
Linux TCP

Pasi Sarolahti
Nokia Research Center

pasi.sarolahti@nokia.com

ABSTRACT
The TCP protocol is used by the majority of the network applica-
tions on the Internet. TCP performance is strongly influenced by its
congestion control algorithms that limit the amount of transmitted
traffic based on the estimated network capacity and utilization. Be-
cause the freely available Linux operating system has gained pop-
ularity especially in the network servers, its TCP implementation
affects many of the network interactions carried out today. This
paper describes the fundamentals of the Linux TCP design, con-
centrating on the congestion control algorithms. The Linux TCP
implementation supports SACK, TCP timestamps, Explicit Con-
gestion Notification, and techniques to undo congestion window
adjustments after incorrect congestion notifications.

This paper describes the basic concepts in Linux TCP and its con-
gestion control engine. In addition to features specified by IETF,
Linux has implementation details beyond the specifications aimed
to further improve its performance. The paper presents how Linux
TCP differs from the traditional TCP. Finally, we discuss whether
it would be reasonable to implement TCP as a kernel module or as
a user library.

1. INTRODUCTION
The Transmission Control Protocol (TCP) [18 21] has evolved for
over 20 years, being the most commonly used transport protocol on
the Internet today. An important characteristic feature of TCP are
its congestion control algorithms, which are essential for preserv-
ing network stability when the network load increases. The TCP
congestion control principles require that if the TCP sender detects
a packet loss, it should reduce its transmission rate, because the
packet was probably dropped by a congested router.

Linux is a freely available Unix-like operating system that has gained
popularity in the last years. The Linux source code is publicly
available1, which makes Linux an attractive tool for the computer
science researchers in various research areas. Therefore, a large

1The Linux kernel source can be obtained from
http://www.kernel.org/.

number of people have contributed to Linux development during
its lifetime. However, many people find it tedious to study the dif-
ferent aspects of the Linux behavior just by reading the source code.
Therefore, this paper describes the design solutions selected in the
TCP implementation of the Linux kernel version 2.4. The Linux
TCP implementation contains features that differ from the other
TCP implementations used today, and I believe that the protocol
designers working with TCP find these features interesting consid-
ering their work.

The Internet protocols are standardized by the Internet Engineer-
ing Task Force (IETF) in documents called Request For Comments
(RFC). Currently there are thousands of RFCs, of which tens are
related to the TCP protocol. In addition to the mandatory TCP
specifications, there are a number of experimental and informa-
tional specifications of TCP enhancements for improving the per-
formance under certain conditions, which can be implemented op-
tionally.

Building up a single consistent protocol implementation which con-
forms to the different RFCs is not a straightforward task. For exam-
ple, the TCP congestion control specification [2] gives a detailed
description of the basic congestion control algorithm, making it
easier for the implementor to apply it. However, if the TCP imple-
mentation supports SACK TCP [15], it needs to follow congestion
control specifications that use a partially different set of concepts
and variables than those given in the standard congestion control
RFC [6 3]. Therefore, strictly following the algorithms used in
the specifications makes an implementation unnecessarily compli-
cated, as usually both algorithms need to be included in the TCP
implementation at the same time.

This work describes the approach taken in Linux TCP for imple-
menting the congestion control algorithms. Linux TCP implements
many of the RFC specifications in a single congestion control en-
gine, using the common code for supporting both SACK TCP and
NewReno TCP without SACK information. In addition, Linux
TCP refines many of the specifications in order to improve the TCP
efficiency. We describe the Linux-specific protocol enhancements
in this paper. Additionally, our goal is to point out the details where
Linux TCP behavior differs from the conventional TCP implemen-
tations or the RFC specifications.

This paper is organized as follows. Section 2 describes the TCP
protocol and its congestion control algorithms in more detail. Sec-
tion 3 introduces the basics of the Linux TCP and describe the main
algorithms governing the packet retransmission logic. Addition-
ally, the section describe some features specific to the Linux TCP

implementation. Section 4 discusses how the current Linux TCP
implementation relates to the IETF specifications, and whether Linux
TCP is compliant to IETF specifications. Section 5 discusses whether
it would be feasible to implement Linux TCP as a kernel module or
as a user-space library, and considers the benefits and drawbacks of
doing so. Section 6 concludes this work.

2. TCP BASICS
We now briefly describe the TCP congestion control algorithms
that are referred to throughout this paper. Because the congestion
control algorithms play an important role in TCP performance, a
number of further enhancements for the TCP algorithms have been
suggested. We describe here the ones considered most important.
Finally, we point out a few details considered problematic in the
current TCP specifications by IETF as a motivation for the Linux
TCP approach.

2.1 Congestion control
The TCP protocol basics are specified in RFC 793 [18]. In or-
der to avoid the network congestion that became a serious problem
as the number of network hosts increased dramatically, the basic
algorithms for performing congestion control were given by Ja-
cobson [11]. Later, the congestion control algorithms have been
included in the standards track TCP specification by the IETF [2].

The TCP sender uses a congestion window (cwnd) in regulating its
transmission rate based on the feedback it gets from the network.
The congestion window is the TCP sender’s estimate of how much
data can be outstanding in the network without packets being lost.
After initializing cwnd to one or two segments, the TCP sender
is allowed to increase the congestion window either according to a
slow start algorithm, that is, by one segment for each incoming ac-
knowledgement (ACK), or according to congestion avoidance, at a
rate of one segment in a round-trip time. The slow start threshold
(ssthresh) is used to determine whether to use slow start or conges-
tion avoidance algorithm. The TCP sender starts with the slow start
algorithm and moves to congestion avoidance when cwnd reaches
the ssthresh.

The TCP sender detects packet losses from incoming duplicate
acknowledgements, which are generated by the receiver when it
receives out-of-order segments. After three successive duplicate
ACKs, the sender retransmits a segment and sets ssthresh to
half of the amount of currently outstanding data. cwnd is set to the
value of ssthresh plus three segments, accounting for the seg-
ments that have already left the network according to the arrived
duplicate ACKs. In effect the sender halves its transmission rate
from what it was before the loss event. This is done because the
packet loss is taken as an indication of congestion, and the sender
needs to reduce its transmission rate to alleviate the network con-
gestion.

The retransmission due to incoming duplicate ACKs is called fast
retransmit. After fast retransmit the TCP sender follows the fast
recovery algorithm until all segments in the last window have been
acknowledged. During fast recovery the TCP sender maintains the
number of outstanding segments by sending a new segment for
each incoming acknowledgement, if the congestion window allows.
The TCP congestion control specification temporarily increases the
congestion window for each incoming duplicate ACK to allow for-
ward transmission of a segment, and deflates it back to the value at
the beginning of the fast recovery when the fast recovery is over.

Two variants of the fast recovery algorithm have been suggested
by the IETF. The standard variant exits the fast recovery when the
first acknowledgement advancing the window arrives at the sender.
However, if there is more than one segment dropped in the same
window, the standard fast retransmit does not perform efficiently.
Therefore, an alternative called NewReno was suggested [7] to im-
prove the TCP performance. NewReno TCP exits the fast recovery
only after all segments in the last window have been successfully
acknowledged.

Retransmissions may also be triggered by the retransmission timer,
which expires at the TCP sender when no new data is acknowl-
edged for a while. Retransmission timeout (RTO) is taken as a loss
indication, and it triggers retransmission of the unacknowledged
segments. In addition, when RTO occurs, the sender resets the con-
gestion window to one segment, since the RTO may indicate that
the network load has changed dramatically.

The TCP sender estimates packet round-trip times (RTT) and uses
the estimator in determining the RTO value. When a segment ar-
rives at the TCP sender, the IETF specifications instruct it to adjust
the RTO value as follows [16]:

RTTVAR <-
����������
	��������
��� �������������

SRTT <- �� ���������� �� ���
RTO <- ��� �"! �#�����$�%
�������
	&�
�('*),+.- /

where R is the measured round-trip time, RTTVAR is variation of
the recent round-trip times, and SRTT is the smoothed mean round-
trip time based on the recent measurements.

2.2 Enhancements
Recovery from the packet losses is inefficient in the standard TCP
because the cumulative acknowledgements allow only one retrans-
mission in a round-trip time. Therefore, Selective Acknowledge-
ments (SACK) [15] were suggested to make it possible for the re-
ceiver to acknowledge scattered blocks of incoming data instead of
a single cumulative acknowledgement, allowing the TCP sender to
make more than one retransmission in a round-trip time. SACK
can be used only if both ends of the TCP connection support it.

Availability of the SACK information allows the TCP sender to
perform congestion control more accurately. Instead of temporarily
adjusting the congestion window, the sender can keep track of the
amount of outstanding data and compare it against the congestion
window when deciding whether it can transmit new segments [3].
However, the unacknowledged segments can be treated in different
ways when accounting for outstanding data. The conservative ap-
proach promoted by IETF is to consider all unacknowledged data
to be outstanding in the network. The Forward Acknowledgements
(FACK) algorithm [14] takes a more aggressive approach and con-
siders the unacknowledged holes between the SACK blocks as lost
packets. Although this approach often results in better TCP per-
formance than the conservative approach, it is overly aggressive if
packets have been reordered in the network, because the holes be-
tween SACK blocks do not indicate lost packets in this case.

The SACK blocks can also be used for reporting spurious retrans-
missions. The Duplicate-SACK (D-SACK) enhancement [8] allows
the TCP receiver to report any duplicate segments it gets by us-
ing the SACK blocks. Having this information the TCP sender

can conclude in certain circumstances whether it has unnecessarily
reduced its congestion control parameters, and thus revert the pa-
rameters to the values preceding the retransmission. For example,
packet reordering is a potential reason for unnecessary retransmis-
sions, because out-of-order segments trigger duplicate ACKs at the
receiver.

The TCP Timestamp option [4] was suggested to allow more ac-
curate round-trip time measurements, especially on network paths
with high bandwidth-delay product. A timestamp is attached to
each TCP segment, which is then echoed back in the acknowl-
edgement for the segment. From the echoed timestamp the TCP
sender can measure exact round-trip times for the segments and
use the measurement for deriving the retransmission timeout esti-
mator. In addition to the more exact round-trip time measurement,
use of TCP timestamps allows algorithms for protecting against old
segments from the previous incarnations of the TCP connection.

The timestamp option also allows detection of unnecessary retrans-
missions. The Eifel Algorithm [12] suggests that if an acknowl-
edgement for a retransmitted segment echoes a timestamp earlier
than the timestamp of the retransmission stored at the sender, the
original segment has arrived at the receiver, and the retransmission
was unnecessarily made. In such a case, the TCP sender can con-
tinue by sending new data and revert the recent changes made to
the congestion control parameters.

Instead of inferring congestion from the lost packets, Explicit Con-
gestion Notification (ECN) [19] was suggested for routers to explic-
itly mark packets when they arrive to a congested point in the net-
work. When the TCP sender receives an echoed ECN notification
from the receiver, it should reduce its transmission rate to mitigate
the congestion in the network. ECN allows the TCP senders to be
congestion-aware without necessarily suffering from packet losses.

2.3 Criticism
Some details in IETF specifications are problematic in practice. Al-
though many of the RFCs suggest a general algorithm that could be
applied to an implementation, combining the algorithms from sev-
eral RFCs may be inconvenient. For example, combining the con-
gestion control requirements for SACK TCP and NewReno TCP
turns out to be problematic due to different variables and algorithms
used in the specifications.

The TCP congestion control specifications artificially increase the
congestion window during the fast recovery in order to allow for-
ward transmissions to keep the number of outstanding segments
stable. Therefore, the congestion window size does not actually re-
flect the number of segments allowed to be outstanding during the
fast recovery. When fast recovery is over, the congestion window
is deflated back to a proper size. This procedure is needed because
the congestion window is traditionally evaluated against the differ-
ence of the highest data segment transmitted (SND.NXT) and the
first unacknowledged segment (SND.UNA). By taking a more flex-
ible method for evaluating the number of outstanding segments, the
congestion window size can be constantly maintained at a proper
level corresponding to the network capacity.

Adjusting the congestion window consistently becomes an issue
especially when SACK information can be used by the TCP sender.
By using the selective acknowledgements, the sender can derive
the number of packets with a better accuracy than by just using
the cumulative acknowledgements. In order to make a coherent

implementation of the congestion control algorithms, it is desirable
to have common variables and routines both for SACK TCP and for
the TCP variant to use when the other end does not support SACK.

Finally, the details of the RTO algorithm presented above have been
questioned. Since many networks have round-trip delays of a few
tens of milliseconds or less, the RTO algorithm details may not
have a significant effect on TCP performance, since the minimum
RTO value is limited to one second. However, there are high-delay
networks for which the effectiveness of the RTO calculation is im-
portant. It has been pointed out that the RTO estimator results in
overly large values due to the weight given for the variance of the
round-trip time, when the round-trip time suddenly drops for some
reason. On the other hand, when the congestion window size in-
creases at a steady pace during the slow start, it is possible that the
RTO estimator is not increased fast enough due to small variance
in the round-trip times. This may result in spurious retransmission
timeouts. Alternative RTO estimators, such as the Eifel Retrans-
mission Timer [13], have been suggested to overcome the potential
problems in the standard RTO algorithm. However, although the
Eifel Retransmission Timer is efficient in avoiding the problems of
the standard RTO algorithm, it introduces a rather complex set of
equations compared to the standard RTO. Therefore, evaluating the
possible side effects of different network scenarios on Eifel RTT
dynamics is difficult.

3. LINUX APPROACH
This section describes the Linux TCP implementation, starting from
basic data structures and the fundamentals of the congestion control
engine. Finally, some specific features of Linux TCP are described.

3.1 Basic data structures
The state of the TCP connection is stored in a sock structure.
sock structure is a protocol-independent entity that stores infor-
mation about source and destination addresses to be used for the
connection, a pointer to the destination cache that is used for find-
ing packet destinations efficiently, and other miscellaneous data
about the connection state.

The sock structure has also a protocol specific portion of data, in
which the TCP state is stored. This area holds information about the
current congestion window size, maximum segment size, round-
trip time measurements, retransmission counters, and various other
statistics. In fact, most of the variables referred to in the rest of this
section are stored in the TCP-specific part of the sock structure.

Each packet belonging to a socket is held in a structure called
sk buff. Each socket has a dedicated queues for incoming and
outgoing sk buffs. In addition to the packet header and payload,
sk buff has a small control portion, that includes various point-
ers and protocol identifiers. sk buffs are linked to each other as
a circular bidirectional linked list, which allows flexible iteration
through packets. There is no physical socket buffers for incoming
and outgoing data, but the socket buffer sizes that are set, for exam-
ple, by using socket options only set an upper limit to the number
of sk buffs that may be linked to the socket. By taking this ap-
proach, the number of expensive memory copy operations can be
minimized.

Figure 1 illustrates the relation ship of sock structures and

sk buffs. There are three different queues for storing sk buffs2.
Write queue stores the data written by the application not yet ac-
knowledged by the receiver, receive queue stores the packets re-
ceived from the network not yet read by the application, and out-
of-order queue (not shown in the figure) stores packets that have ar-
rived from the network, but cannot be delivered to the application
because some data is missing before the segments in the out-of-
order queue. For example, when data is fetched from application,
and a new sk buff is created, the application data is filled to the
area reserved for payload. At this point, a placeholder is left for
TCP, IP and lower layer headers. The necessary pointers are filled
to the control portion in the beginning of sk buff. The protocol
headers are filled based on the data in the sock struct only before
the packet is passed to the lower layers to be transmitted. If the pay-
load was not at its maximum size, it may be filled later when new
data is received from the application, as long as the TCP sender has
not transmitted the segment.

protocol
headers

protocol
headers

protocol
headers

protocol
headers

struct sock receive queue tcp info

sk_buff

control data

payload

sk_buff

control data

payload

sk_buff

control data

payload

sk_buff

control data

payload

write queue

Figure 1: Socket state and sk buffs for storing packets.

3.2 Congestion control engine
Although Linux conforms to the TCP congestion control princi-
ples, it takes a different approach in carrying out the congestion
control. Instead of comparing the congestion window to the dif-
ference of SND.NXT and SND.UNA, the Linux TCP sender deter-
mines the number of packets currently outstanding in the network.
The Linux TCP sender then compares the number of outstanding
segments to the congestion window when making decisions on how
much to transmit. Linux tracks the number of outstanding segments
in units of full-sized packets, whereas the TCP specifications and
some implementations compare cwnd to the number of transmitted
octets. This results in different behavior if small segments are used:

2TCP receiver also maintains prequeue and backlog queue for di-
rectly copying data from lower layers to application, but these fea-
tures are not discussed in this paper.

if the implementation uses a byte-based congestion window, it al-
lows several small segments to be injected in the network for each
full-sized segment in the congestion window. Linux, on the other
hand, allows only one packet to be transmitted for each segment in
the congestion window, regardless of its size. Therefore, Linux is
more conservative compared to the byte-based approach when the
TCP payload consists of small segments.

The Linux TCP sender uses the same set of concepts and func-
tions for determining the number of outstanding packets with the
NewReno recovery and with the two flavors of SACK recovery
supported. When the SACK information can be used, the sender
can either follow the Forward Acknowledgements (FACK) [14] ap-
proach considering the holes between the SACK blocks as lost seg-
ments, or a more conservative approach similar to the ongoing work
under IETF [3]. In the latter alternative the unacknowledged seg-
ments are considered outstanding in the network. As a basis for all
recovery methods the Linux TCP sender uses the equations:

left_out <- sacked_out + lost_out
in_flight <- packets_out -

left_out + retrans_out

in defining the number of segments outstanding in the network.
In the equation above, packets out is the number of originally
transmitted segments above SND.UNA, sacked out is the num-
ber of segments acknowledged by SACK blocks, lost out is
an estimation of the number of segments lost in the network, and
retrans out is the number of retransmitted segments. Deter-
mining the lost out parameter depends on the selected recovery
method. For example, when FACK is in use, all unacknowledged
segments between the highest SACK block and the cumulative ac-
knowledgement are counted in lost out. The selected approach
makes it easy to add new heuristics for evaluating which segments
are lost.

In the absence of SACK information, the Linux TCP sender in-
creases sacked out by one for each incoming duplicate acknowl-
edgement. This is in conformance with the TCP congestion control
specification, and the resulting behavior is similar to the NewReno
algorithm with its forward transmissions. The design chosen in
Linux does not require arbitrary adjusting of the congestion win-
dow, but cwnd holds the valid number of segments allowed to be
outstanding in the network throughout the fast recovery.

The counters used for tracking the number of outstanding, acknowl-
edged, lost, or retransmitted packets require additional data struc-
tures for supporting them. The Linux sender maintains the state
of each outstanding segment in a scoreboard, where it marks the
known state of the segment. The segment can be marked as out-
standing, acknowledged, retransmitted, or lost. Combinations of
these bits are also possible. For example, a segment can be declared
lost and retransmitted, in which case the sender is expecting to get
an acknowledgement for the retransmission. Using this information
the Linux sender knows which segments need to be retransmitted,
and how to adjust the counters used for determining in flight
when a new acknowledgement arrives. The scoreboard also plays
an important role when determining whether a segment has been
incorrectly assumed lost, for example due to packet reordering.

The scoreboard markings and the counters used for determining
the in flight variable should be in consistent state at all times.

Markings for outstanding, acknowledged and retransmitted seg-
ments are straightforward to maintain, but when to place a lost
mark depends on the recovery method used. With NewReno re-
covery, the first unacknowledged packet is marked lost when the
sender enters the fast recovery. In effect, this corresponds to the
fast retransmit of the IETF congestion control specifications. Fur-
thermore, when a partial ACK not acknowledging all the data out-
standing at the beginning of the fast recovery arrives, the first unac-
knowledged segment is marked lost. This results in retransmission
of the next unacknowledged segment, as the NewReno specifica-
tion requires.

When SACK is used, more than one segment can be marked lost at
a time. With the conservative approach, the TCP sender does not
count the holes between the acknowledged blocks in lost out,
but when FACK is enabled, the sender marks the holes between the
SACK blocks lost as soon as they appear. The lost out counter
is adjusted appropriately.

The Linux TCP sender is governed by a state machine that deter-
mines the sender actions when acknowledgements arrive. Figure 2
illustrates how the states are related with each other. The conges-
tion control states are as follows:

congestion
notification

Open

CWRDisorder

Recovery

Loss

dupack

more dupacks

RTO

RTO

Figure 2: Congestion control state machine.

� Open. This is the normal state in which the TCP sender
follows the fast path of execution optimized for the com-
mon case in processing incoming acknowledgements. When
an acknowledgement arrives, the sender increases the con-
gestion window according to either slow start or congestion
avoidance, depending on whether the congestion window is
smaller or larger than the slow start threshold, respectively.

� Disorder. When the sender detects duplicate ACKs or se-
lective acknowledgements, it moves to the Disorder state. In
this state the congestion window is not adjusted, but each in-
coming packet triggers transmission of a new segment. There-
fore, the TCP sender follows the packet conservation princi-
ple [11], which states that a new packet is not sent out until
an old packet has left the network. In practice the behav-
ior in this state is similar to the limited transmit proposal by
IETF [1], which was suggested to allow more efficient re-
covery by using fast retransmit when congestion window is
small, or when a large number of segments are lost in the last
window of transmission.

� CWR. The TCP sender may receive congestion notifications
either by Explicit Congestion Notification, ICMP source

quench [17], or from a local device. When receiving a con-
gestion notification, the Linux sender does not reduce the
congestion window at once, but by one segment for every
second incoming ACK until the window size is halved. When
the sender is in process of reducing the congestion window
size and it does not have outstanding retransmissions, it is in
CWR (Congestion Window Reduced) state. CWR state can
be interrupted by Recovery or Loss states described below.

� Recovery. After a sufficient amount of successive duplicate
ACKs arrive at the sender, it retransmits the first unacknowl-
edged segment and enters the Recovery state. By default,
the threshold for entering Recovery is three successive du-
plicate ACKs, a value recommended by the TCP congestion
control specification. During the Recovery state, the conges-
tion window size is reduced by one segment for every second
incoming acknowledgement, similar to the CWR state. The
window reduction ends when the congestion window size is
equal to ssthresh, i.e. half of the window size when entering
the Recovery state. The congestion window is not increased
during the recovery state, and the sender either retransmits
the segments marked lost, or makes forward transmissions
on new data according to the packet conservation principle.
The sender stays in the Recovery state until all of the seg-
ments outstanding when the Recovery state was entered are
successfully acknowledged. After this the sender goes back
to the Open state. A retransmission timeout can also interrupt
the Recovery state.

� Loss. When an RTO expires, the sender enters the Loss state.
All outstanding segments are marked lost, and the congestion
window is set to one segment, hence the sender starts increas-
ing the congestion window using the slow start algorithm. A
major difference between the Loss and Recovery states is that
in the Loss state the congestion window is increased after the
sender has reset it to one segment, but in the Recovery state
the congestion window size can only be reduced. The Loss
state cannot be interrupted by any other state, thus the sender
exits to the Open state only after all data outstanding when
the Loss state began have successfully been acknowledged.
For example, fast retransmit cannot be triggered during the
Loss state, which is in conformance with the NewReno spec-
ification.

Linux TCP avoids explicit calls to transmit a packet in any of the
above mentioned states, for example, regarding the fast retransmit.
The current congestion control state determines how the congestion
window is adjusted, and whether the sender considers the unac-
knowledged segments lost. After the TCP sender has processed an
incoming acknowledgement according to the state it is in presently,
it transmits segments while in flight is smaller than cwnd. The
sender either retransmits earlier segments marked lost and not yet
retransmitted, or new data segments if there are no lost segments
waiting for retransmission.

There are occasions where the number of outstanding packets de-
creases suddenly by several segments. For example, a retransmitted
segment and the following forward transmissions can be acknowl-
edged with a single cumulative ACK. These situations would cause
bursts of data to be transmitted into the network, unless they are
taken into account in the TCP sender implementation. The Linux
TCP sender avoids the bursts by limiting the congestion window
to allow at most three segments to be transmitted for an incoming

ACK. Since burst avoidance may reduce the congestion window
size below the slow start threshold, it is possible for the sender to
enter slow start after several segments have been acknowledged by
a single ACK.

When a TCP connection is established, many of the TCP variables
need to be initialized with some fixed values. However, in order
to improve the communication efficiency at the beginning of the
connection, the Linux TCP sender stores in its destination cache
the slow start threshold, the variables used for the RTO estimator,
and an estimator measuring the likeliness of reordering after each
TCP connection. If another connection is established to the same
destination IP address that is found in the cache, the cached values
can be used to get adequate initial values for the new TCP connec-
tion. If the network conditions between the sender and the receiver
change for some reason, the values in the destination cache could
get momentarily outdated. However, this is considered a minor dis-
advantage.

3.3 Specific features
We now list selected Linux TCP features that differ from a typi-
cal TCP implementation. Linux implements a number of TCP en-
hancements proposed recently by IETF, such as Explicit Conges-
tion Notification [19] and D-SACK [8]. These features are not yet
widely deployed in TCP implementations, but are likely to be in
the future because they are promoted by the IETF.

3.3.1 Retransmission timer calculation
Some TCP implementations use a coarse-grained retransmission
timer, having granularities up to 500 ms. The round-trip time sam-
ples are often measured once in a round-trip time. In addition,
the present retransmission timer specification requires that the RTO
timer should not be less than one second. Considering that most of
the present networks provide round-trip times of less than 500 ms,
studying the feasibility of the traditional retransmission timer algo-
rithm standardized by IETF has not excited much interest.

Linux TCP has a retransmission timer granularity of 10 ms and the
sender takes a round-trip time sample for each segment. There-
fore it is capable of achieving more accurate estimations for the
retransmission timer, if the assumptions in the timer algorithm are
correct. Linux TCP deviates from the IETF specification by allow-
ing a minimum limit of 200 ms for the RTO. Because of the finer
timer granularity and the smaller minimum limit for the RTO timer,
the correctness of the algorithm for determining the RTO is more
important than with a coarse-grain timer. The traditional algorithm
for retransmission timeout computation has been found to be prob-
lematic in some networking environments [13]. This is especially
true if a fine-grained timer is used and the round-trip time samples
are taken for each segment.

Section 2 described two problems regarding the standard RTO al-
gorithm. First, when the round-trip time decreases suddenly, RTT
variance increases momentarily and causes the RTO value to be
overestimated. Second, the RTT variance can decay to a small
value when RTT samples are taken for every segment while the
window is large. This increases the risk for spurious RTOs that
result in unnecessary retransmissions.

The Linux RTO estimator attacks the first problem by giving less
weight for the measured mean deviance (MDEV) when the measured
RTT decreases significantly below the smoothed average. The re-
duced weight given for the MDEV sample is based on the multipli-

ers used in the standard RTO algorithm. First, the MDEV sample is
weighed by �� , corresponding to the multiplier used for the recent
RTT measurement in the SRTT equation given in Section 2. Sec-
ond, MDEV is further multiplied by �� corresponding to the weight
of 4 given for the RTTVAR in the standard RTO algorithm. There-
fore, choosing the weight of ���� for the current MDEV neutralizes
the effect of the sudden change of the measured RTT on the RTO
estimator, and assures that RTO holds a steady value when the mea-
sured RTT drops suddenly. This avoids the unwanted peak in the
RTO estimator value, while maintaining a conservative behavior. If
the round-trip times stay at the reduced level for the next measure-
ments, the RTO estimator starts to decrease slowly to a lower value.
In summary, the equation for calculating the MDEV is as follows:

if (R < SRTT and |SRTT - R| > MDEV)
�

MDEV <-
� ���� ������� 	 ���� �
� �#����� �$���	

else
�

MDEV <-
��
�
�����(��
�&� �#��������� �	

where R is the recent round-trip time measurement, and SRTT is the
smoothed average round-trip time. Linux does not directly modify
the RTTVAR variable, but makes the adjustments first on the MDEV
variable which is used in adjusting the RTTVAR which determines
the RTO. The SRTT and RTO estimator variables are set according
to the standard specification.

A separate MDEV variable is needed, because the Linux TCP sender
allows decreasing the RTTVAR variable only once in a round-trip
time. However, RTTVAR is increased immediately when MDEV
gives a higher estimate, thus RTTVAR is the maximum of the MDEV
estimates during the last round-trip time. The purpose of this so-
lution is to avoid the problem of underestimated RTOs due to low
round-trip time variance, which was the second of the problems
described earlier.

Figure 3 compares the result of RTO calculation of the standard
RTO estimator algorithm (RFC 2988) and the Linux RTO algorithm
when given round-trip times are measured (mrtt). In this graph, the
RTT measurement granularity is 10 ms for both algorithms, and
the samples are taken for each packet. The figure shows that when
RTT measurements tend to stay in level, the standard RTO estima-
tor decays to the level of measured RTT, making the TCP sender
vulnerable to spurious RTOs. The Linux RTO estimator, on the
other hand, is reduced only once in a round-trip time and the RTT
variance used in calculation is 50 ms at its minimum. Furthermore,
when RTT suddenly decreases, the standard RTO estimator is mo-
mentarily increased, whereas the Linux RTO estimator is steadily
decreased.

Linux TCP supports the TCP Timestamp option that allows accu-
rate round-trip time measurement also for retransmitted segments,
which is not possible without using timestamps. Having a proper
algorithm for RTO calculation is even more important with the
timestamp option. According to our experiments, the algorithm
proposed above gives reasonable RTO estimates also with TCP
timestamps, and avoids the pitfalls of the standard algorithm.

The RTO timer is reset every time an acknowledgement advancing
the window arrives at the sender. The RTO timer is also reset when
the sender enters the Recovery state and retransmits the first seg-

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

sample count

tim
e

(*
 1

0
m

s)

mrtt
RFC 2988
Linux

Figure 3: Linux RTO calculation with generated round-trip
times.

ment. During the rest of the Recovery state the RTO timer is not
reset, but a packet is marked lost, if more than RTO’s worth of time
has passed from the first transmission of the same segment. This al-
lows more efficient retransmission of packets during the Recovery
state even though the information from acknowledgements is not
sufficient enough to declare the packet lost. However, this method
can only be used for segments not yet retransmitted.

3.3.2 Undoing congestion window adjustments
Because the currently used mechanisms on the Internet do not pro-
vide explicit loss information to the TCP sender, it needs to spec-
ulate when keeping track of which packets are lost in the network.
For example, reordering is often a problem for the TCP sender be-
cause it cannot distinguish whether the missing ACKs are caused
by a packet loss or by a delayed packet that will arrive later. The
Linux TCP sender can, however, detect unnecessary congestion
window adjustments afterwards, and do the necessary corrections
in the congestion control parameters. For this purpose, when en-
tering the Recovery or Loss states, the Linux TCP sender stores the
old ssthresh value prior to adjusting it.

A delayed segment can trigger an unnecessary retransmission, ei-
ther due to spurious retransmission timeout or due to packet re-
ordering. The Linux TCP sender has mainly two methods for de-
tecting afterwards that it unnecessarily retransmitted the segment.
Firstly, the receiver can inform by a Duplicate-SACK (D-SACK)
that the incoming segment was already received. If all segments
retransmitted during the last recovery period are acknowledged by
D-SACK, the sender knows that the recovery period was unneces-
sarily triggered. Secondly, the Linux TCP sender can detect unnec-
essary retransmissions by using the TCP timestamp option attached
to each TCP header. When this option is in use, the TCP receiver
echoes the timestamp of the segment that triggered the acknowl-
edgement back to the sender, allowing the TCP sender to conclude
whether the ACK was triggered by the original or by the retrans-
mitted segment. The Eifel algorithm uses a similar method for de-
tecting spurious retransmissions.

When an unnecessary retransmission is detected by using TCP times-
tamps, the logic for undoing the congestion window adjustments is

simple. If the sender is in the Loss state, i.e. it is retransmitting
after an RTO which was triggered unnecessarily, the lost mark is
removed from all segments in the scoreboard, causing the sender
to continue with transmitting new data instead of retransmissions.
In addition, cwnd is set to the maximum of its present value and
ssthresh * 2, and the ssthresh is set to its prior value stored
earlier. Since ssthresh was set to the half of the number of out-
standing segments when the packet loss is detected, the effect is to
continue in congestion avoidance at a similar rate as when the Loss
state was entered.

Unnecessary retransmission can also be detected by the TCP times-
tamps while the sender is in the Recovery state. In this case the Re-
covery state is finished normally, with the exception that the con-
gestion window is increased to the maximum of its present value
and ssthresh * 2, and ssthresh is set to its prior value. In
addition, when a partial ACK for the unnecessary retransmission
arrives, the sender does not mark the next unacknowledged seg-
ment lost, but continues according to present scoreboard markings,
possibly transmitting new data.

In order to use D-SACK for undoing the congestion control pa-
rameters, the TCP sender tracks the number of retransmissions that
have to be declared unnecessary before reverting the congestion
control parameters. When the sender detects a D-SACK block, it
reduces the number of revertable outstanding retransmissions by
one. If the D-SACK blocks eventually acknowledge every retrans-
mission in the last window as unnecessarily made and the retrans-
mission counter falls to zero due to D-SACKs, the sender increases
the congestion window and reverts the last modification to ssthresh
similarly to what was described above.

While handling the unnecessary retransmissions, the Linux TCP
sender maintains a metric measuring the observed reordering in the
network in variable reordering. This variable is also stored in
the destination cache after the connection is finished. reordering
is updated when the Linux sender detects unnecessary retransmis-
sion during the Recovery state by TCP timestamps or D-SACK,
or when an incoming acknowledgement is for an unacknowledged
hole in the sequence number space below selectively acknowledged
sequence numbers. In these cases reordering is set to the num-
ber of segments between the highest segment acknowledged and
the currently acknowledged segment, in other words, it corresponds
to the maximum distance of reordering in segments detected in
the network. Additionally, if FACK was in use when reordering
was detected, the sender switches to use the conservative variant of
SACK, which is not too aggressive in a network involving reorder-
ing.

3.3.3 Delayed acknowledgements
The TCP specifications state that the TCP receiver should delay the
acknowledgements for a maximum time of 500 ms in order to avoid
the Silly Window Syndrome [5]. The specifications do not mandate
any specific delay time, but many implementations use a static de-
lay of 200 ms for this purpose. However, a fixed delay time may not
be adequate in all networking environments with different proper-
ties. Thus, the Linux TCP receiver adjusts the timer for delaying
acknowledgements dynamically to estimate the doubled packet in-
terarrival time, while sending acknowledgements for at least every
second incoming segment. A similar approach was also suggested
in an early RFC by Clark [5]. However, the maximum delay for
sending an acknowledgement is limited to 200 ms.

Using delayed ACKs slows down the TCP sender, because it in-
creases the congestion window size based on the rate of incoming
acknowledgements. In order to speed up the transmission in the
beginning of the slow start, the Linux TCP receiver refrains from
delaying the acknowledgements for the first incoming segments at
the beginning of the connection. This is called quick acknowledge-
ments.

The number of quick acknowledgements sent by the Linux TCP re-
ceiver is at most half of the number of segments required to reach
the receiver’s advertised window limit. Therefore, using quick ac-
knowledgements does not open the opportunity for the Silly Win-
dow Syndrome to occur. In addition, the Linux receiver moni-
tors whether the traffic appears to be bidirectional, in which case
it disables the quick acknowledgements mechanism. This is done
to avoid transmitting pure acknowledgements unnecessarily when
they can be piggybacked with data segments.

3.3.4 Congestion Window Validation
The Linux sender reduces the congestion window size if it has not
been fully used for one RTO estimate’s worth of time. This scheme
is similar to the Congestion Window Validation suggested by the
IETF [9]. The motivation for Congestion Window Validation is
that if the congestion window is not fully used, the TCP sender
may have an invalid estimate of the present network conditions.
Therefore, a network-friendly sender should reduce the congestion
window as a precaution.

When the Congestion Window Validation is triggered, the TCP
sender decreases the congestion window to half way between the
actually used window and the present congestion window. Before
doing this, ssthresh is set to the maximum of its current value
and

�� of the congestion window, as suggested in RFC 2861.

3.3.5 Explicit Congestion Notification
Linux implements Explicit Congestion Notification (ECN) to al-
low the ECN-capable congested routers to report congestion be-
fore dropping packets. A congested router can mark a bit in the IP
header, which is then echoed to the TCP sender by an ECN-capable
receiver. When the TCP sender gets the congestion signal, it enters
the CWR state, in which it gradually decreases the congestion win-
dow to half of its current size at the rate of one segment for two
incoming acknowledgements. Besides making it possible for the
TCP sender to avoid some of the congestion losses, ECN is ex-
pected to improve the network performance when it is more widely
deployed to the Internet routers.

4. LINUX AND IETF SPECIFICATIONS
Since Linux combines the features specified in different IETF spec-
ifications following certain design principles described earlier, some
IETF specifications are not fully implemented according to the al-
gorithms given in the RFCs. Table 1 shows which RFC specifica-
tions related to TCP congestion control are implemented in Linux.
Some of the features shown in the table can be found in Linux, but
they do not fully follow the given specification in all details. These
features are marked with an asterisk in the table, and we will ex-
plain the differences between Linux and the corresponding RFC in
more detail below.

Linux fast recovery does not fully follow the behavior given in
RFC 2582. First, the sender adjusts the threshold for triggering
fast retransmit dynamically, based on the observed reordering in

Table 1: TCP congestion control related IETF specifications
implemented in Linux. + = implemented, * = implemented, but
details differ from specification.

Specification Status
RFC 1323 (Perf. Extensions) +
RFC 2018 (SACK) +
RFC 2140 (Ctrl block sharing) +
RFC 2581 (Congestion control) *
RFC 2582 (NewReno) *
RFC 2861 (Cwnd validation) +
RFC 2883 (D-SACK) +
RFC 2988 (RTO) *
RFC 3042 (Lim. xmit) +
RFC 3168 (ECN) *

the network. Therefore, it is possible that the third duplicate ACK
does not trigger a fast retransmit in all situations. Second, the Linux
sender does not artificially adjust the congestion window during
fast recovery, but maintains its size while adjusting the in flight
estimator based on incoming acknowledgements. The different ap-
proach alone would not cause significant effect on TCP perfor-
mance, but when entering the fast recovery, the Linux sender does
not reduce the congestion window size at once, as RFC 2582 sug-
gests. Instead, the sender decreases the congestion window size
gradually, by one segment per two incoming acknowledgements,
until the congestion window meets half of its original value. This
approach was originally suggested by Hoe [10], and later it was
named Rate-halving according to an expired Internet Draft by Mathis,
et. al. Rate-halving avoids pauses in transmission, but is slightly
too aggressive after the congestion notification, until the congestion
window has reached a proper size.

As described in Section 3.3, the round-trip time estimator and RTO
calculation in Linux differs from the Proposed Standard specifica-
tion by the IETF. Linux follows the basic patterns given in RFC 2988,
but the implementation differs from the specification in adjusting
the RTTVAR. A significant difference between RFC 2988 and Linux
implementation is that Linux uses the minimum RTO limit of 200 ms
instead of 1000 ms given in RFC 2988.

RFC 2018 defines the format and basic usage of the SACK blocks,
but does not give detailed specification of the congestion control
algorithm that should be used with SACK. Therefore, applying the
FACK congestion control algorithm, as Linux does by default, does
not violate the current IETF specifications. However, since FACK
results in overly aggressive behavior when packets have been re-
ordered in the network, the Linux sender changes from FACK to a
more conservative congestion control algorithm when it detects re-
ordering. The IETF currently has a work in progress draft defining
a congestion control algorithm to be used with SACK [3], which
is similar to the conservative SACK alternative in Linux. Further-
more, Linux follows the D-SACK basics given in RFC 2883.

Linux implements RFC 1323, which defines the TCP timestamp
and window scaling options, and the limited transmit enhancement
defined in RFC 3042, which is taken care of by the Disorder state
of the Linux TCP state machine. However, if the reordering
estimator has been increased from the default of three segments,
the Linux TCP sender transmits a new segment for each incom-
ing acknowledgement, not only for the two first ACKs. Finally,
the Linux destination cache provides functionality similar to the

RFC 2140 that proposes Control Block Interdependence between
the TCP connections.

5. WHAT COULD BE DIFFERENT?
Currently the Linux TCP implementation is a fixed part of the ker-
nel core, and it cannot be compiled as a kernel module. This means,
for example, that if one does not use methods like User-Mode Linux,
the machine needs to be rebooted in order to activate experimental
modifications compiled in the TCP implementation.

This section discusses the possibility of either compiling the TCP
as a kernel module, thus allowing loading of alternative TCP imple-
mentations without booting the machine, or as a user-space library
that would be even easier to be loaded dynamically and debugged
if so needed. Neither of these alternatives are impossible by def-
inition, since there currently are SCTP [22] implementations for
Linux both as a kernel module, and as a user library.

5.1 TCP as a kernel module
Traditionally, the Linux TCP and IPv4 implementations have been
a part of the monolithic kernel core and they cannot be detached,
even though for example IPv6 code can be compiled as a dynami-
cally loadable kernel module. Although some reports of successful
efforts of making modularized TCP implementations are posted to
the mailing lists, none of the code patches have ever made their way
to the main kernel implementation.

Having the TCP implementation as a kernel module would be de-
sirable in order to allow including TCP modifications in the kernel
without having to reboot the machine. As of today, several TCP
enhancements have been presented, and the TCP implementor has
a number of design choices to select from. Although many of the
TCP parameters can be adjusted in Linux by setting sysctl param-
eters, changing the basic implementation would still benefit people
who want to experiment with new TCP modifications.

The presumed main reason for not having a TCP module in the
main kernel have been that the developers deciding on the network-
ing features have not seen it important enough to go for the rel-
atively large effort of converting the current TCP implementation
in to a kernel module. The TCP implementation has a number of
shared data structures with the IP code, causing the required mod-
ifications to be a notable effort. Moreover, since TCP and UDP
protocols are in use most of the time in a modern Unix system, the
capability of dynamically loading and unloading the TCP imple-
mentation is not very useful for a common user.

5.2 TCP as a user-space implementation
To take the idea of modular TCP even further, it may be interest-
ing to discuss whether it would be feasible to take the TCP code
completely out of the kernel and implement TCP as a part of C li-
brary. Currently, the kernel provides mechanisms that almost allow
this kind of approach, such as raw sockets, packet sockets, or the
netfilter interface, which can be used to handle network packets in
user-space hooks. However, these mechanisms are not designed for
to be used in replacing the TCP or UDP protocol handling, so they
would need to be slightly modified to better support this kind of
use.

Benefits of an user-space TCP would be quite obvious. if the pro-
tocol would be included as a part of the user applications, different
users at the same host could use their own TCP preferences. De-
bugging the TCP code would be as easy as running gdb, and fatal

errors in the code could cause a segment violation at their worst,
instead of crashing the machine.

There are also a number of drawbacks in having TCP as a user-
space library. Firstly, the performance on highly loaded systems,
such as busy web servers, can be questioned. Context switches be-
tween kernel and user space may become a burden that seriously
deflates the overall system performance. Moreover, considering
security in multi-user systems, it might not be wise to give the
users a chance to introduce their own TCP variants, even though
it might require root privileges. In addition, there are system-wide
data, such as the results of Path MTU discovery, that would need
to be shared between all TCP connections in the same system, and
would probably be better located in the kernel. However, it could
be possible to provide a common interface that would optionally
allow use of user-space TCP instead of the kernel TCP implemen-
tation when system administrator has specifically enabled it. In
this model, experimental TCP modification could be first tested as
a user-space code, after which it could be moved to kernel with lit-
tle effort. This kind of development model has been used in some
Real-Time Linux systems, such as RTAI.

6. CONCLUDING REMARKS
This paper presented the basic ideas of the Linux TCP implementa-
tion, and gave a description of the details in Linux TCP that differ
from a conventional TCP implementation. Linux implements many
of the recent TCP enhancements suggested by the IETF, some of
which are still at a draft state. Therefore Linux makes it possible to
test the interoperability of the recent enhancements in an actual net-
work. For example, Linux had the first implementation of the Ex-
plicit Congestion Notification enhancement, which revealed bugs
in several firewall implementations. The current design of Linux
retransmission engine makes it easy to implement and study new
alternative congestion control policies also in future.

The Linux TCP behavior is strongly governed by the packet con-
servation principle and the sender’s estimate of which packets are
still in the network, which are acknowledged, and which are de-
clared lost. Whether to retransmit or transmit new data depends
on the markings made in the TCP sender’s scoreboard. In most of
the cases none of the requirements given by the IETF are violated,
although in marginal scenarios the detailed behavior may be dif-
ferent from what is given in the IETF specifications. However, the
TCP essentials, in particular the congestion control principles and
conservation of packets, are maintained in all cases.

The selected approach can also be problematic when implementing
some features. Because Linux combines the features in different
IETF specifications under the same congestion control engine, an
uncareful implementation may break some parts of the retransmis-
sion logic. For example, if the balance between congestion window
and in flight variable is broken, fast recovery algorithm may
not work correctly in all situations.

7. ACKNOWLEDGEMENTS
This work is based on an earlier paper co-authored with Alexey
Kuznetsov and published in Usenix 2002 conference [20]. Alexey
has provided a great amount of feedback that has affected this work.

8. REFERENCES
[1] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing TCP’s

Loss Recovery Using Limited Transmit. RFC 3042, Jan.
2001.

[2] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control. RFC 2581, Apr. 1999.

[3] E. Blanton, M. Allman, K. Fall, and L. Wang. A
Conservative SACK-based Loss Recovery Algorithm for
TCP. Internet draft “draft-allman-tcp-sack-13.txt”, Oct.
2002. Work in progress.

[4] D. Borman, R. Braden, and V. Jacobson. TCP Extensions for
High Performance. RFC 1323, May 1992.

[5] D. D. Clark. Window and Acknowledgement Strategy in
TCP. RFC 813, July 1982.

[6] K. Fall and S. Floyd. Simulation-based Comparisons of
Tahoe, Reno, and SACK TCP. ACM Computer
Communication Review, 26(3), July 1996.

[7] S. Floyd and T. Henderson. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 2582, Apr. 1999.

[8] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An
Extension to the Selective Acknowledgment (SACK) Option
for TCP. RFC 2883, July 2000.

[9] M. Handley, J. Padhye, and S. Floyd. TCP Congestion
Window Validation. RFC 2861, June 2000.

[10] J. Hoe. Start-up Dynamics of TCP’s Congestion Control and
Avoidance Schemes. Master’s thesis, Massachusetts Institute
of Technology, June 1995.

[11] V. Jacobson. Congestion Avoidance and Control. In
Proceedings of ACM SIGCOMM ’88, pages 314–329, Aug.
1988.

[12] R. Ludwig and R. H. Katz. The Eifel Algorithm: Making
TCP Robust Against Spurious Retransmissions. ACM
Computer Communication Review, 30(1), Jan. 2000.

[13] R. Ludwig and K. Sklower. The Eifel Retransmission Timer.
ACM Computer Communication Review, 30(3), July 2000.

[14] M. Mathis and J. Mahdavi. Forward acknowledgement:
Refining TCP Congestion Control. In Proceedings of ACM
SIGCOMM ’96, Oct. 1996.

[15] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgement Options. RFC 2018, Oct. 1996.

[16] V. Paxson and M. Allman. Computing TCP’s Retransmission
Timer. RFC 2988, Nov. 2000.

[17] J. Postel. Internet Control Message Protocol. RFC 792, Sept.
1981.

[18] J. Postel. Transmission Control Protocol. RFC 793, Sept.
1981.

[19] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168,
Sept. 2001.

[20] P. Sarolahti and A. Kuznetsov. Congestion Control in Linux
TCP. In Proceedings of Usenix 2002/Freenix Track, pages
49–62, Monterey, CA, USA, June 2002.

[21] W. Stevens. TCP/IP Illustrated, Volume 1; The Protocols.
Addison Wesley, 1995.

[22] R. Stewart, et. al. Stream Control Transmission Protocol.
RFC 2960, Oct. 2000.

