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6. Scheduling and Synchronization in xv6

6.1 Locks and (equivalents of) conditional variables
• Locks (i.e., spinlocks) in xv6 are implemented using the xchg atomic instruction. The function

to acquire a lock (line 1574) disables all interrupts, and the function that releases the lock (line
1602) re-enables them.

• xv6 provides sleep (line 2803) and wakeup (line 2864) functions, that are equivalent to the
wait and signal functions of a conditional variable. The sleep and wakeup functions must be
invoked with a lock that ensures that the sleep and wakeup procedures are completed atomically.
A process that wishes to block on a condition calls sleep(chan, lock), where chan is
any opaque handle, and lock is any lock being used by the code that calls sleep/wakeup.
The sleep function releases the lock the process came with, and acquires a specific lock that
protects the scheduler’s process list (ptable.lock), so that it can make changes to the state
of the process and invoke the scheduler (line 2825). Note that the function checks that the lock
provided to it is not this ptable.lock to avoid locking it twice. All calls to the scheduler
should be made with this ptable.lock held, so that the scheduler’s updating of the process
list can happen without race conditions.

• Once the sleep function calls the scheduler, it is context switched out. The control returns
back to this line (of calling the scheduler) once the process has been woken up and context
switched in by the scheduler again, with the ptable.lock held. At that time, the sleep
function releases this special lock, reacquires the original lock, and returns back in the woken
up process. Note that the sleep function holds at least one of the two locks—the lock given to
it by the caller, or the ptable.lock—at any point of time, so that no other process can run
wakeup while sleep is executing, because a process will lock one or both of these locks while
calling wakeup. (Understand why lines 2818 and 2819 can’t be flipped.)

• A process that makes the condition true will invoke wakeup(chan) while it holds the lock.
The wakeup call makes all waiting processes runnable, so it is indeed equivalent to the signal
broadcast function of pthreads API. Note that a call to wakeup does not actually context
switch to the woken up processes. Once wakeup makes the processes runnable, these processes
can actually run when the scheduler is invoked at a later time.

• xv6 does not export the sleep and wakeup functionality to userspace processes, but makes use of
it internally at several places within its code. For example, the implementation of pipes (sheet
65) clearly maps to the producer-consumer problem with bounded buffer, and the implementa-
tion uses locks and conditional variables to synchronize between the pipe writer and pipe reader
processes.
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6.2 Scheduler and context switching
• xv6 uses the following names for process states (line 2350): UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE. The proc structures are all stored in a linked list.

• Every CPU has a scheduler thread that calls the scheduler function (line 2708) at the start,
and loops in it forever. The job of the scheduler function is to look through the list of processes,
find a runnable process, set its state to RUNNING, and switch to the process.

• All actions on the list of processes are protected by ptable.lock. Any process that wishes
to change this data structure must hold the lock, to avoid race conditions. What happens if the
lock is not held? It is possible that two CPUs find a process to be runnable, and switch it to
running state simultaneously, causing one process to run at two places. So, all actions of the
scheduler function are always done with the lock held.

• Every process has a context structure on its stack (line 2343), that stores the values of the
CPU registers that must be saved during a context switch. The registers that are saved as part of
the context include the EIP (so that execution can resume at the instruction where it stopped),
ESP (so that execution can continue on the stack where it left off), and a few other general
purpose registers. To switch the CPU from the current running process P1 to another process
P2, the registers of P1 are saved in its context on its stack, and the registers of P2 are reloaded
from its context (that would have been saved in the past when P2 was switched out). Now,
when P1 must be resumed again, its registers are reloaded from its context, and it can resume
execution where it left off.

• The swtch function (line 2950) does the job of switching between two contexts, and old one
and a new one. The step of pushing registers into the old stack is exactly similar to the step
of restoring registers from the new stack, because the new stack was also created by swtch
at an earlier time. The only time when the context structure is not pushed by swtch is
when a process is created for the first time. For a new process, allocproc writes the context
onto the new kernel stack (lines 2488-2491), which will be loaded into the CPU registers by
swtch when the process executes for the first time. All new processes start at forkret,
so allocproc writes this address into the EIP of the context it is creating. Except in this
case of a new process, the EIP stored in context is always the address at which the running
process invoked swtch, and it resumes at the same point at a later time. Note that swtch
does not explicitly store the EIP to point to the address of the swtch statement, but the EIP is
automatically stored on the stack as part of making the function call to swtch.

• In xv6, the scheduler runs as a separate thread with its own stack. Therefore, context switches
happen from the kernel mode of a running process to the scheduler thread, and from the sched-
uler thread to the new process it has identified. (Other operating systems can switch directly
between kernel modes of two processes as well.) As a result, the swtch function is called at
two places: by the scheduler (line 2728) to switch from the scheduler thread to a new process,
and by a running process that wishes to give up the CPU in the function sched (line 2766).
A running process always gives up the CPU at this call to swtch in line 2766, and always

2



resumes execution at this point at a later time. The only exception is a process running for the
first time, that never would have called swtch at line 2766, and hence never resumes from
there.

• A process that wishes to relinquish the CPU calls the function sched. This function triggers a
context switch, and when the process is switched back in at a later time, it resumes execution
again in sched itself. Thus a call to sched freezes the execution of a process temporarily.
When does a process relinquish its CPU in this fashion? (i) When a timer interrupt occurs and
it is deemed that the process has run for too long, the trap function calls yield, which in turn
calls sched (line 2776). (ii) When a process terminates itself using exit, it calls sched
one last time to give up the CPU (line 2641). (iii) When a process has to block for an event
and sleep, it calls sched to give up the CPU (line 2825). The function sched simply checks
various conditions, and calls swtch to switch to the scheduler thread.

• Any function that calls sched must do so with the ptable.lock held. This lock is held all
during the context switch. During a context switch from P1 to P2, P1 locks ptable.lock,
calls sched, which switches to the scheduler thread, which again switches to process P2. When
process P2 returns from sched, it releases the lock. For example, you can see the lock and
release calls before and after the call to sched in yield, sleep, and exit. Note that the
function forkret also releases the lock for a process that is executed for the first time, since a new
process does not return in sched. Typically, a process that locks also does the corresponding
unlock, except during a context switch when a lock is acquired by one process and released by
the other.

• Note that all interrupts are disabled when any lock is held in xv6, so all interrupts are dis-
abled during a context switch. If the scheduler finds no process to run, it periodically releases
ptable.lock, re-enables interrupts, and checks for a runnable process again.
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6.3 Implementation of sleep, wakeup, wait, exit
• With a knowledge of how scheduling works, it may be worth revisiting the sleep and wakeup

functions (sheet 28), especially noting the subtleties around locks. The sleep function (line
2803) must eventually call sched to give up the CPU, so it must acquire ptable.lock.
The function first checks that the lock held already is not ptable.lock to avoid deadlocks,
and releases the lock given to it after acquiring ptable.lock. Is it OK to release the lock
given to sleep before actually calling sched and going to sleep? Yes it is, because wakeup also
requires ptable.lock, so there is no way a wakeup call can run while ptable.lock is
held. Is it OK to release the lock given to sleep before acquiring ptable.lock? No, it is not,
as wakeup may be invoked in the interim when no lock is held.

• When a parent calls wait, the wait function (line 2653) acquires ptable.lock, and looks
over all processes to find any of its zombie children. If none is found, it calls sleep. Note that the
lock provided to sleep in this case is also ptable.lock, so sleep must not attempt to re-lock
it again. When a child calls exit (line 2604), it acquires ptable.lock, and wakes up its
parent. Note that the exit function does not actually free up the memory of the process. Instead,
the process simply marks itself as a zombie, and relinquishes the CPU by calling sched. When
the parent wakes up in wait, it does the job of cleaning up its zombie child, and frees up the
memory of the process. The wait and exit system calls provide a good use case of the sleep and
wakeup functions.
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