
CS347: Operating Systems

Problem Set 2: Solutions

1. (a) Semaphores variables:

pt_waiting = 0
treatment_done = 0
doc_avlbl = 1

(b) Patient process:

down(doc_avlbl)
consultDoctor()
up(pt_waiting)
down(treatment_done)
noteTreatment()
up(doc_avlbl)

(c) Doctor:

while(1) {
down(pt_waiting)
treatPatient()
up(treatment_done)
}

2. (a) Producer:

int produced = produceNext();
shptr->field1=produced;
shptr->field2 = 1; //indicating ready
while(shptr->field2 == 1); //do nothing

(b) Consumer:

while(shptr->field2 == 0); //do nothing
consumed=shptr->field1;
consumeNext(consumed);
shptr->field2 = 0; //indicating done

1

3. sem lock = 1; sem writer_can_enter = 1; int readCount = 0;

readLock:
down(lock)
readCount++
if(readCount ==1)
down(writer_can_enter) //don’t coexist with a writer

up(lock)

readUnlock:
down(lock)
readCount--
if(readCount == 0)

up(writer_can_enter)
up(lock)

writeLock:
down(writer_can_enter)

writeUnlock:
up(writer_can_enter)

2

4. (a) Read lock

lock(mutex)
while(writer_present || writers_waiting > 0)

wait(reader_can_enter,mutex)
readcount++
unlock(mutex)

(b) Read unlock

lock(mutex)
readcount--
if(readcount==0)

signal(writer_can_enter)
unlock(mutex)

(c) Write lock

lock(mutex)
writer_waiting++
while(readcount > 0 || writer_present)

wait(writer_can_enter, mutex)
writer_waiting--
writer_present = true
unlock(mutex)

(d) Write unlock

lock(mutex)
writer_present = false
if(writer_waiting==0)

signal(reader_can_enter)
else

signal(writer_can_enter)

3

5. The accounts must be locked in order of their account numbers. Otherwise, a transfer from account
X to Y and a parallel transfer from Y to X may acquire locks on X and Y in different orders and
end up in a deadlock.

struct account *lower = (from->accountnum < to->accountnum)?from:to;
struct account *higher = (from->accountnum < to->accountnum)?to:from;
dolock(&(lower->lock));
dolock(&(higher->lock));

from->balance -= amount;
to->balance += amount;

unlock(&(lower->lock));
unlock(&(higher->lock));

6. If one acquires multiple spinlocks (say, while serving nested interrupts, or for some other reason),
interrupts should be enabled only after locks have been released. Therefore, the push and pop op-
erations capture how many times interrupts have been disabled, so that interrupts can be reenabled
only after all such operations have been completed.

7. No, this design can have starvation. To fix it, keep a pointer to where the wakeup function stopped
last time, and continue from there on the next call to wakeup.

8. One possible place is the scheduler code itself: while going over the list of processes, it can
identify and clean up zombies. Note that the cleanup cannot happen in the exit code itself, as the
process memory must be around till it invokes the scheduler.

9. Sleep continues to hold ptable.lock even after releasing the lock it was given. And wakeup requires
ptable.lock. Therefore, wakeup cannot execute concurrently with sleep.

10. If marked runnable, another CPU could find this process runnable and start executing it. One
process cannot run on two cores in parallel.

11. It releases ptable.lock and preserves the atomicity of the context switch.

12. (a) Cache locality. No contention for the common queue.

(b) Better load balancing across cores.

13. A

14. BC

15. D

16. B

4

