
Lecture Notes for CS347: Operating Systems
Mythili Vutukuru, Department of Computer Science and Engineering, IIT Bombay

3. Process Management in xv6
We begin understanding xv6 process management by looking at the proc data structure (line

2353), that corresponds to the PCB. Especially note the fields corresponding to the kernel stack
pointer, the trap frame (which stores context before handling a trap), and the context structure (which
stores context during a context switch). We will now walk through some of the paths in the code:
interrupt handling (sheets 32–34), new process creation using fork (sheets 24–25), and the workings
of the first init and shell processes (sheets 24–25, sheets 83–88).

3.0: Review of x86 architecture
• The architecture of the underlying CPU defines the instructions and registers available during

process execution. Details of the CPU architecture are useful in understanding the architecture-
dependent parts of an OS. We will review the basics here.

• Several CPU registers are referenced in the discussion of operating system concepts. While the
names and number of registers differ based on the CPU architecture, here are some names of
x86 registers that we will find useful. (Note: this list of registers is by no means exhaustive.)

1. EAX, EBX, ECX, EDX, ESI, and EDI are general purpose registers used to store variables
during computations.

2. The general purpose registers EBP and ESP store the base and top of the current stack
frame.

3. The program counter (PC) is also referred to as EIP (instruction pointer).

4. The segment registers CS, DS, ES, FS, GS, and SS store pointers to various segments
(e.g., code segment, data segment, stack segment) of the process memory.

5. The control registers like CR0 hold control information. For example, the CR3 register
holds the address of the page table of the current running process, which is used to translate
virtual addresses to physical addresses.

• Of these registers, EAX, ECX, and EDX are called caller-save registers, and the rest (EBX,
ESI, EDI, ESP, EBP, EIP) are callee-save registers. The callee-save registers must be preserved
across function calls and context switches. Suppose an executing process pushes a new stack
frame onto a stack during a function call, or the CPU moves away to another process. When the
function call returns, or the CPU is switched back to the process, the callee-save registers must
have the same values as before the event. The ESP register should be pointing to the old stack
as before, and EIP should contain the return address from where the process resumes execution.
The EAX register is used to pass arguments and return values. The caller save registers may
have changed, and no assumptions would be made of them. This convention is followed by
compilers and operating systems.
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3.1 Handling Interrupts
• Interrupts are assigned unique numbers (called IRQ) on every machine (all system calls get

the same IRQ). The interrupt descriptor table (IDT) stores information on what to do for every
interrupt number, and is setup during initialization (line 3317). The IDT entries for all interrupts
point to a generic function to handle all traps (line 3254) that we will examine soon.

• When an interrupt / trap / system call occurs in xv6, the interrupting hardware causes the pro-
cessor to execute the int instruction, with a specific interrupt number (IRQ) as argument. This
special instruction moves the CPU to kernel mode (if it was in user mode previously). The
CPU has a task state segment for the current running task, that lets the CPU find the kernel
stack for the current process and switch to it. That is, the ESP moves from the old stack (user
or kernel) to the kernel stack of the process. As part of the execution of the int instruction,
the CPU also saves some registers on the kernel stack (pointers to the old code segment, stack
segment, program counter etc.), which will eventually form a part of the trap frame. Next, the
CPU fetches the IDT entry corresponding to the interrupt number, which has a pointer to the
interrupt handler. Now, the control is transferred to the kernel, and the CPU starts executing the
kernel code that is responsible for handling interrupts. (Note that this switch to the kernel code
segment and kernel stack need not happen if the process was already in kernel mode at the time
the interrupt occurred.)

• It is important to note that the change in EIP (from user code to the kernel code of interrupt
handler) and the change in ESP (from whatever was the old user stack to the kernel stack) must
necessarily happen as part of the hardware CPU instruction, and cannot happen once the kernel
starts to run (because the kernel can start executing only on the kernel stack and once the EIP
points to its code). So it is imperative that some part of the trap handling should be implemented
as part of the hardware logic of the int instruction.

• The kernel code pointed at by the IDT entry (sheet 32) pushes the interrupt number onto the
stack (e.g., line 3233), and completes saving various CPU registers (lines 3256-3260), with
the result that the kernel stack now contains a trap frame (line 0602). Note that the registers
that would have changed by the time the kernel code has started to run (EIP, ESP etc.) are
saved by the CPU hardware instruction, while the registers that would not have changed since
the user execution can be saved by the kernel. The trap frame serves two purposes: it saves
the execution context that existed just before the trap (so that the process can resume where it
left off), and it provides arguments to handle the trap (e.g., interrupt number). In addition to
creating a trap frame, the kernel sets up various segment registers to point to the correct code
(lines 3263-3268). Then the stack pointer (which is also a pointer to the trap frame, since the
top of the stack is the trap frame) is pushed onto the stack, and the generic function to handle
all traps (line 3350) is executed. The trap frame is an argument to this function. This function
looks at the number of the interrupt in the trap frame, and executes the corresponding action.
For example, if it is a system call, the corresponding system call function is executed.

• After trap returns at trapret, (line 3277), the registers that were pushed onto the stack are
popped (by the OS in sheet 32, and by the CPU using the iret instruction). Thus the context
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of the process prior to the interrupt is restored, and the process can resume execution.

• If the interrupt was a timer interrupt, the trap function tries to yield the CPU to another process
(line 3424). If the scheduler does decide to context switch, the return from trap does not happen
right away. Instead, the kernel context of the process is pushed onto the kernel stack by the
code that does a context switch (we will read it later), and another process starts executing. The
return from trap happens after this process gets the CPU again.

• Note that if the trap handled by a process was an interrupt, it could have lead to some blocked
processes being unblocked (e.g., some process waiting for disk data). However, note that the
process that serviced the interrupt to unblock a process does not immediately switch to the
unblocked process. Instead, it continues execution and gives up the CPU upon a timer interrupt
or when it blocks itself. It is important to note that unblocked processes do not run right away,
and will wait in the ready state to be scheduled by the scheduler.

• The contents of the kernel stack are key to understanding the workings of xv6. When
servicing an interrupt, the kernel stack has the trap frame. When the process is switched out by
the scheduler after servicing an interrupt, the kernel stack has the trap frame, followed by the
process context that is written during the context switch.

• Interrupt handling in most Unix systems is conceptually similar, though more complicated. For
example, in Linux, interrupt handling is split into two parts: every interrupt handler has a top
half and a bottom half. The top half consists of the basic necessities that must be performed on
receiving an interrupt (e.g., copy packets from the network card’s memory to kernel memory),
while the bottom half that is executed at a later time does the not-so-time-critical tasks (e.g.,
TCP/IP processing). Linux also has a separate interrupt context and associated stack that the
kernel uses while servicing interrupts, instead of running on the kernel stack of the interrupted
process itself.
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3.2 Process creation
• When a process calls fork, the generic trap handling function calls the specific system call fork

function (line 2554). Fork calls the allocproc function (line 2455) to allocate an unused proc
data structure.

• The allocproc function creates a new process data structure, and allocates a new kernel stack.
On the kernel stack of a new process, it pushes a trap frame and a context structure. The fork
function copies the parent’s trap frame onto the child’s trap frame (line 2572). As a result, both
child and the parent return to the same point in the program, right after the fork system call. The
only difference is that the fork function zeroes out the EAX register in the child’s trap frame
(line 2575), which is the return value from fork, causing the child to return with the value 0. On
the other hand, the parent returns with the pid of the child.

• In addition to the trap frame, the child’s kernel stack also has the context data structure. Nor-
mally, processes have this context data structure pushed onto the kernel stack when they are
being switched out, so that this data structure can be used to restore context when the process
has to resume again. For a new process, this context structure is pushed onto the stack by al-
locproc, so that the scheduler can start scheduling this new process like any other process. The
instruction pointer in this (somewhat artificially created) context data structure is set (line 2491)
to point to a piece of code called forkret, which is where this process starts executing when
the scheduler swaps it in. The function forkret mainly calls trapret (and does a few other
things we’ll see later). So, when the child process resumes, it also starts executing the code
corresponding to the return from a trap, much like its parent. This is the reason why the child
process returns to exactly same instruction after the fork system call, much like the parent, with
only a different return value.

• Memory management functions like copying the user space memory image, setting up separate
page tables, and other initializations are also done by fork. We will study these later.
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3.3 Boot procedure
• The first part of the boot process concerns itself with setting up the kernel code in memory, set-

ting up suitable page tables to translate the kernel’s memory addresses, and initializing devices
(sheet 12). After the kernel starts running, it starts setting up user processes, starting with the
first init process in the userinit function (line 2502).

• To create the first process, the allocproc function is used to allocate a proc structure, much like
in fork. Next, the trap frame of this child process is hand-created (lines 2514-2520) to look like
the process encountered a trap right on the first instruction in its memory (i.e., the EIP saved in
the trap frame is address 0). As a result, when this process executes, its context is restored from
the trap frame, and it starts executing at logical address 0. The userinit function would have set
up the page table of the new process, and loaded the “/init” binary at logical address 0. So the
CPU starts executing the main function of “/init” (sheet 83).

• The init process sets up the first three file descriptors (stdin, stdout, stderr), and all point to the
console. All subsequent processes that are spawned inherit these descriptors. Next, it forks a
child, and exec’s the shell executable in the child. While the child runs the shell (and forks
various other processes), the parent waits and reaps zombies.

• The shell program (sheets 83–88, main function at line 8501) gets the user’s input, parses it into
a command (parsecmd at line 8718), and runs it (runcmd at line 8406). For commands that
involve multiple sub-commands (e.g., list of commands or pipes), new children are forked and
the function runcmd is called recursively for each subcommand. The simplest subcommands
will eventually call exec when the recursion terminates. Also note the complex manipulations
on file descriptors in the pipe command (line 8450).
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