
CS347: Operating Systems

Problem Set 3

1. Consider a system with paging-based memory management, whose architecture allows for a 4GB
virtual address space for processes. The size of logical pages and physical frames is 4KB. The
system has 8GB of physical RAM. The system allows a maximum of 1K processes to run concur-
rently and uses a 10-bit number to represent the PID. (Assume 1K = 1024.)

(a) Assuming the OS uses hierarchical paging, calculate the maximum memory space required
to store the page tables of all processes in the system. Assume that each page table entry
requires an additional 10 bits (beyond the frame number) to store various flags. Assume page
table entries are rounded up to the nearest byte. Consider the memory required for both outer
and inner page tables in your calculations.

(b) Now assume the OS uses an inverted page table instead of hierarcical page tables. Every
inverted page table entry needs to store the process identifier along with the page number.
Assume that inverted page table entries are rounded up to the nearest byte. Calculate the
memory required to store the inverted page table in the system.

2. Consider a simple system running a single process. The size of physical frames and logical
pages is 16 bytes. The RAM can hold 3 physical frames. The virtual addresses of the process
are 6 bits in size. The program generates the following 20 virtual address references as it runs
on the CPU: 0, 1, 20, 2, 20, 21, 32, 31, 0, 60, 0, 0, 16, 1, 17, 18,
32, 31, 0, 61. (Note: the 6-bit addresses are shown in decimal here.) Assume that the
physical frames in RAM are initially empty and do not map to any logical page.

(a) Translate the virtual addresses above to logical page numbers referenced by the process. That
is, write down the reference string of 20 page numbers corresponding to the virtual address
accesses above. Assume pages are numbered starting from 0, 1, ...

(b) Calculate the number of page faults genrated by the accesses above, assuming a FIFO page
replacement algorithm. You must also correctly point out which page accesses in the refer-
ence string shown by you in part (a) are responsible for the page faults.

(c) Repeat (b) above for the LRU page replacement algorithm.

(d) What would be the lowest number of page faults achievable in this example, assuming an
optimal page replacement algorithm were to be used? Repeat (b) above for the optimal
algorithm.

3. Consider a system running the xv6 OS. The shell process P asks the user for a command, and forks
a child process C. C then runs exec to execute the ls command typed by the user. Assume that
process C has just returned from the exec system call into user space, and is ready to execute

1



the first instruction of the ls binary. Now, the memory belonging to process C would have been
allocated and modified at various points during the execution of the fork and exec system calls.
For each piece of memory that belongs to process C that is listed below, you must answer when
the memory allocation/initialization described in the question occurred. Your possible choices for
the answers are given below, and you must pick one of the choices.

• Fork+allocproc: In the allocproc function called from fork by the parent P.

• Fork+...: In a function (you must provide the name) called from fork by the parent P.

• Fork: In the fork system call execution by parent P.

• Exec+allocuvm: In the allocuvm function called by exec in child C.

• Exec+loaduvm: In the loaduvm function called by exec in child C.

• Exec+walkpgdir: In the walkpgdir function called by exec in child C.

• Exec+...: In a function (you must provide the name) called from exec in child C.

• Exec: In the exec system call execution by C.

• Other: Write down any other answer that you feel is correct but is not listed above.

Note that when a more specific choice is the correct answer, less specific choices will only get
partial credit (e.g., if the correct answer is “fork+allocproc”, the answer “fork” will only get partial
credit).

(a) When was the the struct proc object of C assigned to C from an unused state?

(b) When was the memory page that holds C’s kernel stack assigned to process C from the list
of free pages?

(c) When were the memory pages that hold C’s current page table entries allocated for this
purpose from the list of free pages?

(d) When were the memory pages that hold the code of the ls executable allocated to C from
the list of free pages?

(e) When were the memory pages that hold the code of C’s ls executable populated with the
ls binary content from the disk?

4. Consider a system with V bytes of virtual address space available per process, running an xv6-like
OS. Much like with xv6, low virtual addresses, up to virtual address U , hold user data. The kernel
is mapped into the high virtual address space of every process, starting at address U and upto the
maximum V . The system has P bytes of physical memory that must all be usable. The first K
bytes of the physical memory holds the kernel code/data, and the rest P −K bytes are free pages.
The free pages are mapped once into the kernel address space, and once into the user part of the
address space of the process they are assigned to. Like in xv6, the kernel maintains page table
mappings for the free pages even after they have been assigned to user processes. The OS does
not use demand paging, or any form of page sharing between user space processes. The system
must be allowed to run up to N processes concurrently.

(a) Assume N = 1. Assume that the values of V , U , and K are known for a system. What
values of P (in terms of V , U , K) will ensure that all the physical memory is usable?

2



(b) Assume the values of V , K, and N are known for a system, but the value of P is not known
apriori. Suggest how you would pick a suitable value (or range of values) for U . That is,
explain how the system designer must split the virtual address space into user and kernel
parts.

5. Consider a system running the xv6 OS. A parent process P has forked a child C, after which
C executes the exec system call to load a different binary onto its memory image. During the
execution of exec, does the kernel stack of C get reinitialized or reallocated (much like the page
tables of C)? If it does, explain what part of exec performs the reinitialization. If not, explain
why not.

6. The xv6 operating system does not implement copy-on-write during fork. That is, the parent’s
user memory pages are all cloned for the child right at the beginning of the child’s creation. If xv6
were to implement copy-on-write, briefly explain how you would implement it, and what changes
need to be made to the xv6 kernel. Your answer should not just describe what copy-on-write is (do
not say things like “copy memory only when parent or child modify it”), but instead concretely
explain how you would ensure that a memory page is copied only when the parent/child wishes to
modify it.

7. Consider a process P in xv6 that has executed the kill system call to terminate a victim process V.
If you recall the implementation of kill in xv6, you will see that V is not terminated immediately,
nor is its memory reclaimed during the execution of the kill system call itself.

(a) Give one reason why V’s memory is not reclaimed during the execution of kill by P.

(b) Describe when V is actually terminated by the kernel.

8. Consider a system with only virtual addresses, but no concept of virtual memory or demand pag-
ing. Define total memory access time as the time to access code/data from an address in physical
memory, including the time to resolve the address (via the TLB or page tables) and the actual
physical memory access itself. When a virtual address is resolved by the TLB, experiments on a
machine have empirically observed the total memory access time to be (an approximately constant
value of) th. Similarly, when the virtual address is not in the TLB, the total memory access time
is observed to be tm. If the average total memory access time of the system (averaged across
all memory accesses, including TLB hits as well as misses) is observed to be tx, calculate what
fraction of memory addresses are resolved by the TLB. In other words, derive an expression for
the TLB hit rate in terms of th, tm, and tx. You may assume tm > th.

9. Consider the implementation of the exec system call in xv6. The implementation of the system
call first allocates a new set of page tables to point to the new memory image, and switches page
tables only towards the end of the system call. Explain why the implementation keeps the old page
tables intact until the end of exec, and not rewrite the old page tables directly while building the
new memory image.

10. Provide one advantage of using the slab allocator in Linux to allocate kernel objects, instead of
simply allocating them from a dynamic memory heap.

11. Consider a program that memory maps a large file, and accesses bytes in the first page of the file.
Now, a student runs this program on several machines running different versions of Linux, and

3



finds that the actual physical memory consumed by the process (RSS or resident set size) varies
from OS to OS. Provide one reason to explain this observation.

12. Consider the list of free pages populated by the xv6 kernel during bootup, as part of the func-
tions kinit1 and kinit2. Which of the following is/are potentially stored in these free pages
subsequently, during the running of the system?

Answer

A. Page table mappings of kernel memory pages.

B. Page table mappings of user memory pages.

C. The kernel bootloader.

D. User executables and data.

13. Consider the logical addresses assigned to various parts of code in the kernel executable of xv6.
Which of the following statements is/are true regarding the values of the logical addresses?

Answer

A. All are low addresses starting at 0.

B. All are high address starting at a point after user code in the virtual address space.

C. Some parts of the kernel code run at low addresses while the rest use high addresses.

D. The answer is dependent on the number of CPU cores.

4


