(CS347: Operating Systems

Problem Set 2

1. Consider a clinic with one doctor and a very large waiting room (of infinite capacity). Any patient
entering the clinic will wait in the waiting room until the doctor is free to see her. Similarly, the
the doctor also waits for a patient to arrive to treat. All communication between the patients and
the doctor happens via a shared memory buffer. Any of the several patient processes, or the doctor
process can write to it. Once the patient “enters the doctors office”, she conveys her symptoms
to the doctor using a call to consultDoctor (), which updates the shared memory with the
patient’s symptoms. The doctor then calls t reatPatient () to access the buffer and update it
with details of the treatment. Finally, the patient process must call noteTreatment () to see the
updated treatment details in the shared buffer, before leaving the doctor’s office. A template code
for the patient and doctor processes is shown below. Enhance this code to correctly synchronize
between the patient and the doctor processes. Your code should ensure that no race conditions
occur due to several patients overwriting the shared buffer concurrently. Similarly, you must
ensure that the doctor accesses the buffer only when there is valid new patient information in it,
and the patient sees the treatment only after the doctor has written it to the buffer. You must use
only semaphores to solve this problem. Clearly list the semaphore variables you use and their
initial values first. Please pick sensible names for your variables.

(a) Semaphore variables and initial values:

(b) Patient process:

consultDoctor () ;

noteTreatment () ;

(c) Doctor process:

while (1) {

treatPatient ();



2. Consider a producer-consumer situation, where a process P produces an integer using the function
produceNext () and sends it to process C. Process C receives the integer from P and consumes
it in the function consumeNext (). After consuming this integer, C must let P know, and P must
produce the next integer only after learning that C has consumed the earlier one. Assume that P and
C get a pointer to a shared memory segment of 8 bytes, that can store any two 4-byte integer-sized
fields, as shown below. Both fields in the shared memory structure are zeroed out initially. P and C
can read or write from it, just as they would with any other data object. Briefly describe how you
would solve the producer-consumer problem described above, using only this shared memory as a
means of communication and synchronization between processes P and C. You must not use any
other synchronization or communication primitive. You are provided template code below which
gets a pointer to the shared memory, and produces/consumes integers. You must write the code for
communicating the integer between the processes using the shared memory, with synchronization
logic as required.

struct shmem structure {
int fieldl;

int field2;

}i

(a) Producer:

struct shmem_structure *xshptr = get_shared_memory_structure();

while (1) {
int produced = produceNext () ;

}

(b) Consumer:

struct shmem_structure *shptr get_shared_memory_structure();

while (1) {
int consumed; //fill this value from producer

consumeNext (consumed) ;



3. Consider the readers and writers problem discussed in class. Recall that multiple readers can be
allowed to read concurrently, while only one writer at a time can access the critical section. Write
down pseudocode to implement the functions readLock, readUnlock, writeLock, and writeUn-
lock that are invoked by the readers and writers to realize read/write locks. You must use only
semaphores, and no other synchronization mechanism, in your solution. Further, you must avoid
using more semaphores than is necessary. Clearly list all the variables (semaphores, and any other
flags/counters you may need) and their initial values at the start of your solution. Use the nota-
tion down (x) and up (x) to invoke atomic down and up operations on a semaphore x that are
available via the OS API. Use sensible names for your variables.

4. Consider the readers and writers problem as discussed in class. Several reader and writer processes
wish to access a critical section. Becasue readers do not modify the critical section, multiple
readers can access the critical section concurrently. However, a writer can access the critical
section only when no other reader or writer is concurrently accessing it. We wish to implement
locking/synchronization between readers and writers, while giving preference to writers, where
no waiting writer should be kept waiting for longer than necessary. For example, suppose reader
process R1 is actively reading. And a writer process W1 and reader process R2 arrive while R1 is
reading. While it might be fine to allow R2 in, this could prolong the waiting time of W1 beyond
the absolute minimum of waiting until R1 finishes. Therefore, if we want writer preference, R2
should not be allowed before W1. Your goal is to write down pseudocode for read lock, read
unlock, write lock, and write unlock functions that the processes should call, in order to realize
read/write locks with writer preference. You must use only simple locks/mutexes and conditional
variables in your solution. Please pick sensible names for your variables so that your solution is
readable.



5. Consider a multithreaded banking application. The main process receives requests to tranfer
money from one account to the other, and each request is handled by a separate worker thread
in the application. All threads access shared data of all user bank accounts. Bank accounts are
represented by a unique integer account number, a balance, and a lock of type mylock (much
like a pthreads mutex) as shown below.

struct account {
int accountnum;
int balance;
mylock lock;

bi

Each thread that receives a transfer request must implement the transfer function shown be-
low, which transfers money from one account to the other. Add correct locking (by calling the
dolock (&lock) and unlock (&lock) functions on a mylock variable) to the tranfer func-
tion below, so that no race conditions occur when several worker threads concurrently perform
transfers. Note that you must use the fine-grained per account lock provided as part of the account
object itself, and not a global lock of your own. Also make sure your solution is deadlock free,
when multiple threads access the same pair of accounts concurrently.

void transfer (struct account *from, struct account *to, int amount) {

from->balance -= amount; // dont write anything...
to->balance += amount; // ...between these two lines

6. Modern operating systems disable interrupts on specific cores when they need to turn off preemp-
tion, e.g., when holding a spin lock. For example, in xv6, interrupts can be disabled by a function
call c11i (), and reenabled with a function call sti (). However, functions that need to disable
and enable interrupts do not directly call the c11 () and sti () functions. Instead, the xv6 ker-
nel disables interrupts (e.g., while acquiring a spin lock) by calling the function pushcli ().
This function calls c11i (), but also maintains of count of how many push calls have been made
so far. Code that wishes to enable interrupts (e.g., when releasing a spin lock) calls popcli ().
This function decrements the above push count, and enables interrupts using st i () only after the
count has reached zero. That is, it would take two calls to popcli () to undo the effect of two
pushcli () calls and restore interrupts. Provide one reason why modern operating systems use
this method to disable/enable interrupts, instead of directly calling the c1i () and sti () func-
tions. In other words, explain what would go wrong if every call to pushcli () and popcli ()
in xv6 were to be replaced by calls to c11 () and sti () respectively.



10.

11.

12.

. Consider an operating system where the list of process control blocks is stored as a linked list

sorted by pid. The implementation of the wakeup function (to wake up a process waiting on a
condition) looks over the list of processes in order (starting from the lowest pid), and wakes up
the first process that it finds to be waiting on the condition. Does this method of waking up a
sleeping process guarantee bounded wait time for every sleeping process? If yes, explain why.
If not, describe how you would modify the implementation of the wakeup function to guarantee
bounded wait.

. Consider an operating system that does not provide the wait system call for parent processes to

reap dead children. In such an operating system, describe one possible way in which the memory
allocated to a terminated process can be reclaimed correctly. That is, identify one possible place
in the kernel where you would put the code to reclaim the memory.

. Consider a process that invokes the s1eep function in xv6. The process calling sleep provides a

lock 1k as an argument, which is the lock used by the process to protect the atomicity of its call
to sleep. Any process that wishes to call wakeup will also acquire this lock 1k, thus avoiding
a call to wakeup executing concurrently with the call to sleep. Assume that this lock 1k is not
ptable.lock. Now, if you recall the implementation of the sleep function, the lock 1k is
released before the process invokes the scheduler to relinquish the CPU. Given this fact, explain
what prevents another process from running the wakeup function, while the first process is still
executing sleep, after it has given up the lock 1k but before its call to the scheduler, thus breaking
the atomicity of the sleep operation. In other words, explain why this design of xv6 that releases
1k before giving up the CPU is still correct.

Consider the yield function in xv6, that is called by the process that wishes to give up the CPU
after a timer interrupt. The yield function first locks the global lock protecting the process table
(ptable.lock), before marking itself as RUNNABLE and invoking the scheduler. Describe
what would go wrong if yield locked ptable.lock AFTER setting its state to RUNNABLE,
but before giving up the CPU.

Provide one reason why a newly created process in xv6, running for the first time, starts its ex-
ecution in the function forkret, and not in the function trapret, given that the function
forkret almost immediately returns to t rapret. In other words, explain the most important
thing a newly created process must do before it pops the trap frame and executes the return from
the trap in trapret.

Consider a kernel design for an SMP (symmetric multiprocessor) system. There are two design
choices for the queue of ready processes in the kernel. The kernel could maintain separate ready
queues for each processing core, and schedule processes on a core from its local ready queue.
Or, the kernel could have a common ready queue across all cores and run a process that is in the
common queue on whichever core is free.

(a) Provide one advantage of separate ready queues over a common queue.

(b) Provide one advantage of a common ready queue over separate queues.



13. Consider the context switch of a CPU from the context of process P1 to that of process P2 in
xv6. Consider the following two events in the chronological order of the events during the context
switch: (A) the ESP (stack pointer) shifts from pointing to the kernel stack of P1 to the kernel stack
of P2; (B) the EIP (program counter) shifts from pointing to an address in the memory allocated
to P1 to an address in the memory allocated to P2. Which of the following statements is/are true
regarding the relative ordering of actions A and B?

Answer

A. A occurs before B.

B. B occurs before A.

C. A and B occur simultaneously via an atomic hardware instruction.

D. The relative ordering of A and B can vary from one context switch to the other.

14. Which of the following actions by a running process will always result in a context switch of the
running process, even in a non-preemptive kernel design?

Answer

A. Servicing a disk interrupt, that results in another blocked process being marked as ready/runnable.
B. A blocking system call.
C. The system call exit, to terminate the current process.

D. Servicing a timer interrupt.

15. Consider a user level threading library that multiplexes N > 1 user level threads over M > 1
kernel threads. The library manages the concurrent scheduling of the multiple user threads that
map to the same kernel thread internally, and the programmer using the library has no visibility
or control on this scheduling or on the mapping between user threads and kernel threads. The N
user level threads all access and update a shared data structure. When (or, under what conditions)
should the user level threads use mutexes to guarantee the consistency of the shared data structure?

Answer

A. Onlyift M > 1.
B. Onlyif N > M.
C. Only if the M kernel threads can run in parallel on a multi-core machine.

D. User level threads should always use mutexes to protect shared data.



16. Consider a process P in xv6 that acquires a spinlock L, and then calls the function sleep, provid-
ing the lock L as an argument to s1eep. Under which condition(s) will lock L be released before
P gives up the CPU and blocks?

Answer

A. OnlyifLis ptable.lock

B. Onlyif Lisnot ptable.lock
C. Never

D. Always



