web servers. WebQ consists of a pair of
transparent proxies that together implement a virtual
queue of web requests and shape incoming traffic to
match server capacity. WebQ improves user experi-
ence by making response times predictable and by
eliminating server crashes.

• A capacity discovery algorithm that identifies the
optimal operating point of the server by monitoring its
goodput and response times, and adapts automatically
in response to changes in server capacity.

• A prototype implementation, a testbed evaluation, and
a simulation model to validate our ideas.

II. RELATED WORK

Web server technologies have matured significantly in the
past decade. Elson and Howell [12] provide an overview of
several techniques that can be used to handle overload at
a web server, e.g., Content Distribution Networks (CDNs),
load balancing over several replicas, and so on. Our work
is complementary to such techniques. Even the most well-
provisioned servers can face peak load that exceeds capacity,
and WebQ helps web servers deal with this overload gracefully
without compromising on user quality of experience.

Various solutions [21], [14], [13], [20], [22], [11] have
been proposed over the last decade for controlling overload on
web servers by policing incoming load. Some proposals [21],
[13] police incoming TCP SYN packets to limit the number
of connections accepted by the server. PACERS [11] uses
prioritized scheduling to provide bounded server response

times to different classes of requests under overload. A
session based overload control scheme was presented in [10],
where a dynamic weighted fair sharing scheduler is used to
process requests belonging to only those sessions that are
likely to be completed. The proxy-based overload control
scheme in [20] detects overload when it sees the request
arrival rate exceeding the departure rate, and admits new
requests only when the server completes earlier requests.
WebQ is complementary to all such proposals. While the
above systems try to protect the server from overload and
guarantee QoS to the admitted requests, the users that are
not admitted are not given feedback as to when to retry. Our
goal is to improve user experience for those requests that
cannot be served immediately due to overload, by providing
a deterministic wait time and a guarantee of eventual service.

Researchers have also proposed web service architectures
that enable effective overload control. SEDA [22] proposes a
staged event-driven architecture for web service design. This
architecture allows fine-grained rate limiting at each stage of a
multi-tier web service, and enables flexible overload policies.
Several researchers have also considered the problem of
content adaptation (e.g., [8]), where the quality of the content
delivered to the user is reduced to a less resource intensive
one when overload is detected. Our work is complementary
to such ideas. We focus primarily on shaping user traffic,
without assuming any changes to the server architecture or
responses delivered to the users.

Several researchers have studied the problem of estimating
a web server’s capacity. Server capacity estimation is an
integral part of recent research on web server provisioning
([23], [19], [16]) that determines the optimal resources to be
allocated to a server for a given input load level, such that
the end-user SLAs are not violated. However, such systems
rely on instrumentation at the server to measure utilization of
the bottleneck resource, and assume other knowledge about
the server such as the service demands and the response time
cutoff to meet SLAs. On the other hand, WebQ’s capacity
estimation algorithm treats the server as a blackbox and makes
no assumptions about server measurement support. That said,
WebQ can work with any of these capacity estimation methods,
and is therefore complementary to this body of work. The idea
of automatically discovering server capacity by probing the
server’s behavior at various load levels has also been used by
systems that automate server benchmarking [15], [18]. While
the capacity discovery algorithm of WebQ bears some simi-
larities to these approaches, WebQ probes for server capacity
online unlike server benchmarking systems that operate offline.

III. WEBQ DESIGN

A. Setup and Assumptions

Use cases. The goal of WebQ is to improve user
experience when accessing overloaded web servers. Our
solution is particularly useful in the case of multi-tier
application servers that serve dynamic HTTP content in
response to user requests. In such cases, each user request
consumes finite and measurable computational (or other)
resources at the web server and at other tiers (e.g., database
server). For example, consider the case of a travel portal that
lets users check the availability of travel tickets and make
reservations. Servers hosting such requests perform significant



computation for every user request (e.g., computing the lowest
cost schedule across multiple legs of a journey). Therefore,
when offered load exceeds capacity of such a server, the
response time of the server increases, queued-up requests take
longer to complete, causing to server to eventually run out of
resources (e.g., socket descriptors) and turn down new user
requests with a “service unavailable” message.

Our solution is deployed as a pair of transparent
middleboxes between clients and servers, and does not require
modifications to either. During periods of overload, WebQ
makes clients wait for a predetermined amount of time and
shapes incoming traffic to the server, so that clients arrive at
the server at a rate that it can handle. WebQ is only useful
when server overloads are transient, and average incoming
load is below provisioned capacity in the long term. WebQ
allows web servers to be provisioned for average load instead
of peak load, and insulates them from the consequences of
bursty traffic patterns. Note that WebQ does not fully solve
the overload problem when the incoming load always exceeds
server capacity, and can only help delay (but not eliminate)
the need for upgrading server capacity. As such, our work is
complementary to techniques that scale server capacity, which
are more suitable to alleviate persistent overload.

User Acceptance. We assume that users prefer a known
wait time in WebQ’s virtual queue to non-deterministic wait
times, server crashes, and adhoc retrying. Our assumption
is grounded in user studies such as [3] that highlight the
importance of feedback during long periods of waiting.

Deployment. The WebQ proxies can be deployed as a
third party service in front of the server being guarded, or
can be integrated more closely with the server itself. The
functionality of TokenGen can be integrated into reverse
proxies, load balancers, application layer firewalls, or other
middleboxes that vet requests coming to a web server.
TokenCheck performs some simple checks before serving
every incoming request, and this functionality can be easily
integrated with the web server itself. For ease of exposition,
we describe both proxies as separate entities.

We assume that HTTP requests are redirected through
WebQ by the web site designer using techniques like DNS
redirection, much like how some parts of web pages are
redirected to and fetched via CDNs. Note that it is not
necessary for all web requests to pass through WebQ; the
server can choose to redirect only the most resource-intensive
ones. For example, a travel portal can host the landing web
page that collects information about the planned trip from
the user on its regular server farm. Now, after the user fills
up his requirements and hits on the “Submit” button, only
the subsequent computationally intensive web request can
be redirected via WebQ. Note that servers need not commit
to using WebQ at all times as well. Servers can choose
to redirect requests to our system only during periods of
expected overload, e.g., when a travel portal releases a block
of deeply discounted tickets or when a university web site
releases examination results.

Workload. For ease of exposition, some parts of the
paper may assume that all requests to the web server are of
equal hardness, and consume similar resources at the server.
However, our algorithms work even when the workload to the
server consists of different types of requests with different
relative hardness. In such cases, the capacity estimated by

Fig. 1: Architecture of WebQ.

WebQ will implicitly depend on the relative ratio or mix of the
different request types. For example, consider a web server
that receives two types of requests of different hardness, with
their arrival rates in the ratio m:n. Let C be the capacity
estimated by WebQ, using which the proxies allow up to C
requests/sec to the server. Note that the capacity estimate C
implicitly depends on m and n, and would have probably been
lower (higher) if the relative proportion of harder requests
was higher (lower). Therefore, as long as the incoming traffic
to the server adheres to this mix m:n, WebQ’s traffic shaping
will ensure that the server is not overloaded.

When the mix of requests changes with time, WebQ will
perceive changes in mix as a change in server capacity, and
automatically rediscovers the new capacity corresponding
to the new mix. For example, WebQ’s capacity estimation
algorithm may deduce that the server capacity has reduced if
the relative ratio of harder requests increases in the workload.
However, because WebQ’s capacity estimation algorithm
takes a few hundred seconds to converge (§VI-C), we assume
that the relative ratios of different request types in the traffic
changes infrequently. As part of future work, we plan to
extend WebQ to handle the case of rapidly varying traffic mix
by leveraging several existing techniques to determine server
capacity under non-stationary workloads (e.g., [23], [17]).

Overhead. Redirection via WebQ will add an additional
network round-trip time (RTT) to the request completion
time. The processing overhead at the proxies itself should be
negligible (§VI-A), since the proxies do very little beyond
simply redirecting the requests back to the client (when the
server is overloaded) or to the server. WebQ shall be deployed
when the benefit of improved user experience (during transient
overloads) outweighs the overhead of an additional RTT.

B. Architecture

The WebQ system comprises two entities that work
together to simulate a virtual queue: an HTTP proxy server
TokenGen that assigns wait times to users, and an inline
HTTP proxy TokenCheck that forwards user requests to
the web server after the users have waited for the specified



time. Figure 1 shows the architecture of our system. User
requests that are destined to the web server being protected by
WebQ are redirected to TokenGen by the web site designer.
TokenGen computes a wait time for requests based on the
extent of overload at the server (0 if no overload), and returns
a HTTP redirect page to the user that redirects to the web
server after the wait time expires. While WebQ uses the
HTTP redirect mechanism to make web clients wait, our idea
can work with any other mechanism (e.g., a Javascript timer)
that can temporarily stall a user from accessing the server.

When the user is eventually redirected to the website,
the user’s request is intercepted by the TokenCheck inline
proxy, and forwarded to the server. In addition to bridging
the HTTP connections between the client and the server,
TokenCheck also computes statistics about server response
time and goodput, and communicates them to TokenGen
periodically. TokenGen uses this feedback from TokenCheck
to estimate server capacity (§IV), which in turn feeds into
the wait time calculation. Assuming TokenGen calculates
server capacity and wait times correctly, the eventual load at
the TokenCheck proxy and the web server (after users have
waited their prescribed durations) will never exceed the server
capacity, even under overload, guaranteeing good quality of
experience to the end user.

Note that TokenCheck is protected from overload by To-
kenGen’s traffic shaping, much like how the server is protected.
Therefore, it suffices for TokenCheck to handle a load equal
to the server capacity and not much more. Therefore any
techniques used to scale server capacity can be applied to
scale TokenCheck as well. On the other hand, TokenGen
may potentially face a much higher incoming load. However,
note that TokenGen immediately returns a response to every
request, and unlike a traditional inline proxy, does not need
to maintain any client sockets open during the duration of
the client’s interaction with the web server. TokenGen also
does not maintain any per client state beyond aggregate traffic
statistics. As a result, TokenGen is robust to overload, and can
scale to handle a much larger incoming load than the actual
web server. For the purpose of this work, we assume that a
single TokenGen proxy can handle and redirect all incoming
traffic. As part of our ongoing work, we are working on a
distributed horizontally-scalable design of TokenGen, where
multiple TokenGen replicas perform distributed traffic shaping.

C. Token Generation and Verification

A fundamental question still remains: how do we ensure
that the user does not “jump the queue”? For example, the
user (or the user’s browser) can modify the wait time in
the HTTP response from TokenGen, and attempt to access
the server sooner than its rightful turn. WebQ uses simple
cryptographic mechanisms to discourage such behaviors.
TokenGen and TokenCheck share a cryptographic secret key
K during setup. When a user arrives at TokenGen, the proxy
returns a cryptographic token to the user in addition to the
wait time. The token is simply the HMAC (hashed message
authentication code, computed using the shared secret key)
of the user IP address IP, the timestamp TS when the user
checked in at TokenGen, and the wait time w relative to
this current timestamp. This token, along with TS and w, is
embedded in the redirect URL and returned to the client.

When the user arrives at TokenCheck, the proxy extracts
the values of TS, w, and the token from the redirect URL. The
proxy first verifies that the current time matches the sum of
the timestamp of the user at TokenGen TS and the wait time w
prescribed by TokenGen, proving that the user waited exactly
for the prescribed time. To verify the authenticity of TS and w
themselves, the proxy recomputes the HMAC token using the
reported values of IP, TS, and w, and verifies that it matches
with the token presented by the user. If the user did tamper
with TS or w to show up earlier (or later) than his designated
time, the HMAC computed by TokenCheck would not match
that given to the user by TokenGen. Such non-conforming
requests can be dropped by TokenCheck. Note that for the
timestamp checks to work as described above, TokenGen and
TokenCheck should be time-synchronized. Alternatively, the
timestamps can be rounded off to a coarser time granularity
to accommodate time drift, without compromising safety.

Note that the timestamp check at TokenCheck also guards
against potential replay attacks, where a user reuses old tokens
to gain access to the server at a future time. Because the
timestamp check verifies that the user has arrived at exactly his
designated time, a user that tries to reuse the same token in the
future will not be allowed by TokenCheck. It is theoretically
possible for a user to reuse his token to gain access to the
server multiple times in the short period before the next tick
of the timestamp. For example, if timestamps are rounded
off to a second, it is possible for the user to reuse the same
token multiple times within the one-second interval that was
assigned to him for accessing the server. Because TokenGen
and TokenCheck do not keep any per-user or per-request state
for scalability, such an attack is a possibility. However, because
the window of vulnerability is so small (e.g., one second if
timestamps are rounded off to a second), we believe allowing
a small number of such malicious requests is a reasonable
tradeoff for simplicity and scalability of our design.

D. Wait Time Computation in TokenGen

We now describe how TokenGen assigns wait times to
requests. TokenGen periodically estimates the capacity of the
server (§IV). The capacity C is a measure of the request-
processing capability of the web server, and is measured as
the maximum number of requests/sec that the server can
successfully handle. The capacity of the server is used as input
to compute a suitable wait time for arriving requests if the
server is overloaded. The wait time returned to a user indicates
the number of seconds the user has to wait before accessing
the web server. We only assign wait times in units of seconds
(and not milliseconds, for example) for several reasons: (i)
the HTTP refresh header supports redirection after an integer
number of seconds; (ii) a finer granularity of scheduling
is harder to enforce strictly due to network latencies and
other delays beyond our control. From now on, we assume
that the wait time w returned by TokenGen is an integer
and is in units of seconds. However, our design works for
any other granularity of wait time that can be reliably enforced.

TokenGen maintains a long circular array of numbers L,
where L[i] denotes the number of requests that have been
scheduled by WebQ so far to arrive at the web server at a
time i seconds into the future. For example, L[0] denotes
the number of requests that will be reaching the server in
the current second. WebQ can limit the maximum wait time
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Fig. 2: Goodput and response time of a web server with
configured capacity 100 req/s, as a function of offered load.

assigned to a client to some large value (say, based on what is
considered reasonable from a user’s perspective), and the array
L can be sized accordingly. Whenever a user request arrives at
TokenGen, it finds the earliest timeslot in the future that can
accommodate the user, subject to the capacity constraint at
the server. That is, it computes the smallest index i such that
L[i] < C, and assigns the wait time to the user as w = i. It
also increments the count of requests L[w] by one to account
for this user’s arrival in the future. Note that if the incoming
load is less than server capacity, the wait time will work out
to be zero, because L[0] < C always holds. The list L is also
updated every second to shift out the previous second’s entries.

WebQ also tracks server capacity, and adjusts its capacity
estimate from time to time. Changes in server capacity can
lead to transient periods where the wait time assignment
algorithm deviates from the one described above. Consider
the case where TokenGen has scheduled C users each for the
next T > 0 seconds into the future, and is currently assigning
a wait time of T +1 to new requests. At this time, it discovers
that the server capacity has increased, and updates its capacity
estimate to C ′ > C . After this update, the wait time assigned
to new requests will no longer be T + 1, but can be as low
as 0, because L[0] = C < C ′. That is, new users will be
assigned shorter wait times to fill up the newly discovered
server capacity in the near future. As a side effect, users may
not always be served on a first-come-first-serve basis during
the transient period when capacity is being updated.

Let us now consider the case where the server capacity
has reduced and the new capacity estimate C ′ < C. Again,
assume that we have already scheduled C requests per second
to the server for the next T seconds before we discover the
capacity change. Here, we have unwittingly forced the server
into an overloaded situation, by scheduling more requests (C)
than it can handle (C ′) for the next T seconds. As a result,
the C ∗ T requests scheduled in the future will actually take
at least T ′ = C ∗ T/C ′ seconds to complete, with T ′ > T .
Therefore, new requests that arrive at TokenGen after the
capacity reduction should be assigned a wait time of at least
T ′ + 1, and we should not be scheduling any requests to the
server for the duration between T and T ′.

Note that the above discussion has assumed that all requests
to the server are of similar hardness. However, the system will
function correctly even if the incoming traffic has different
request types, as long as the relative proportion of the different
types stays constant or changes slowly with time (§III-A).

IV. CAPACITY ESTIMATION

The effectiveness of WebQ crucially depends on assigning
appropriate wait times to requests at TokenGen, which in
turn depends on knowing the correct capacity C of the web
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server. WebQ estimates server capacity by monitoring the
response times and goodput of the web server, and finds the
optimal operating point of the server that is characterized by
high goodput and low response times. Our capacity estimate
C has an implicit dependence on the mix of the different
types of requests in the incoming traffic (§III-A). If the
mix of requests changes (resulting in the server becoming
capable of processing more or less requests), or if the server
capacity changes due to any other reason (e.g., change in
configuration), our system will detect a change in capacity,
and rediscover capacity. WebQ’s capacity discovery algorithm
takes a few hundred seconds to converge (§VI-C). Therefore,
we assume that server capacity in a WebQ deployment
changes infrequently, not more than once every few tens of
minutes.

Note that the capacity estimation at WebQ does not assume
knowledge of the utilization of the bottleneck resource, service
demands, or customer SLAs for response time, that are used by
other capacity estimation methods (e.g., [23]). The algorithm
only uses as inputs the goodput and average response time
metrics that are easily obtained at the WebQ proxies. That said,
WebQ can work with any other capacity estimation method as
long as the relevant inputs are made available. Alternately, a
web service can explicitly specify the rate at which it intends
to receive requests (based on its own estimate of its capacity),
and WebQ can shape offered load to this specification.

A. Key Idea

It is well known that the performance of a web server,
as measured by its goodput and response time, degrades
significantly when the incoming load is greater than its
capacity. For example, consider a simple web server that is
configured to have a capacity of 100 req/s (see Section VI for
details on the server used in our implementation). Figure 2
shows the average response time and goodput of the server
for different values of offered load. The server was run for 60
seconds at each value of offered load to generate this graph.
We notice that, as the incoming load exceeds capacity, the
goodput plateaus off (and eventually drops) and the response
time increases sharply. Given these observations, it is easy to
see that the power ratio, defined as the ratio of goodput to
response time, attains its maximum value around the server
capacity. Figure 3 shows the power ratio for the same web
server described above, which peaks at a load of around
85 req/s. The peak of the power ratio occurs a little below
the configured server capacity because response times of
the server start to increase due to queuing even before its
configured capacity is reached. We define the true capacity (as
opposed to the configured capacity) of a server as the offered
load (in req/s) that maximizes its power ratio. Our capacity
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discovery algorithm aims to discover this true capacity, and
WebQ shapes incoming traffic to match this capacity in order
to keep response times low.

The capacity discovery algorithm collects samples of
power ratio at various levels of offered load, builds a function
of power ratio vs. offered load in real time, and estimates the
value of offered load that maximizes this function. For the
purpose of capacity estimation, time is divided into epochs of
duration τ . Our algorithm probes the power ratio at a given
value of offered load by scheduling requests using that load
level as the capacity estimate in TokenGen for the duration
of an epoch. That is, a capacity estimate of ci at the start of
epoch i will cause TokenGen to schedule ci requests every
second for the duration of epoch i. Subsequently, TokenGen
computes the power ratio corresponding to the load level
ci using feedback from TokenCheck. By virtue of being an
inline proxy that intercepts all requests to the web server,
TokenCheck can monitor the average HTTP response time
and goodput of all requests. TokenCheck then conveys these
statistics to TokenGen periodically. Using this feedback,
TokenGen computes average response time ri and goodput gi
of the web server in epoch i. Let γi = gi/ri denote the power
ratio over epoch i. The capacity estimation algorithm collects
several such observations of γi by probing different values of
ci in different epochs, and fits a polynomial over the curve of
power ratio vs. incoming load. The capacity is found as the
maximum value of this function. We choose a polynomial of
degree 3 to model the power ratio curve, as this function was
found to work well empirically.

For ease of exposition, we assume that the incoming load
at TokenGen is greater than the capacity of the server, so that
TokenGen is actively shaping traffic, and can increase the
offered load at the server by increasing its capacity estimate
ci. We will relax this constraint later.

Because capacity estimates are revised once every epoch,
the epoch duration should be small to enable convergence to
the correct capacity. However, the capacity discovery algorithm
relies on the average response time of the server over an epoch
duration. Therefore, τ should also be large enough to allow for
a reliable estimate of server response times within an epoch.
We use τ = 8 seconds in our implementation as it worked
well in practice. We leave the auto-tuning of the epoch duration
based on the observed variability of response times (much like
in [15]) to future work.

B. Phases of Capacity Discovery

Now, how do we pick values of offered load ci to probe
in each epoch? The capacity discovery algorithm is divided
into two phases: coarse estimation and fine estimation. The

capacity estimation algorithms starts with a low estimate of
capacity c0 (set to 15 req/s in our case). During the coarse
estimation phase, capacity is increased by a multiplicative
factor α, i.e., we perform ci = αci−1 at the start of
each epoch. A multiplicative increase in capacity estimates
helps us to quickly get close to the true capacity, irrespective
of how low c0 is relative to the true capacity. We use α = 1.15.

After every epoch i in the coarse estimation phase, the
algorithm checks if capacity has been reached as follows.
If the current capacity estimate ci is less than true capacity,
the curve between (c0, ci) will be monotonically increasing.
On the other hand, once our estimated capacity ci crosses
the true capacity, the power ratio will start to drop, resulting
in the peak of the power ratio curve lying in the range
(c0, ci). The coarse estimation algorithm ends as soon as
the peak of the power ratio curve is found in the range
(c0, ci) for an epoch i, indicating that the current capacity
estimate ci has crossed the true capacity. At this point, the
algorithm stops advancing capacity exponentially, and begins
a fine-grained search for the true capacity. Let C̄ denote
the capacity estimate at the end of the coarse estimation phase.

In the subsequent fine estimation phase, the algorithm
linearly probes values around the coarse capacity estimate to
arrive at an accurate value for the true capacity. At the end
of the coarse estimation phase, the offered load to the system
is slightly over the true capacity. Therefore, we begin the
fine capacity estimation by backtracking our current capacity
estimate to a value ci = βC̄ with β < 1. We now start
a fine-grained probing for true capacity by increasing our
capacity estimate linearly from βC̄ in small steps of size
c∆ = δC̄. We choose β = 0.8 and δ = 0.02 in our system.
The algorithm will continue to search for a global maximum
in the current range (c0, ci) after every epoch i, much like in
coarse estimation.

Once the maximum of the power ratio curve is found in the
range (c0, ci), the algorithm could terminate and conclude that
a capacity estimate has been found. However, to guard the al-
gorithm against an incorrect maximum in the power ratio curve
(that may occur before true capacity due to noisy samples
in real systems), the algorithm continues to linearly increase
capacity for Nf (=7 in our case) extra epochs afterwards. If
the maximum of the power ratio curve lies in the range (c0, ci)
for each of the Nf epochs, then the algorithm concludes that
capacity has indeed been found. The capacity estimate C that
maximizes the final power ratio polynomial curve fitted over all
observations is declared as the true capacity. Figure 4 illustrates
how various values of offered load are probed during the coarse
and fine estimation phases (from experiments in §VI-D).

C. Refinements

We now describe two modifications to the algorithm
above that were added for robustness after initial experiments.
First, we note that the server ends up in a transient overload
state at the end of the coarse and fine estimation phases,
because the algorithm lets the offered load overshoot the
true capacity of the server in order to discover a drop in
power ratio. The transient overload can last several epochs
because TokenGen may have scheduled requests at this higher
value of offered load many epochs into the future. Hence,
the system needs a brief cool-down period at the end of
these two phases to recover from overload and stabilize its



response times. Otherwise, the high response times from the
server during this overload period may lead to incorrect power
ratio observations at the beginning of the fine estimation phase.

The transient overload of the server at the end of coarse
estimation is characterized by the fact that the goodput gi of
the server is higher than the capacity estimate ci, after the
capacity estimate has reduced by a factor β. This happens
because TokenGen has scheduled more requests for future
slots as per the higher configured capacity before the drop in
ci. Therefore, at the end of the coarse estimation phase, the
capacity discovery algorithm waits for the server to stabilize
by requiring that the goodput gi be close to the capacity
estimate ci for at least Ns (=2 in our case) consecutive
epochs. A goodput value gi is considered to be close enough
to ci if |gi−ci|gi

< ε, where ε is small (=0.1 in our case). The
observed power ratio samples during this transient phase are
ignored. A similar cool off period will also exist at the end
of fine estimation.

Finally, we note that the above discussion requires that
the offered load in the system is greater than the discovered
server capacity C for the duration of the capacity discovery. To
see why, if the offered load was much below server capacity,
TokenGen would not have been able to schedule more than
C requests to the server, and would not have observed the
reduction in power ratio. Therefore, we modify the algorithm
to perform a simple check on offered load during all phases
of discovery: the capacity discovery algorithm moves forward
(i.e., probes a higher value of offered load) only if the
observed goodput gi is close to the current capacity estimate
ci, where closeness is as defined before. The algorithm with
this modification will automatically pause when offered load
is not high enough, and resume discovery when offered load
goes over the current capacity estimate. Note that no harm is
done due to an incorrect capacity estimate when offered load
is low because the server is not overloaded (by definition) and
WebQ’s traffic shaping is not needed.

D. Detecting Capacity Changes

It is not enough if we discover the capacity of a web
server once. The web server’s capacity can change due to
various reasons: change in the traffic mix, provisioning extra
capacity, failure of one of the server replicas, and so on. A
new capacity must be rediscovered at every such change. One
way is to have the administrator or the server management
module trigger WebQ’s capacity discovery algorithm as
needed. In addition, WebQ also has a mechanism to detect
capacity changes.

When the capacity of the server changes, its power ra-
tio curve also changes, and observations of power ratio in
subsequent epochs will be far away from the original fitted
curve. After capacity discovery completes, WebQ computes the
maximum distance between any power ratio observation and
the fitted curve, and remembers this maximum error observed
during the discovery procedure. If the observed power ratio in
any subsequent epoch is at a distance more than twice this
maximum error, WebQ empirically concludes that capacity
has changed. If observed power ratios are above the curve,
an increase in capacity is inferred, and capacity discovery
is triggered with initial capacity set to the current capacity
estimate. On the other hand, power ratio points below the
fitted curve would indicate a decrease in capacity. In this

case, capacity discovery begins at c0. In both cases, all old
power ratio observations are discarded, and capacity discovery
proceeds as usual. Note that our algorithm can detect capacity
changes only if the change in power ratio is significantly larger
than the noise in the samples during capacity discovery. For
smaller changes in capacity, it is best if capacity discovery is
activated via an external trigger.

V. IMPLEMENTATION

We now describe our prototype implementation. TokenGen
is implemented in two parts: the request scheduling logic
and capacity estimation. The scheduling logic of TokenGen
is implemented as a FastCGI extension [2] to the popular
Apache web server. We chose the FastCGI option of Apache
as it provides ease of implementation without compromising
on performance. The TokenGen FastCGI module has three
running threads. One thread is used to print debug logs
periodically. Another thread communicates with the capacity
estimation module for capacity updates. The main thread is
responsible for assigning wait times.

Every incoming request at the Apache server running on
TokenGen is handed over to the FastCGI module. Apache
also passes on additional context about the request via
environment variables. The main thread in the FastCGI
module then computes the wait time for the request, and
returns the appropriate HTTP response to the client. The
HTTP response contains the meta HTTP “refresh” header, that
automatically redirects the client to the original web server
(via TokenCheck) after the prescribed wait time. The redirect
URL contains the original URL that the client requested from
the application server, along with the following information
embedded in the URL string: the current timestamp, the wait
time relative to the current timestamp, and a HMAC token
that is used to check the authenticity of the reported wait time
(§III-C). The entire logic of TokenGen scheduling is under
800 lines of code.

The capacity estimation part of TokenGen is implemented
as a separate Java module that keeps listening to the response
time and goodput information sent from TokenCheck, and
periodically runs the capacity estimation algorithm. Upon
change of capacity, it communicates the new capacity
estimate to the FastCGI module for scheduling. The capacity
estimation Java module is about 500 lines of code. Note that
the decoupled capacity estimation algorithm makes it possible
to put a better capacity estimation algorithm or plug a stub
that feeds the externally configured values of capacity to the
token generation logic in the FastCGI module.

TokenCheck runs the lighttpd proxy [4]. We modified
the proxy code to intercept every request to the web server.
TokenCheck first strips the timestamp, wait time, and HMAC
token information from the requested URL and verifies that
the user has arrived at his designated time. If the user’s
token checks out, TokenCheck makes a request to the web
server on behalf of the client, and streams the response back
to the client. TokenCheck also has a communication socket
open with the TokenGen Java module. TokenCheck sends
a notification to TokenGen about arrivals and departures of
requests (including the server’s response time for completed
requests), using which TokenGen can calculate the server’s
average response time and goodput. We added about 200



lines of code to lighttpd to implement the above changes.
The two proxies in our implementation share a 128-bit

secret key. The HMAC token is a 128-bit keyed hash (we
use MD5, but any other hash function like SHA-2 can also
be used). Both proxies use OpenSSL libraries to compute and
verify the HMAC token.

VI. EVALUATION

This section presents our evaluation of WebQ. First, we
microbenchmark our prototype and show that the proxies add
negligible overhead (§VI-A). Next, we show that our WebQ
prototype can shape incoming traffic, and significantly improve
user experience (§VI-B). With WebQ in place, the server
response time was up to 20× lower, and very predictable. Our
experiments also show that WebQ can successfully discover
server capacity and adapt to changes in capacity within a
few hundreds of seconds (§VI-C). Finally, we evaluate WebQ
extensively using an application simulator, and show that our
results apply to a wide variety of scenarios that were hard to
create in the lab (§VI-D).

A. Setup and Microbenchmarks

Our experimental setup consists of several simulated web
clients connecting to a web server via the WebQ proxies. We
use several high-end desktop machines and a server-blade for
our experiments – two desktops run our two proxies, one runs
our server, and the server-blade runs our client generator. All
components are connected by high speed LAN that was never
congested in our experiments.

The TokenGen and TokenCheck prototypes (§V) run on
separate 4 core Intel i7 desktop machines with 4GB RAM.
We tested each proxy in isolation, without any backend server
processing, for varying amounts of incoming client load. We
find that our unoptimized implementations of TokenGen and
TokenCheck are capable of handling over 5000 req/sec each,
without any degradation in goodput. The average additional
latency due to processing at TokenGen and TokenCheck is
3 ms and 4 ms per request respectively. We believe that the
proxies will be able to handle a much higher load at a lower
overhead in an optimized production implementation.

Our web server is an Apache installation that runs on
a 4 core Intel i7 desktop machine with 4 GB RAM. Client
requests to the web server trigger a computationally intensive
PHP script that performs integer arithmetic for every request,
simulating CPU-bound backend processing in a multi-tier
application. The server can be configured to have a certain
capacity by suitably adjusting the number of integer operations
performed for each request. Our experiments also require us
to simulate variable capacity at the server. To vary server
capacity, we use a variable number of server replicas, with
the lighttpd proxy in TokenCheck transparently balancing
load between them.

We simulate client load using Apache JMeter [1]. JMeter
clients send requests to the web server at the specified rate
via TokenGen, parse the refresh headers, wait the designated
amount of time, and then issue the request to the web server
via TokenCheck. We run our client generation script on a 20-
core server with 128 GB RAM. While a real user would likely
go away and do other useful work when waiting in WebQ’s
virtual queue, JMeter (and all existing load generators) keeps
consuming resources (e.g., threads, memory) for simulated

clients even during the intermediate waiting period. As a result,
the resource consumption in JMeter was quite high, and it
could not sustain a request rate beyond 100 req/s reliably
even when running on the most powerful machine in our lab.
Therefore, in order to overload the server with this client load
generation setup, we configured our server capacity to around
100 req/s (resulting in a power ratio peak around 80 req/s),
even though our proxies themselves can handle an order of
magnitude higher load. Building a better client load generator
that is “WebQ-aware” and does not hold up client request
threads in the long waiting phase is part of ongoing work.

B. Overload Control with WebQ

We first test the efficacy of WebQ with respect to
smoothing out bursty loads to web servers. We configure
our web server to have a capacity of 100 req/s, leading to
a power ratio peak and true capacity around 80 req/s. After
the capacity discovery converges, we generate an average
load of around 600 req/s from the clients for a duration
of 4 seconds, and a load of 3 request/sec for the next 32
seconds, such that the average load to the server is below
its capacity, but the peak load is much above capacity. The
experiment is run for four such cycles, for a total duration of
around 150 seconds. Figure 5 shows how WebQ evens out
the load to the web server. We can see from the figure that
the incoming load at TokenGen is highly bursty. However,
due to appropriate scheduling of client arrivals by TokenGen,
the load at TokenCheck (and hence at the web server) is
much smoother. Slight fluctuation in the incoming load at
TokenCheck is due to the scheduling behavior of various
client threads at the client load generator, and is representative
of a real deployment where user arrival times may deviate
slightly from the assigned wait times due to network delays
and other such issues.

Figure 6 shows the wait times assigned to clients during
this experiment. We see that the wait times increase steeply
during the burst, forcing clients that arrive during the peak load
to wait for longer periods of time. As the incoming traffic burst
tapers off, we see that the wait times assigned to clients also
become lower. Figure 7 shows the average HTTP response time
recorded by clients for their transaction with the web server (as
reported by the JMeter tool) with and without WebQ. Note that
this response time only counts the time from the moment the
redirected request is made to TokenCheck to the time when the
server response is returned; it does not include the initial wait
time assigned by TokenGen. We see that the server response
time with WebQ is fairly low (under 1 second) and predictable.
That is, once users wait out their time in the virtual queue of
WebQ, they can be assured of good service at the server. On
the other hand, the response time without WebQ can even go
over 20 seconds, and is highly volatile, leading to bad user
experience.

C. Discovering Capacity

We now evaluate WebQ’s server capacity estimation
algorithm. For the experiments in this section, the true server
capacity that must be discovered is 80 req/s, as indicated
by the peak of the power ratio. The offered load from the
clients is maintained at around 100 req/s, and the capacity
estimates at TokenGen are observed. Figure 8 shows the
capacity estimated by WebQ, along with the incoming load
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Fig. 10: Handling a capacity decrease.

at TokenGen and TokenCheck. The figure clearly shows
the coarse estimation phase with multiplicative increase in
capacity, a stabilization phase where capacity discovery halts,
followed by the fine estimation phase with linear increase in
capacity, and the final true capacity being discovered. The
entire capacity discovery process takes about 200 seconds to
converge to the correct capacity estimate.

Next, we evaluate whether WebQ can correctly detect
changes in server capacity and adapt accordingly. We first
increase the capacity of our experimental web server at time
t = 0 from around 40 req/s to around 80 req/s. Figure 9
shows the capacity estimate of WebQ, along with the actual
server capacity, as a function of time. We find that WebQ
quickly identifies that server capacity has increased, executes
the two phase capacity discovery algorithm, and stabilizes at
the higher capacity in under 360 seconds. Note that the time
taken by WebQ to adapt its capacity depends on the absolute
value of change in capacity that must be explored, starting
point of the discovery c0, the rate of capacity increase α, and
epoch size that determines the time interval between capacity
increments. As a result, the actual time taken to converge on
the new capacity may vary between different deployments.

Finally, we study the performance of WebQ when server
capacity reduces. Figure 10 compares the capacity estimate of
WebQ with the true capacity of the server. Once again, we
find that WebQ correctly latches onto the fact that capacity
has reduced, and starts exploring for the server capacity from
a pre-configured low enough initial value of c0 = 15. We find
that WebQ takes around 420 seconds to converge to the correct
capacity in this experiment.

D. WebQ Simulations

Since our experimental setup was limited by the amount
of load we can generate in our load generation setup (§VI-A),
it was not possible to evaluate WebQ on servers with higher
capacities. To overcome this limitation, we modeled and
evaluated WebQ’s algorithms in an application simulator
called PerfCenter [9]. PerfCenter is a discrete-event multi-tier
web application simulator, that considers the intricacies of
hardware effects and other such deployment information to
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Fig. 11: Capacity discovery of WebQ in simulation.

provide realistic performance estimates. We model a web
server protected by the WebQ proxies in this simulator. We
ran extensive simulations in this setup to test our algorithms
and parameter choices. We present two interesting results
from our modeling exercise here.

First, we configured the web server in the simulator to
have a normally distributed response time of mean 0.0001
seconds, roughly corresponding to a configured capacity
of 10000 req/sec. The server was simulated on a hardware
platform with a 40-core CPU. We simulated an offered load
slightly over capacity, and observed the performance of
WebQ’s capacity discovery algorithm. Figure 11 shows the
capacity estimates at TokenGen. Note that the stabilization
between the two phases is too small to see clearly in this
graph. This result shows that WebQ’s capacity discovery
algorithm works well even at high server capacities.

Next, we test WebQ’s traffic shaping mechanism in the
case of a rapidly varying traffic mix. Note that WebQ’s
capacity estimation logic currently does not handle the case
where the mix of requests is rapidly changing (§III-A).
However, if the server capacity is known by other means,
WebQ’s shaping logic can schedule the different types of
requests suitably to match the capacity. We now demonstrate
this scheduling capability of WebQ. For our simulation, we
assume two types of requests, Req1 and Req2, with different
server response time distributions. TokenGen is configured
with the capacity estimate of the server, and the relative
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Fig. 12: Traffic shaping with WebQ for bursty incoming load
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hardness of the request types. As a result, TokenGen can
schedule the appropriate number of requests of each type to
the server, such that the combined load on the server is below
its capacity, even when the mix of the two request types in
the traffic changes dynamically. We now load the simulated
server with an average load of 30000 req/s for 30 seconds,
followed by a quiet period, bringing the average load on
the server within its capacity. Figure 12 shows that resulting
traffic shaping by WebQ, and the smoothed out arrivals to
the server. This result shows that WebQ’s traffic shaping
mechanism is correctly able to handle a workload of rapidly
varying mix of heterogeneous requests.

VII. CONCLUSION AND FUTURE WORK

This paper presents WebQ, a system to improve user
experience with overloaded web servers. WebQ consists of
two proxies, TokenGen and TokenCheck, that together shape
incoming load to match server capacity. While most server
technologies today focus on improving server capacity, and
dropping excess load beyond the capacity, the problem of
poor user experience when offered load exceeds this capacity,
even for brief periods, hasn’t received much attention. Users
today face server crashes and connection timeouts when
accessing overloaded servers, and resort to adhoc retrying to
gain access. In contrast, users of WebQ-protected overloaded
servers are presented with a known wait time in a virtual
queue of the overloaded server, and are guaranteed service
after the wait time expires. With a system like WebQ in place,
servers no longer need to be provisioned to handle transient
peaks in incoming traffic, eventually leading to cost savings
during server provisioning as well.

While our design is a start in the right direction, our work
on WebQ has opened up several exciting avenues for future
work, as identified throughout the paper. We are presently
working on testing WebQ with real servers with capacities of
several thousands of req/sec. We are developing a capacity
estimation algorithm to handle heterogeneous requests and
rapidly varying traffic mix. We are working on a distributed
horizontally-scalable design of TokenGen, where the different
replicas exchange information about their scheduled requests
in order to perform distributed traffic shaping. We are devel-
oping an improved load generator module that addresses the
limitations of existing load generators that were observed in
our experiments. Finally, we are exploring the possibility of
integrating and testing WebQ with a real-life web server.
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