
Lecture Notes for CS347: Operating Systems
Mythili Vutukuru, Department of Computer Science and Engineering, IIT Bombay

5. Process Scheduling

5.1 Basics of scheduling
• Process scheduling is used to timeshare a processor amongst multiple processes that are ready

to run, enabling concurrent execution of several processes. It is one of the central mechanisms
that enables multiprogramming and efficiency.

• When is a scheduler invoked? In a non-preemptive operating system, a scheduling decision
occurs only when the currently running process blocks, or terminates. In a preemptive operat-
ing system, a scheduling decision can be made at other times as well, e.g., when a system call
or interrupt handling completes, or when an event that causes a process to unblock occurs. The
kernel may also choose to invoke the scheduler at any other point in the kernel-mode execution
of a process. Note that all system calls or switches to kernel mode from user mode do not result
in calls to the scheduler and a subsequent context switch. For example, if an interrupt occurs
while a process is running, it is perfectly possible for the process to service the interrupt and go
back to user mode. A transition to kernel mode is a necessary but not sufficient condition for a
context switch.

• The classification of preemptive vs. non-preemptive can apply to the kernel as well. A ker-
nel can choose to not preempt itself. That is, it can turn off interrupts while in kernel mode
(while continuing to preempt userspace processes). However, such kernel designs tend not to
be responsive to interrupts, and cannot handle real-time services. Therefore, most modern ker-
nels are preemptible, i.e., their execution can be safely interrupted without compromising the
integrity of shared data structures, except when the kernel explicitly turns off preemption (e.g.,
while holding a spinlock).

• When the scheduler is invoked, it must pick one of the several ready processes to run. A
scheduling policy specifies how a process is picked. The scheduling policy also determines
the data structure that is used to store the list of ready processes (or PCBs). Different schedul-
ing policies have different goals. Some may want to support fast response time for interactive
processes. Some may want to maximize the efficiency and throughput of the CPU and I/O de-
vices. Some may want to maximize fairness across processes. Different operating systems have
different goals, and may end up with different scheduling policies in their implementations.
Some operating systems let users configure priorities for processes that can help influence the
scheduling decision.

• Picking a process to run is not enough: the scheduler must actually perform the work required
for the context switch. A context switch is typically done as follows, by a piece of code called
the dispatcher. When a process (in kernel mode) invokes the scheduler, the context of the
running process (its CPU registers, program counter, virtual memory information, and so on)

1



is saved. Once the scheduler runs its algorithm to pick a process to execute, the context of the
new process is loaded, so that the new process can resume execution where it left off. Note that
a context switch happens from the kernel mode of one process to the kernel mode of another. A
process in user mode must first enter kernel mode before a context switch. Similarly, a newly
switched in process will eventually move back to user mode after the context switch. The
dispatcher itself deals with switching between kernel modes of processes.

• Where is a process context saved during a context switch? The context of a process is typically
saved on the kernel stack of the process, which is in turn accessible from the PCB by the
scheduler.

• On which stack, and in which context, does the scheduler run? This answer depends on the
implementation of the operating system. The scheduler could just be another piece of kernel
code invoked by a process in kernel mode, so it could run on the kernel stack of the invoking
process itself. Alternately, there could be a separate per-CPU scheduler thread, with its own
context and stack. In this case, during a context switch, a switch first happens from process
context to scheduler context, and then from scheduler context to the new process context. The
scheduler stack saves the scheduler context (the CPU registers and other state of the scheduler)
between its invocations.

• An undesirable interaction of locks and scheduling is a phenomenon called priority inversion.
Consider three processes L, M, H with low, medium and high priorities of scheduling respec-
tively. Suppose L holds a lock, but is frequently preempted by M. Now, H is waiting for the lock
that L holds. So, in effect, the execution of H is hampered by the execution of M, which violates
the fact that H has a higher priority than M. Several solutions exist to avoid this problem. For
example, the OS scheduler could temporarily elevate the priority of L to that of H, considering
the fact that L holds a lock H needs. Priority inversion also does not occur in systems with only
two priority levels (because H could never be ready to run and preempt L when L is running
with the lock, enabling L to run to completion quickly without preemption and release the lock).

2



5.2 Scheduling Policies
• The simplest scheduling policy is the First-Come-First-Serve (FCFS) policy. Every process

that is ready to run is placed at the end of a ready queue, and the scheduler goes over each
process and runs it until it finishes or gives up the CPU voluntarily (i.e., blocks). This policy
usually leads to longer average waiting times, e.g., when a lot of short processes get stuck in
the queue behind a long one.

• A preemptible version of FCFS is the Round Robin (RR) policy. Here, the scheduler runs
every process for a certain time quantum or slice, and moves on to the next process in the
queue once the slice is finished. The performance of the RR algorithm heavily depends on the
size of the quantum. Very small slices lead to good response times, but waste a lot of CPU
cycles on context switching.

• In the Shortest Job First (SJF) policy, the process with the smallest execution time in the
ready queue is picked for execution. This policy is provably optimal, achieving the lowest
average wait time. However, predicting the execution time of a process based on past sizes of
its CPU bursts is somewhat inaccurate, hence this policy is somewhat impractical to implement.
A preemptive version of this policy is called the shortest remaining time first policy. Under
this policy, when a new process arrives with a shorter execution time than that of the currently
running process, the running process is preempted in favor of the new process. A heap-like data
structure is more suited to storing the list of ready processes with such policies.

• With priority scheduling, processes are assigned a numerical priority, and the highest priority
processes are scheduled before the lower priority ones. SJF is a special case of priority schedul-
ing, where the priority is inversely proportional to the run time. Priority scheduling can be
preemptive or non-preemptive. Priority can be defined by the user, or can be internally arrived
at by the kernel. For example, it makes sense to prioritize I/O-bound processes over CPU-bound
processes, in order to fully utilize the I/O devices. A potential problem with this policy is the
starvation of low priority processes, which can be fixed by increasing the priority of processes
as they wait longer.

• In multilevel queue scheduling, processes are placed in multiple queues, each corresponding
do a different class (e.g., foreground processes, background processes, interactive processes),
each with a different priority. The scheduler then selects a class to schedule from, and a process
from the class using any of the earlier policies. The multilevel queue structure can also be
adaptive, i.e., processes can move across classes based on their behavior.

• The policies implemented in real operating systems are often complex, and are a mashup of
many of the simple policies discussed above. Linux maintains processes in different scheduler
classes with varying priority. Each scheduler class can have its own scheduling policy. The
default class with normal priority uses the Completely Fair Scheduler (CFS) policy. CFS tries
to give each process its fair share of the scheduler. That is, with N processes, each should get
1/N -th of the processor time. In fact, CFS uses “nice” values set by users as weights, and runs
a weighted fair sharing scheduler. That is, a process with weight wi should get a fraction wi∑

wi

of the total run time.

3



This idea is implemented by maintaining a virtual run time counter of each process in a red-
black tree. Think of time as divided into rounds, where each round goes over all processes
once, giving each process one slot (or a number proportional to their weight) in each round. The
virtual run time can be thought of as the number of such rounds that a process has completed
so far. The scheduler does not do a strict round-robin to realize this idea of rounds. Instead,
when a process runs for a while and comes to the scheduler, the scheduler simply computes its
virtual run time based on its actual run time. Since our goal is to make sure that all processes
run equally in all rounds, the scheduling decision boils down to extracting the process with
the lowest virtual run time (i.e., one that has fallen behind and has run for the least number
of rounds), and schedule it. Thus, every time the scheduler is invoked, CFS simply picks the
process with the smallest virtual run time. In a red-black tree, this operation is O(1). Inserting
a new process into a red-black tree is, however, O(log N) in the number of runnable processes.

Now, how is the virtual run time calculated? The virtual run time is calculated from the actual
run time, adjusting for process priority and the number of other processes in the system. For
example, for the same actual run time, the virtual run time of a higher priority process will
be lower. That is, it would appear that the process has run for fewer rounds, causing it to
be scheduled often. Similarly, for the same actual run time, the virtual run time may appear
higher when there are more runnable processes in the system and the fair share goes down.
Linux preserves the virtual run time of processes even when they block, so that a process that
has blocked for a long time can reclaim its fair share of the CPU when it becomes ready to
run. Linux also enforces a maximum executable time for a process, based on how many other
processes there are and how long a process would want to wait, and preempts the running
process upon the expiry of the maximum time.

4



5.3 Scheduling in multiprocessor systems
• Computer systems with more than one processor are referred to as symmetric multiprocessor

(SMP) systems. These processors can be separate CPUs assembled together, or separate cores
on the same CPU. Further, a core can have multiple hardware threads of execution to fully
utilize the CPU while waiting to fetch data from memory. Process scheduling must efficiently
schedule processes or kernel threads across all these processing entities.

• When a process runs on different processors at different times, the benefits of cache locality
might be lost. To avoid this performance penalty, most SMP systems try to schedule a process
onto the same processor and avoid migrating it. This property is called processor affinity.

• All processes in an SMP system can share a common data structure of ready processes, or each
can have a separate list and schedule independently. Load balancing across processors becomes
easy with a common queue. Otherwise, processes may have to be migrated across processor
queues to balance load. However, a common queue of ready processes increases contention
because all schedulers have to lock to access the shared list of processes.

• All memory access is not equal in a multiprocessor system. Accessing memory that is closer
to the processor leads to lower access times and hence better performance. This property is
called Non Uniform Memory Access (NUMA). NUMA-aware schedulers take this aspect into
account when scheduling processes onto processors.

5


