7120/2015 SPDY: An experimental protocol for a faster web - The Chromium Projects
¢ The Chromium Projects Search this site
Home SPDY >
Chromium . .
Chromium OS SPDY: An experimental protocol for a faster
Quick links web
Report bugs
Discuss
Sitemap Executive summary
Other sites

Chromium Blog

Google Chrome
Extensions

Google Chrome Frame

Except as otherwise noted,

the content of this page is
licensed under a Creative
Commons Attribution 2.5
license, and examples are
licensed under the BSD
License.

As part of the "Let's make the web faster" initiative, we are experimenting
with alternative protocols to help reduce the latency of web pages. One of
these experiments is SPDY (pronounced "SPeeDY"), an application-layer
protocol for transporting content over the web, designed specifically for
minimal latency. In addition to a specification of the protocol, we have
developed a SPDY-enabled Google Chrome browser and open-source web
server. In lab tests, we have compared the performance of these
applications over HTTP and SPDY, and have observed up to 64%
reductions in page load times in SPDY. We hope to engage the open source
community to contribute ideas, feedback, code, and test results, to make
SPDY the next-generation application protocol for a faster web.

Background: web protocols and web latency

Today, HTTP and TCP are the protocols of the web. TCP is the generic,
reliable transport protocol, providing guaranteed delivery, duplicate
suppression, in-order delivery, flow control, congestion avoidance and
other transport features. HTTP is the application level protocol providing
basic request/response semantics. While we believe that there may be
opportunities to improve latency at the transport layer, our initial
investigations have focussed on the application layer, HTTP.

Unfortunately, HTTP was not particularly designed for latency.
Furthermore, the web pages transmitted today are significantly different
from web pages 10 years ago and demand improvements to HTTP that
could not have been anticipated when HTTP was developed. The following
are some of the features of HTTP that inhibit optimal performance:

* Single request per connection. Because HTTP can only fetch one
resource at a time (HTTP pipelining helps, but still enforces only a
FIFO queue), a server delay of 500 ms prevents reuse of the TCP
channel for additional requests. Browsers work around this problem
by using multiple connections. Since 2008, most browsers have
finally moved from 2 connections per domain to 6.

e Exclusively client-initiated requests. In HTTP, only the client can
initiate a request. Even if the server knows the client needs a
resource, it has no mechanism to inform the client and must instead
wait to receive a request for the resource from the client.

« Uncompressed request and response headers. Request headers
today vary in size from ~200 bytes to over 2KB. As applications use
more cookies and user agents expand features, typical header sizes
of 700-800 bytes is common. For modems or ADSL connections, in
which the uplink bandwidth is fairly low, this latency can be
significant. Reducing the data in headers could directly improve the

http:/fwww.chromium.orgfspdy/spdy-whitepaper

/8

71202015

SPDY: An experimental protocol for a faster web - The Chromium Projects

serialization latency to send requests.

« Redundant headers. In addition, several headers are repeatedly sent
across requests on the same channel. However, headers such as the
User-Agent, Host, and Accept* are generally static and do not need
to be resent.

« Optional data compression. HTTP uses optional compression
encodings for data. Content should always be sent in a compressed
format.

Previous approaches

SPDY is not the only research to make HTTP faster. There have been other
proposed solutions to web latency, mostly at the level of the transport or
session layer:

e Stream Control Transmission Protocol (SCTP) -- a transport-layer
protocol to replace TCP, which provides multiplexed streams and
stream-aware congestion control.

e HTTP over SCTP -- a proposal for running HTTP over SCTP.
Comparison of HTTP Over SCTP and TCP in High Delay Networks
describes a research study comparing the performance over both
transport protocols.

e Structured Stream Transport (SST) -- a protocol which invents
"structured streams": lightweight, independent streams to be carried
over a common transport. It replaces TCP or runs on top of UDP.

¢ MUX and SMUX -- intermediate-layer protocols (in between the
transport and application layers) that provide multiplexing of
streams. They were proposed years ago at the same time as
HTTP/1.1.

These proposals offer solutions to some of the web's latency problems, but
not all. The problems inherent in HTTP (compression, prioritization, etc.)
should still be fixed, regardless of the underlying transport protocol. In
any case, in practical terms, changing the transport is very difficult to
deploy. Instead, we believe that there is much low-hanging fruit to be
gotten by addressing the shortcomings at the application layer. Such an
approach requires minimal changes to existing infrastructure, and (we
think) can yield significant performance gains.

Goals for SPDY

The SPDY project defines and implements an application-layer protocol for
the web which greatly reduces latency. The high-level goals for SPDY are:

e To target a 50% reduction in page load time. Our preliminary results
have come close to this target (see below).

e To minimize deployment complexity. SPDY uses TCP as the
underlying transport layer, so requires no changes to existing
networking infrastructure.

* To avoid the need for any changes to content by website authors.
The only changes required to support SPDY are in the client user
agent and web server applications.

e To bring together like-minded parties interested in exploring
protocols as a way of solving the latency problem. We hope to
develop this new protocol in partnership with the open-source
community and industry specialists.

Some specific technical goals are:

http:/fwww.chromium.orgfspdy/spdy-whitepaper

2/8

7120/2015 SPDY: An experimental protocol for a faster web - The Chromium Projects

» To allow many concurrent HTTP requests to run across a single TCP
session.

e To reduce the bandwidth currently used by HTTP by compressing
headers and eliminating unnecessary headers.

» To define a protocol that is easy to implement and server-efficient.
We hope to reduce the complexity of HTTP by cutting down on edge
cases and defining easily parsed message formats.

« To make SSL the underlying transport protocol, for better security
and compatibility with existing network infrastructure. Although SSL
does introduce a latency penalty, we believe that the long-term
future of the web depends on a secure network connection. In
addition, the use of SSL is necessary to ensure that communication
across existing proxies is not broken.

» To enable the server to initiate communications with the client and
push data to the client whenever possible.

SPDY design and features

SPDY adds a session layer atop of SSL that allows for multiple concurrent,
interleaved streams over a single TCP connection.

The usual HTTP GET and POST message formats remain the same;
however, SPDY specifies a new framing format for encoding and
transmitting the data over the wire.

Application HTTF

Session SPDY
Fresentation SSL
Transport TCP

Streams are bi-directional, i.e. can be initiated by the client and server.

SPDY aims to achieve lower latency through basic (always enabled) and
advanced (optionally enabled) features.

Basic features

* Multiplexed streams

SPDY allows for unlimited concurrent streams over a single TCP
connection. Because requests are interleaved on a single channel,
the efficiency of TCP is much higher: fewer network connections
need to be made, and fewer, but more densely packed, packets
are issued.

* Request prioritization

Although unlimited parallel streams solve the serialization problem,
they introduce another one: if bandwidth on the channel is
constrained, the client may block requests for fear of clogging the
channel. To overcome this problem, SPDY implements request

http:/fwww.chromium.orgfspdy/spdy-whitepaper

71202015

SPDY: An experimental protocol for a faster web - The Chromium Projects

priorities: the client can request as many items as it wants from the
server, and assign a priority to each request. This prevents the
network channel from being congested with non-critical resources
when a high priority request is pending.

o HTTP header compression

SPDY compresses request and response HTTP headers, resulting
in fewer packets and fewer bytes transmitted.

Advanced features

In addition, SPDY provides an advanced feature, server-initiated streams.
Server-initiated streams can be used to deliver content to the client
without the client needing to ask for it. This option is configurable by the
web developer in two ways:

e Server push.

SPDY experiments with an option for servers to push data to
clients via the X-Associated-Content header. This header informs
the client that the server is pushing a resource to the client
before the client has asked for it. For initial-page downloads
(e.g. the first time a user visits a site), this can vastly enhance
the user experience.

o Server hint.

Rather than automatically pushing resources to the client, the
server uses the X-Subresources header to suggest to the client
that it should ask for specific resources, in cases where the
server knows in advance of the client that those resources will be
needed. However, the server will still wait for the client request
before sending the content. Over slow links, this option can
reduce the time it takes for a client to discover it needs a
resource by hundreds of milliseconds, and may be better for non-
initial page loads.

For technical details, see the SPDY draft protocol specification.

SPDY implementation: what we've built

This is what we have built:

http:/fwww.chromium.orgfspdy/spdy-whitepaper

* A high-speed, in-memory server which can serve both HTTP and
SPDY responses efficiently, over TCP and SSL. We will be
releasing this code as open source in the near future.

« A modified Google Chrome client which can use HTTP or SPDY,
over TCP and SSL. The source code is
at http://src.chromium.org/viewvc/chrome/trunk/src/net/spdy/.
(Note that code currently uses the internal code name of "flip";
this will change in the near future.)

« A testing and benchmarking infrastructure that verifies pages are
replicated with high fidelity. In particular, we ensure that SPDY
preserves origin server headers, content encodings, URLs, etc.
We will be releasing our testing tools, and instructions for
reproducing our results, in the near future.

418

7120/2015 SPDY: An experimental protocol for a faster web - The Chromium Projects

Preliminary results

With the prototype Google Chrome client and web server that we
developed, we ran a number of lab tests to benchmark SPDY performance
against that of HTTP.

We downloaded 25 of the "top 100" websites over simulated home network
connections, with 1% packet loss. We ran the downloads 10 times for each
site, and calculated the average page load time for each site, and across
all sites. The results show a speedup over HTTP of 27% - 60% in page
load time over plain TCP (without SSL), and 39% - 55% over SSL.

Table 1: Average page load times for top 25 websites

DSL 2 Mbps downlink, 375 kbps uplink
Average ms Speedup
HTTP 3111.916
SPDY basic multi- 2242.756 27.93%
domain* connection /
TCP
SPDY basic single- 1695.72 45.51%
domain* connection /
TCP
SPDY single-domain + |1671.28 46.29%
server push / TCP
SPDY single-domain + |[1608.928 48.30%
server hint / TCP
SPDY basic single- 1899.744 38.95%
domain / SSL
SPDY single-domain + |[1781.864 42.74%
client prefetch / SSL

* In many cases, SPDY can stream all requests over a single connection,
regardless of the number of different domains from which requested
resources originate. This allows for full parallelization of all downloads.
However, in some cases, it is not possible to collapse all domains into a
single domain. In this case, SPDY must still open a connection for each
domain, incurring some initial RTT overhead for each new connection
setup. We ran the tests in both modes: collapsing all domains into a single
domain (i.e. one TCP connection); and respecting the actual partitioning of
the resources according to the original multiple domains (= one TCP
connection per domain). We include the results for both the strict "single-
domain" and "multi-domain" tests; we expect real-world results to lie
somewhere in the middle.

The role of header compression

Header compression resulted in an ~88% reduction in the size of request
headers and an ~85% reduction in the size of response headers. On the
lower-bandwidth DSL link, in which the upload link is only 375 Kbps,
request header compression in particular, led to significant page load time
improvements for certain sites (i.e. those that issued large number of
resource requests). We found a reduction of 45 - 1142 ms in page load

http:/fwww.chromium.orgfspdy/spdy-whitepaper

71202015

SPDY: An experimental protocol for a faster web - The Chromium Projects
time simply due to header compression.

The role of packet loss and round-trip time (RTT)

We did a second test run to determine if packet loss rates and round-trip
times (RTTs) had an effect on the results. For these tests, we measured
only the cable link, but simulated variances in packet loss and RTT.

We discovered that SPDY's latency savings increased proportionally with
increases in packet loss rates, up to a 48% speedup at 2%. (The increases
tapered off above the 2% loss rate, and completely disappeared above
2.5%. In the real world, packets loss rates are typically 1-2%, and RTTs
average 50-100 ms in the U.S.) The reasons that SPDY does better as
packet loss rates increase are several:

« SPDY sends ~40% fewer packets than HTTP, which means fewer
packets affected by loss.

« SPDY uses fewer TCP connections, which means fewer chances to
lose the SYN packet. In many TCP implementations, this delay is
disproportionately expensive (up to 3 s).

» SPDY's more efficient use of TCP usually triggers TCP's fast
retransmit instead of using retransmit timers.

We discovered that SPDY's latency savings also increased proportionally
with increases in RTTs, up to a 27% speedup at 200 ms. The The reason
that SPDY does better as RTT goes up is because SPDY fetches all requests
in parallel. If an HTTP client has 4 connections per domain, and 20
resources to fetch, it would take roughly 5 RTs to fetch all 20 items. SPDY
fetches all 20 resources in one RT.

Table 2: Average page load times for top 25 websites by packet loss rate

Average ms Speedup

Packet loss rate HTTP SPDY basic (TCP)

0% 1152 1016 11.81%
0.5% 1638 1105 32.54%
1% 2060 1200 41.75%
1.5% 2372 1394 41.23%
2% 2904 1537 47.7%
2.5% 3028 1707 43.63%

Table 3: Average page load times for top 25 websites by RTT

http:/fwww.chromium.orgfspdy/spdy-whitepaper

Average ms Speedup

RTT in ms HTTP SPDY basic (TCP)

20 1240 1087 12.34%
40 1571 1279 18.59%
60 1909 1526 20.06%
80 2268 1727 23.85%
120 2927 2240 23.47%
160 3650 2772 24.05%

6/8

71202015

SPDY: An experimental protocol for a faster web - The Chromium Projects
| 200 | 4498 3293 26.79%

SPDY next steps: how you can help

Our initial results are promising, but we don't know how well they
represent the real world. In addition, there are still areas in which SPDY
could improve. In particular:

« Bandwidth efficiency is still low. Although dialup bandwidth efficiency
rate is close to 90%, for high-speed connections efficiency is only
about ~32%.

» SSL poses other latency and deployment challenges. Among these
are: the additional RTTs for the SSL handshake; encryption;
difficulty of caching for some proxies. We need to do more SSL
tuning.

e Our packet loss results are not conclusive. Although much research
on packet-loss has been done, we don't have enough data to build a
realistic model model for packet loss on the Web. We need to gather
this data to be able to provide more accurate packet loss
simulations.

» SPDY single connection loss recovery sometimes underperforms
multiple connections. That is, opening multiple connections is still
faster than losing a single connection when the RTT is very high. We
need to figure out when it is appropriate for the SPDY client to make
a new connection or close an old connection and what effect this
may have on servers.

* The server can implement more intelligence than we have built in so
far. We need more research in the areas of server-initiated streams,
obtaining client network information for prefetching suggestions, and
SO on.

To help with these challenges, we encourage you to get involved:
* Send feedback, comments, suggestions, ideas to the chromium-
discuss discussion group.
* Download, build, run, and test the Google Chrome client code.
¢ Contribute improvements to the code base.

SPDY frequently asked questions

Q: Doesn't HTTP pipelining already solve the latency problem?

A: No. While pipelining does allow for multiple requests to be sent in
parallel over a single TCP stream, it is still but a single stream. Any
delays in the processing of anything in the stream (either a long request at
the head-of-line or packet loss) will delay the entire stream. Pipelining
has proven difficult to deploy, and because of this remains disabled by
default in all of the major browsers.

Q: Is SPDY a replacement for HTTP?

A: No. SPDY replaces some parts of HTTP, but mostly augments it. At the
highest level of the application layer, the request-response protocol
remains the same. SPDY still uses HTTP methods, headers, and other
semantics. But SPDY overrides other parts of the protocol, such as
connection management and data transfer formats.

http:/fwww.chromium.orgfspdy/spdy-whitepaper

718

71202015

SPDY: An experimental protocol for a faster web - The Chromium Projects

Q: Why did you choose this name?

A: We wanted a name that captures speed. SPDY, pronounced "SPeeDY",
captures this and also shows how compression can help improve speed.

Q: Should SPDY change the transport layer?

A: More research should be done to determine if an alternate transport
could reduce latency. However, replacing the transport is a complicated
endeavor, and if we can overcome the inefficiencies of TCP and HTTP at
the application layer, it is simpler to deploy.

Q: TCP has been time-tested to avoid congestion and network
collapse. Will SPDY break the Internet?

A: No. SPDY runs atop TCP, and benefits from all of TCP's congestion
control algorithms. Further, HTTP has already changed the way congestion
control works on the Internet. For example, HTTP clients today open up to
6 concurrent connections to a single server; at the same time, some HTTP
servers have increased the initial congestion window to 4 packets.
Because TCP independently throttles each connection, servers are
effectively sending up to 24 packets in an initial burst. The multiple
connections side-step TCP's slow-start. SPDY, by contrast, implements
multiple streams over a single connection.

Q: What about SCTP?

A: SCTP is an interesting potential alternate transport, which offers
multiple streams over a single connection. However, again, it requires
changing the transport stack, which will make it very difficult to deploy
across existing home routers. Also, SCTP alone isn't the silver bullet;
application-layer changes still need to be made to efficiently use the
channel between the server and client.

Q: What about BEEP?

A: While BEEP is an interesting protocol which offers a similar grab-bag of
features, it doesn't focus on reducing the page load time. It is missing a
few features that make this possible. Additionally, it uses text-based
framing for parts of the protocol instead of binary framing. This is
wonderful for a protocol which strives to be as extensible as possible, but
offers some interesting security problems as it is more difficult to parse
correctly.

Comments

Sian in | Recent Site Activity | Report Abuse | Print Page | Powered By Google Sites

http:/fwww.chromium.orgfspdy/spdy-whitepaper

&8

