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Abstract—An increasing number of high performance inter-
networking protocol routers, LAN and asynchronous transfer
mode (ATM) switches use a switched backplane based on a
crossbar switch. Most often, these systems use input queues
to hold packets waiting to traverse the switching fabric. It is
well known that if simple first in first out (FIFO) input queues
are used to hold packets then, even under benign conditions,
head-of-line (HOL) blocking limits the achievable bandwidth
to approximately 58.6% of the maximum. HOL blocking can
be overcome by the use of virtual output queueing, which is
described in this paper. A scheduling algorithm is used to con-
figure the crossbar switch, deciding the order in which packets
will be served. Recent results have shown that with a suitable
scheduling algorithm, 100% throughput can be achieved. In
this paper, we present a scheduling algorithm callediSLIP.
An iterative, round-robin algorithm, iSLIP can achieve 100%
throughput for uniform traffic, yet is simple to implement in
hardware. Iterative and noniterative versions of the algorithms
are presented, along with modified versions for prioritized traffic.
Simulation results are presented to indicate the performance
of iSLIP under benign and bursty traffic conditions. Prototype
and commercial implementations ofiSLIP exist in systems with
aggregate bandwidths ranging from 50 to 500 Gb/s. When the
traffic is nonuniform, iSLIP quickly adapts to a fair scheduling
policy that is guaranteed never to starve an input queue. Finally,
we describe the implementation complexity ofiSLIP. Based on
a two-dimensional (2-D) array of priority encoders, single-chip
schedulers have been built supporting up to 32 ports, and making
approximately 100 million scheduling decisions per second.

Index Terms—ATM switch, crossbar switch, input-queueing,
IP router, scheduling.

I. INTRODUCTION

I N AN ATTEMPT to take advantage of the cell-switching
capacity of the asynchronous transfer mode (ATM), there

has recently been a merging of ATM switches and Inter-
net Protocol (IP) routers [29], [32]. This idea is already
being carried one step further, with cell switches forming
the core, or backplane, of high-performance IP routers [26],
[31], [6], [4]. Each of these high-speed switches and routers
is built around a crossbar switch that is configured using a
centralized scheduler, and each uses a fixed-size cell as a
transfer unit. Variable-length packets are segmented as they
arrive, transferred across the central switching fabric, and
then reassembled again into packets before they depart. A
crossbar switch is used because it is simple to implement and
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is nonblocking; it allows multiple cells to be transferred across
the fabric simultaneously, alleviating the congestion found on
a conventional shared backplane. In this paper, we describe an
algorithm that is designed to configure a crossbar switch using
a single-chip centralized scheduler. The algorithm presented
here attempts to achieve high throughput for best-effort unicast
traffic, and is designed to be simple to implement in hardware.
Our work was motivated by the design of two such systems:
the Cisco 12 000 GSR, a 50-Gb/s IP router, and theTiny Tera:
a 0.5-Tb/s MPLS switch [7].

Before using a crossbar switch as a switching fabric, it is
important to consider some of the potential drawbacks; we
consider three here. First, the implementation complexity of an

-port crossbar switch increases with making crossbars
impractical for systems with a very large number of ports.
Fortunately, the majority of high-performance switches and
routers today have only a relatively small number of ports
(usually between 8 and 32). This is because the highest
performance devices are used at aggregation points where port
density is low.1 Our work is, therefore, focussed on systems
with low port density. A second potential drawback of crossbar
switches is that they make it difficult to provide guaranteed
qualities of service. This is because cells arriving to the switch
must contend for access to the fabric with cells at both the
input and the output. The time at which they leave the input
queues and enter the crossbar switching fabric is dependent on
other traffic in the system, making it difficult to control when
a cell will depart. There are two common ways to mitigate
this problem. One is to schedule the transfer of cells from
inputs to outputs in a similar manner to that used in a time-
slot interchanger, providing peak bandwidth allocation for
reserved flows. This method has been implemented in at least
two commercial switches and routers.2 The second approach
is to employ “speedup,” in which the core of the switch
runs faster than the connected lines. Simulation and analytical
results indicate that with a small speedup, a switch will deliver
cells quickly to their outgoing port, apparently independent of
contending traffic [27], [37]–[41]. While these techniques are
of growing importance, we restrict our focus in this paper to
the efficient and fast scheduling ofbest-efforttraffic.

1Some people believe that this situation will change in the future, and that
switches and routers with large aggregate bandwidths will support hundreds
or even thousands of ports. If these systems become real, then crossbar
switches—and the techniques that follow in this paper—may not be suitable.
However, the techniques described here will be suitable for a few years hence.

2A peak-rate allocation method was supported by the DEC AN2
Gigaswitch/ATM [2] and the Cisco Systems LS2020 ATM Switch.
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Fig. 1. An input-queued switch with VOQ. Note that head of line blocking
is eliminated by using a separate queue for each output at each input.

A third potential drawback of crossbar switches is that they
(usually) employ input queues. When a cell arrives, it is placed
in an input queue where it waits its turn to be transferred across
the crossbar fabric. There is a popular perception that input-
queued switches suffer frominherently low performance due
to head-of-line (HOL) blocking. HOL blocking arises when
the input buffer is arranged as a single first in first out (FIFO)
queue: a cell destined to an output that is free may be held
up in line behind a cell that is waiting for an output that is
busy. Even with benign traffic, it is well known that HOL can
limit thoughput to just [16]. Many techniques
have been suggested for reducing HOL blocking, for example
by considering the first cells in the FIFO queue, where

[8], [13], [17]. Although these schemes can improve
throughput, they are sensitive to traffic arrival patterns and
may perform no better than regular FIFO queueing when the
traffic is bursty. But HOL blocking can be eliminated by using
a simple buffering strategy at each input port. Rather than
maintain a single FIFO queue for all cells, each input maintains
a separate queue for each output as shown in Fig. 1. This
scheme is called virtual output queueing (VOQ) and was first
introduced by Tamiret al. in [34]. HOL blocking is eliminated
because cells only queue behind cells that are destined to
the same output; no cell can be held up by a cell ahead of
it that is destined to a different output. When VOQ’s are
used, it has been shown possible to increase the throughput
of an input-queued switch from 58.6% to 100% for both
uniform and nonuniform traffic [25], [28]. Crossbar switches
that use VOQ’s have been employed in a number of studies
[1], [14], [19], [23], [34], research prototypes [26], [31], [33],
and commercial products [2], [6]. For the rest of this paper,
we will be considering crossbar switches that use VOQ’s.

When we use a crossbar switch, we require a scheduling
algorithm that configures the fabric during each cell time and
decides which inputs will be connected to which outputs; this
determines which of the VOQ’s are served in each cell
time. At the beginning of each cell time, a scheduler examines
the contents of the input queues and determines a conflict-
free match between inputs and outputs. This is equivalent
to finding a bipartite matching on a graph with vertices
[2], [25], [35]. For example, the algorithms described in [25]
and [28] that achieve 100% throughput, use maximum weight

bipartite matching algorithms [35], which have a running-time
complexity of

A. Maximum Size Matching

Most scheduling algorithms described previously are heuris-
tic algorithms that approximate a maximumsize3 matching
[1], [2], [5], [8], [18], [30], [36]. These algorithms attempt
to maximize the number of connections made in each cell
time, and hence, maximize the instantaneous allocation of
bandwidth. The maximum size matching for a bipartite graph
can be found by solving an equivalent network flow problem
[35]; we call the algorithm that does thismaxsize. There exist
many maximum-size bipartite matching algorithms, and the
most efficient currently known converges in time
[12].4 The problem with this algorithm is that although it is
guaranteed to find a maximum match, for our application it
is too complex to implement in hardware and takes too long
to complete.

One question worth asking is “Does themaxsizealgorithm
maximize the throughput of an input-queued switch?” The
answer is no;maxsizecan cause some queues to be starved of
service indefinitely. Furthermore, when the traffic is nonuni-
form, maxsizecannot sustain very high throughput [25]. This is
because it does not consider the backlog of cells in the VOQ’s,
or the time that cells have been waiting in line to be served.

For practical high-performance systems, we desire algo-
rithms with the following properties.

• High Throughput:An algorithm that keeps the backlog
low in the VOQ’s; ideally, the algorithm will sustain an
offered load up to 100% on each input and output.

• Starvation Free: The algorithm should not allow a
nonempty VOQ to remain unserved indefinitely.

• Fast: To achieve the highest bandwidth switch, it is im-
portant that the scheduling algorithm does not become the
performance bottleneck; the algorithm should therefore
find a match as quickly as possible.

• Simple to Implement:If the algorithm is to be fast
in practice, it must be implemented in special-purpose
hardware, preferably within a single chip.

The algorithm presented in this paper is designed
to meet these goals, and is currently implemented in a 16-
port commercial IP router with an aggregate bandwidth of 50
Gb/s [6], and a 32-port prototype switch with an aggregate
bandwidth of 0.5 Tb/s [26]. is based on the parallel
iterative matching algorithm (PIM) [2], and so to understand
its operation, we start by describing PIM. Then, in Section II,
we describe and its performance. We then consider
some small modifications to for various applications,
and finally consider its implementation complexity.

B. Parallel Iterative Matching

PIM was developed by DEC Systems Research Center for
the 16-port, 16 Gb/s AN2 switch [2].5 Because it forms the

3In some literature, the maximumsize matching is called the maximum
cardinality matching or just the maximum bipartite matching.

4This algorithm is equivalent to Dinic’s algorithm [9].
5This switch was commercialized as the Gigaswitch/ATM.
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(a)

(b) (c)

Fig. 2. An example of the three steps that make up one iteration of the PIM
scheduling algorithm [2]. In this example, the first iteration does not match
input 4 to output 4, even though it does not conflict with other connections.
This connection would be made in the second iteration. (a) Step 1:Request.
Each input makes a request to each output for which it has a cell. This is shown
here as a graph with all weightswij = 1: (b) Step 2:Grant. Each output
selects an input uniformly among those that requested it. In this example,
inputs 1 and 3 both requested output 2. Output 2 chose to grant to input 3.
(c) Step 3:Accept. Each input selects an output uniformly among those that
granted to it. In this example, outputs 2 and 4 both granted to input 3. Input
3 chose to accept output 2.

basis of the algorithm described later, we will describe
the scheme in detail and consider some of its performance
characteristics.

PIM usesrandomnessto avoid starvation and reduce the
number of iterations needed to converge on a maximal-sized
match. A maximal-sized match (a type of on-line match) is
one that adds connections incrementally, without removing
connections made earlier in the matching process. In general, a
maximal match is smaller than a maximum-sized match, but is
much simpler to implement. PIM attempts to quickly converge
on a conflict-free maximal match in multiple iterations, where
each iteration consists of three steps. All inputs and outputs
are initially unmatched and only those inputs and outputs not
matched at the end of one iteration are eligible for matching in
the next. The three steps of each iteration operate in parallel on
each output and input and are shown in Fig. 2. The steps are:

Step 1: Request. Each unmatched input sends a request to
every output for which it has a queued cell.

Step 2: Grant. If an unmatched output receives any re-
quests, it grants to one by randomly selecting a request
uniformly over all requests.

Step 3: Accept. If an input receives a grant, it accepts one
by selecting an output randomly among those that granted to
this output.

By considering only unmatched inputs and outputs, each
iteration only considers connections not made by earlier iter-
ations.

Note that the independent output arbitersrandomly select
a request among contending requests. This has three effects:
first, the authors in [2] show that each iteration will match
or eliminate, on average, at least of the remaining pos-
sible connections, and thus, the algorithm will converge to a
maximal match, on average, in iterations. Second,
it ensures that all requests will eventually be granted, ensuring

Fig. 3. Example of unfairness for PIM under heavy oversubscribed load with
more than one iterations. Because of the random and independent selection
by the arbiters, output 1 will grant to each input with probability 1/2, yet
input 1 will only accept output 1 a quarter of the time. This leads to different
rates at each output.

that no input queue is starved of service. Third, it means that
no memory or state is used to keep track of how recently a
connection was made in the past. At the beginning of each cell
time, the match begins over, independently of the matches that
were made in previous cell times. Not only does this simplify
our understanding of the algorithm, but it also makes analysis
of the performance straightforward; there is no time-varying
state to consider, except for the occupancy of the input queues.

Using randomness comes with its problems, however. First,
it is difficult and expensive to implement at high speed; each
arbiter must make a random selection among the members of
a time-varying set. Second, when the switch is oversubscribed,
PIM can lead to unfairness between connections. An extreme
example of unfairness for a 22 switch when the inputs are
oversubscribed is shown in Fig. 3. We will see examples later
for which PIM and some other algorithms are unfair when
no input or output is oversubscribed. Finally, PIM does not
perform well for a single iteration; it limits the throughput
to approximately 63%, only slightly higher than for a FIFO
switch. This is because the probability that an input will
remain ungranted is hence as increases, the
throughput tends to Although the algorithm
will often converge to a good match after several iterations,
the time to converge may affect the rate at which the switch
can operate. We would prefer an algorithm that performs well
with just a single iteration.

II. THE SLIP ALGORITHM WITH A SINGLE ITERATION

In this section we describe and evaluate theSLIP algorithm.
This section concentrates on the behavior ofSLIP with just
a single iteration per cell time. Later, we will considerSLIP
with multiple iterations.

The SLIP algorithm uses rotating priority (“round-robin”)
arbitration to schedule each active input and output in turn.
The main characteristic ofSLIP is its simplicity; it is readily
implemented in hardware and can operate at high speed. We
find that the performance ofSLIP for uniform traffic is
high; for uniform independent identically distributed (i.i.d.)
Bernoulli arrivals, SLIP with a single iteration can achieve
100% throughput. This is the result of a phenomenon that we
encounter repeatedly; the arbiters inSLIP have a tendency to
desynchronizewith respect to one another.

A. Basic Round-Robin Matching Algorithm

SLIP is a variation of simple basic round-robin matching
algorithm (RRM). RRM is perhaps the simplest and most
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(a)

(b) (c)

Fig. 4. Example of the three steps of the RRM matching algorithm. (a) Step
1: Request. Each input makes a request to each output for which it has a cell.
Step 2:Grant. Each output selects the next requesting input at or after the
pointer in the round-robin schedule. Arbiters are shown here for outputs 2 and
4. Inputs 1 and 3 both requested output 2. Sinceg2 = 1; output 2 grants to
input 1.g2 andg4 are updated to favor the input after the one that is granted.
(b) Step 3:Accept.Each input selects at most one output. The arbiter for input
1 is shown. Sincea1 = 1; input 1 accepts output 1.a1 is updated to point to
output 2. (c) When the arbitration is completed, a matching of size two has
been found. Note that this is less than the maximum sized matching of three.

obvious form of iterative round-robin scheduling algorithms,
comprising a 2-D array of round-robin arbiters; cells are
scheduled by round-robin arbiters at each output, and at each
input. As we shall see, RRM does not perform well, but it
helps us to understand howSLIP performs, so we start here
with a description of RRM. RRM potentially overcomes two
problems in PIM:complexityandunfairness. Implemented as
priority encoders, the round-robin arbiters are much simpler
and can perform faster than random arbiters. The rotating
priority aids the algorithm in assigning bandwidth equally
and more fairly among requesting connections. The RRM
algorithm, like PIM, consists of three steps. As shown in
Fig. 4, for an switch, each round-robin schedule
contains ordered elements. The three steps of arbitration
are:

Step 1: Request. Each input sends a request to every output
for which it has a queued cell.

Step 2: Grant. If an output receives any requests, it chooses
the one that appears next in a fixed, roundrobin schedule
starting from the highest priority element. The output notifies
each input whether or not its request was granted. The pointer

to the highest priority element of the round-robin schedule is
incremented (modulo to one location beyond the granted
input.

Step 3: Accept. If an input receives a grant, it accepts the
one that appears next in a fixed, round-robin schedule starting
from the highest priority element. The pointerto the highest
priority element of the round-robin schedule is incremented
(modulo to one location beyond the accepted output.

B. Performance of RRM for Bernoulli Arrivals

As an introduction to the performance of the RRM algo-
rithm, Fig. 5 shows the average delay as a function of offered
load for uniform independent and identically distributed (i.i.d.)

Fig. 5. Performance of RRM andiSLIP compared with PIM for i.i.d.
Bernoulli arrivals with destinations uniformly distributed over all outputs.
Results obtained using simulation for a 16� 16 switch. The graph shows the
average delay per cell, measured in cell times, between arriving at the input
buffers and departing from the switch.

Fig. 6. 2�2 switch with RRM algorithm under heavy load. In the example
of Fig. 7, synchronization of output arbiters leads to a throughout of just 50%.

Bernoulli arrivals. For an offered load of just 63% RRM
becomes unstable.6

The reason for the poor performance of RRM lies in the
rules for updating the pointers at the output arbiters. We
illustrate this with an example, shown in Fig. 6. Both inputs
1 and 2 are under heavy load and receive a new cell for
both outputs during every cell time. But because the output
schedulers move in lock-step, only one input is served during
each cell time. The sequence of requests, grants, and accepts
for four consecutive cell times are shown in Fig. 7. Note that
the grant pointers change in lock-step: in cell time 1, both
point to input 1, and during cell time 2, both point to input
2, etc. This synchronization phenomenon leads to a maximum
throughput of just 50% for this traffic pattern.

Synchronization of the grant pointers also limits perfor-
mance with random arrival patterns. Fig. 8 shows the number
of synchronized output arbiters as a function of offered load.
The graph plots the number of nonunique’s, i.e., the number
of output arbiters that clash with another arbiter. Under low

6The probability that an input will remain ungranted is(N � 1=N)N ;
hence asN increases, the throughput tends to1� (1=e) � 63%:
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Fig. 7. Illustration of low throughput for RRM caused by synchronization
of output arbiters. Note that pointers[gi] stay synchronized, leading to a
maximum throughput of just 50%.

Fig. 8. Synchronization of output arbiters for RRM andiSLIP for i.i.d.
Bernoulli arrivals with destinations uniformly distributed over all outputs.
Results obtained using simulation for a 16� 16 switch.

offered load, cells arriving for output will find in a
random position, equally likely to grant to any input. The
probability that for all is
which for implies that the expected number of

arbiters with the same highest priority value is 9.9. This agrees
well with the simulation result for RRM in Fig. 8. As the
offered load increases, synchronized output arbiters tend to
move in lockstep and the degree of synchronization changes
only slightly.

III. T HE SLIP ALGORITHM

The algorithm improves upon RRM by reducing the
synchronization of the output arbiters. achieves this by
not moving the grant pointers unless the grant is accepted.

is identical to RRM except for a condition placed on
updating the grant pointers. TheGrantstep of RRM is changed
to:

Step 2: Grant. If an output receives any requests, it chooses
the one that appears next in a fixed round-robin schedule,
starting from the highest priority element. The output notifies
each input whether or not its request was granted.The pointer

to the highest priority element of the round-robin schedule
is incremented (modulo to one location beyond the granted
input if, and only if, the grant is accepted in Step 3.

This small change to the algorithm leads to the following
properties of with one iteration:

Property 1: Lowest priority is given to the most recently
made connection. This is because when the arbiters move their
pointers, the most recently granted (accepted) input (output)
becomes the lowest priority at that output (input). If input
successfully connects to outputboth and are updated
and the connection from inputto output becomes the lowest
priority connection in the next cell time.

Property 2: No connection is starved. This is because an
input will continue to request an output until it is successful.
The output will serve at most other inputs first, waiting
at most cell times to be accepted by each input. Therefore,
a requesting input is always served in less thancell times.

Property 3: Under heavy load, all queues with a common
output have the same throughput. This is a consequence of
Property 2: the output pointer moves to each requesting input
in a fixed order, thus providing each with the same throughput.

But most importantly, this small change prevents the output
arbiters from moving in lock-step leading to a large improve-
ment in performance.

IV. SIMULATED PERFORMANCE OF SLIP

A. With Benign Bernoulli Arrivals

Fig. 5 shows the performance improvement ofSLIP over
RRM. Under low load,SLIP’s performance is almost identical
to RRM and FIFO; arriving cells usually find empty input
queues, and on average there are only a small number of inputs
requesting a given output. As the load increases, the number
of synchronized arbiters decreases (see Fig. 8), leading to a
large-sized match. In other words, as the load increases, we
can expect the pointers to move away from each, making it
more likely that a large match will be found quickly in the
next cell time. In fact, under uniform 100% offered load, the
SLIP arbiters adapt to a time-division multiplexing scheme,

providing a perfect match and 100% throughput. Fig. 9 is an
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Fig. 9. Illustration of 100% throughput foriSLIP caused by desynchroniza-
tion of output arbiters. Note that pointers[gi] become desynchronized at the
end of Cell 1 and stay desynchronized, leading to an alternating cycle of 2
cell times and a maximum throughput of 100%.

example for a 2 2 switch showing how, under heavy traffic,
the arbiters adapt to an efficient time-division multiplexing
schedule.

B. With Bursty Arrivals

Real network traffic is highly correlated from cell to cell
and so in practice, cells tend to arrive in bursts, corresponding
perhaps to a packet that has been segmented or to a packetized
video frame. Many ways of modeling bursts in network traffic
have been proposed [11], [15], [3], [22]. Lelandet al. [32]
have demonstrated that measured network traffic is bursty at
every level making it important to understand the performance
of switches in the presence of bursty traffic.

We illustrate the effect of burstiness on using an
on–off arrival process modulated by a two-state Markov chain.
The source alternately produces a burst of full cells (all with
the same destination) followed by an idle period of empty cells.
The bursts and idle periods contain a geometrically distributed
number of cells. Fig. 10 shows the performance of
under this arrival process for a 1616 switch, comparing it
with the performance under uniform i.i.d. Bernoulli arrivals.
The burst length indicated in the graph represents the average
length of each busy period. As we would expect, the increased
burst size leads to a higher queueing delay. In fact, the average
latency is proportional to the expected burst length. With
bursty arrivals, the performance of an input-queued switch
becomes more and more like an output-queued switch under
the save arrival conditions [9]. This similarity indicates that
the performance for bursty traffic is not heavily influenced by
the queueing policy or service discipline. Burstiness tends to
concentrate the conflicts on outputs rather than inputs; each
burst contains cells destined for the same output, and each
input will be dominated by a single burst at a time, reducing
input contention. As a result, the performance becomes limited
by output contention, which is present in both input and output
queued switches.

C. As a Function of Switch Size

Fig. 11 shows the average latency imposed by a
scheduler as a function of offered load for switches with 4,
8, 16, and 32 ports. As we might expect, the performance
degrades with the number of ports.

Fig. 10. The performance ofiSLIP under two-state Markov-modulated
Bernoulli arrivals. All cells within a burst are sent to the same output.
Destinations of bursts are uniformly distributed over all outputs.

Fig. 11. The performance ofiSLIP as function of switch size. Uniform i.i.d.
Bernoulli arrivals.

However, the performance degrades differently under low
and heavy loads. For a fixed low offered load, the queueing de-
lay converges to a constant value. However, for a fixed heavy
offered load, the increase in queueing delay isproportional to

The reason for these different characteristics under low and
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heavy load lies once again in the degree of synchronization of
the arbiters. Under low load, arriving cells find the arbiters in
random positions and performs in a similar manner to
the single iteration version of PIM. The probability that the cell
is scheduled to be transmitted immediately is proportional to
the probability that no other cell is waiting to be routed to the
same output. Ignoring the (small) queueing delay under low
offered load, the number of contending cells for each output is
approximately which converges with
increasing to 7 Hence, for constant small
the queueing delay converges to a constant asincreases.
Under heavy load, the algorithm serves each FIFO once every

cycles, and the queues will behave similarly to an M/D/1
queue with arrival rates and deterministic service time

cell times. For an M/G/1 queue with random service times
arrival rate and service rate the queueing delay is

given by

(1)

So, for the switch under a heavy load of Bernoulli
arrivals, the delay will be approximately

(2)

which is proportional to

D. Burstiness Reduction

Intuitively, if a switch decreases the average burst length
of traffic that it forwards, then we can expect it to improve
the performance of its downstream neighbor. We can expect
any scheduling policy that uses round-robin arbiters to be
burst-reducing8 this is also the case for

is a deterministic algorithm serving each connection
in strict rotation. We therefore expect that bursts of cells at
different inputs contending for the same output will become
interleaved and the burstiness will be reduced. This is indeed
the case, as is shown in Fig. 12. The graph shows the average
burst length at the switch output as a function of offered
load. Arrivals are on–off processes modulated by a two-state
Markov chain with average burst lengths of 16, 32, and 64
cells.

Our results indicate that reduces the average burst
length, and will tend to be more burst-reducing as the offered
load increases. This is because the probability of switching
between multiple connections increases as the utilization in-
creases. When the offered load is low, arriving bursts do not
encounter output contention and the burst of cells is passed
unmodified. As the load increases, the contention increases and

7Note that the convergence is quite fast, and holds approximately even for
smallN: For example,1� [(N � 1)=N ]N�1 equals 0.6073 whenN = 8,
and 0.6202 whenN = 16 and0:63 whenN is infinite.

8There are many definitions of burstiness, for example the coefficient of
variation [36], burstiness curves [20], maximum burst length [10], or effective
bandwidth [21]. In this section, we use the same measure of burstiness that
we use when generating traffic: the average burst length. We define a burst of
cells at the output of a switch as the number of consecutive cells that entered
the switch at the same input.

Fig. 12. Average burst length at switch output as a function of offered load.
The arrivals are on–off processes modulated by a two-state DTMC. Results
are for a 16� 16 switch using theiSLIP scheduling algorithm.

bursts are interleaved at the output. In fact, if the offered load
exceeds approximately 70%, the average burst length drops to
exactly one cell. This indicates that the output arbiters have
become desynchronized and are operating as time-division
multiplexers, serving each input in turn.

V. ANALYSIS OF SLIP PERFORMANCE

In general, it is difficult to accurately analyze the per-
formance of a switch, even for the simplest traffic
models. Under uniform load and either very low or very high
offered load, we can readily approximate and understand the
way in which operates. When arrivals are infrequent,
we can assume that the arbiters act independently and that
arriving cells are successfully scheduled with very low delay.
At the other extreme, when the switch becomes uniformly
backlogged, we can see that desynchronization will lead the
arbiters to find an efficient time division multiplexing scheme
and operate without contention. But when the traffic is nonuni-
form, or when the offered load is at neither extreme, the
interaction between the arbiters becomes difficult to describe.
The problem lies in the evolution and interdependence of the
state of each arbiter and their dependence on arriving traffic.

A. Convergence to Time-Division Multiplexing
Under Heavy Load

Under heavy load, will behave similarly to an M/D/1
queue with arrival rates and deterministic service time
cell times. So, under a heavy load of Bernoulli arrivals, the
delay will be approximated by (2).



MCKEOWN: THE iSLIP SCHEDULING ALGORITHM FOR INPUT-QUEUED SWITCHES 195

Fig. 13. Comparison of average latency for theiSLIP algorithm and an
M/D/1 queue. The switch is 16� 16 and, for theiSLIP algorithm, arrivals
are uniform i.i.d. Bernoulli arrivals.

To see how close approximates to time-division
multiplexing under heavy load, Fig. 13 compares the average
latency for both and an M/D/1 queue (2). Above
an offered load of approximately 70%, behaves very
similarly to the M/D/1 queue, but with a higher latency. This
is because the service policy is not constant; when a queue
changes between empty and nonempty, the scheduler must
adapt to the new set of queues that require service. This
adaptation takes place over many cell times while the arbiters
desynchronize again. During this time, the throughput will be
worse than for the M/D/1 queue and the queue length will
increase. This in turn will lead to an increased latency.

B. Desynchronization of Arbiters

We have argued that the performance of is dictated
by the degree of synchronization of the output schedulers. In
this section, we present a simple model of synchronization for
a stationary and sustainable uniform arrival process.

In [24, Appendix 1], we find an approximation for
the expected number of synchronized output schedulers at time

The approximation is based on two assumptions:

1) inputs that are unmatched at timeare uniformly dis-
tributed over all inputs;

2) the number of unmatched inputs at timehas zero
variance.

This leads to the approximation

(3)

Fig. 14. Comparison of analytical approximation and simulation results for
the average number of synchronized output schedulers. Simulation results
are for a 16�16 switch with i.i.d. Bernoulli arrivals and an on–off process
modulated by a two-state Markov chain with an average burst length of 64
cells. The analytical approximation is shown in (3).

where

number of ports;
arrival rate averaged over all inputs;

.

We have found that this approximation is quite accurate
over a wide range of uniform workloads. Fig. 14 compares
the approximation in (3) with simulation results for both i.i.d.
Bernoulli arrivals and for an on–off arrival process modulated
by a two-state Markov-chain.

VI. THE SLIP ALGORITHM WITH MULTIPLE ITERATIONS

Until now, we have only considered the operation of
with a single iteration. We now examine how the algorithm
must change when multiple iterations are performed.

With more than one iteration, the iterative algorithm
improves the size of the match; each iteration attempts to add
connections not made by earlier iterations. Not surprisingly,
we find that the performance improves as we increase the
number of iterations (up to about for an switch).
Once again, we shall see thatdesynchronizationof the output
arbiters plays an important role in achieving low latency.

When multiple iterations are used, it is necessary to modify
the algorithm. The three steps of each iteration operate
in parallel on each output and input and are as follows:

Step 1: Request.Each unmatched input sends a request to
every output for which it has a queued cell.
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Fig. 15. Example of starvation, if pointers are updated after every iteration.
The 3� 3 switch is heavily loaded, i.e., all active connections have an offered
load of 1 cell per cell time. The sequence of grants and accepts repeats after
two cell times, even though the (highlighted) connection from input 1 to output
2 has not been made. Hence, this connection will be starved indefinitely.

Step 2: Grant.If an unmatched output receives any re-
quests, it chooses the one that appears next in a fixed, round-
robin schedule starting from the highest priority element. The
output notifies each input whether or not its request was
granted. The pointer to the highest priority element of
the round-robin schedule is incremented (modulo to one
location beyond the granted input if and only if the grant is
accepted in Step 3of the first iteration.

Step 3: Accept. If an unmatched input receives a grant,
it accepts the one that appears next in a fixed round-robin
schedule starting from the highest priority element. The pointer

to the highest priority element of the round-robin schedule is
incremented ( to one location beyond the accepted
output.

A. Updating Pointers

Note that pointers and are only updated for matches
found in the first iteration. Connections made in subsequent
iterations do not cause the pointers to be updated. This is to
avoid starvation. To understand how starvation can occur, we
refer to the example of a 3 3 switch with five active and
heavily loaded connections, shown in Fig. 15. The switch is
scheduled using two iterations of the algorithm, except
in this case, the pointers are updated afterboth iterations. The
figure shows the sequence of decisions by the grant and accept
arbiters; for this traffic pattern, they form a repetitive cycle in
which the highlighted connection from input 1 to output 2 is
never served. Each time the round-robin arbiter at output 2
grants to input 1, input 1 chooses to accept output 1 instead.

Starvation is eliminated if the pointers are not updated after
the first iteration. In the example, output 2 would continue to

grant to input 1 with highest priority until it is successful.

B. Properties

With multiple iterations, the algorithm has the fol-
lowing properties:

Property 1: Connections matched in the first iteration be-
come the lowest priority in the next cell time.

Property 2: No connection is starved. Because pointers are
not updated after the first iteration, an output will continue
to grant to the highest priority requesting input until it is
successful.

Property 3: For with more than one iteration, and
under heavy load, queues with a common output may each
have a different throughput. repeats every three cell times.

Property 4: The algorithm will converge in at most
iterations. Each iteration will schedule zero, one, or more
connections. If zero connections are scheduled in an iteration,
then the algorithm has converged; no more connections can be
added with more iterations. Therefore, the slowest convergence
will occur if exactly one connection is scheduled in each
iteration. At most connections can be scheduled (one
to every input and one to every output), which means the
algorithm will converge in at most iterations.

Property 5: The algorithm will not necessarily converge to
a maximum sized match. At best, it will find amaximalmatch:
the largest size match without removing connections made in
earlier iterations.

VII. SIMULATED PERFORMANCE OFITERATIVE SLIP

A. How Many Iterations?

When implementing with multiple iterations, we
need to decide how many iterations to perform during each cell
time. Ideally, from Property 4 above, we would like to perform

iterations. However, in practice there may be insufficient
time for iterations, and so we need to consider the penalty
of performing only iterations, where In fact, because
of the desynchronization of the arbiters, will usually
converge in fewer than iterations. An interesting example
of this is shown in Fig. 16. In the first cell time, the algorithm
takes iterations to converge, but thereafter converges in one
less iteration each cell time. After cell times, the arbiters
have become totally desynchronized and the algorithm will
converge in a single iteration.

How many iterations should we use? It clearly does not
always take One option is to always run the algorithm to
completion, resulting in a scheduling time that varies from cell
to cell. In some applications this may be acceptable. In others,
such as in an ATM switch, it is desirable to maintain a fixed
scheduling time and to try and fit as many iterations into that
time as possible.

Under simulation, we have found that for an switch
it takesabout iterations for to converge. This
is similar to the results obtained for PIM in [2], in which the
authors prove that

(4)
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Fig. 16. Example of the number of iterations required to converge for a
heavily loadedN � N switch. All input queues remain nonempty for the
duration of the example. In the first cell time, the arbiters are all synchronized.
During each cell time, one more arbiter is desynchronized from the others.
After N cell times, all arbiters are desynchronized and a maximum sized
match is found in a single iteration.

where is the number of iterations that PIM takes to converge.
For all the stationary arrival processes we have tried

for However, we have not been able to prove that this
relation holds in general.

B. With Benign Bernoulli Arrivals

To illustrate the improvement in performance of
when the number of iterations is increased, Fig. 17 shows
the average queueing delay for one, two, and four iterations
under uniform i.i.d. Bernoulli arrivals. We find that multiple
iterations of significantly increase the size of the match
and, therefore, reduce the queueing delay. In fact, can
achieve 100% throughput for one or more iteration with uni-
form i.i.d. Bernoulli arrivals. Intuitively, the size of the match
increases with the number of iterations; each new iteration
potentially adds connections not made by earlier iterations.
This is illustrated in Fig. 18, which compares the size of
matching with the size of the maximum matching for the same
instantaneous queue occupancies. Under low offered load, the

arbiters move randomly and the ratio of the match size
to the maximum match size decreases with increased offered
load. But when the load exceeds approximately 65%, the ratio
begins to increase linearly. As expected, the ratio increases

Fig. 17. Performance ofiSLIP for 1, 2, and 4 iterations compared with FIFO
and output queueing for i.i.d. Bernoulli arrivals with destinations uniformly
distributed over all outputs. Results obtained using simulation for a 16� 16
switch. The graph shows the average delay per cell, measured in cell times,
between arriving at the input buffers and departing from the switch.

Fig. 18. Comparison of the match size foriSLIP with the size of a maximum
sized match for the same set of requests. Results are for a 16� 16 switch
and uniform i.i.d. Bernoulli arrivals.

with the number of iterations indicating that the matching gets
closer to the maximum-sized match, but only up to a point.
For a switch under this traffic load, increasing the number
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Fig. 19. Performance ofiSLIP for one, two, and four iterations under bursty
arrivals. Arrival process is a two-state Markov-modulated on–off process.
Average burst lengths are 16, 32, and 64 cells.

of iterations beyond four does not measurably increase the
average match size.

C. With Bursty Arrivals

We illustrate the effect of burstiness on using an
on–off arrival process modulated by a two-state Markov-chain.
Fig. 19 shows the performance of under this arrival
process for a 16 16 switch, comparing the performance
for one, two, and four iterations. As we would expect, the
increased burst size leads to a higher queueing delay whereas
an increased number of iterations leads to a lower queueing
delay. In all three cases, the average latency isproportional to
the expected burst length. The performance for bursty traffic
is not heavily influenced by the queueing policy.

VIII. V ARIATIONS ON SLIP

A. Prioritized SLIP

Many applications use multiple classes of traffic with differ-
ent priority levels. The basic algorithm can be extended
to include requests at multiple priority levels with only a
small performance and complexity penalty. We call this the
Prioritized algorithm.

In Prioritized each input now maintains a separate
FIFO for each priority leveland for each output. This means
that for an switch with priority levels, each input
maintains FIFO’s. We shall label the queue between
input and output at priority level where

As before, only one cell can arrive in
a cell time, so this does not require a processing speedup by
the input.

The Prioritized algorithm givesstrict priority to the
highest priority request in each cell time. This means that

will only be served if all queues
are empty.

The algorithm is modified as follows.
Step 1: Request. Input selects the highest priority

nonempty queue for output The input sends the priority
level of this queue to the output

Step 2: Grant. If output receives any requests, it deter-
mines the highest level request, i.e., it finds
The output then chooses one input among only those inputs
that have requested at level The output arbiter maintains
a separate pointer, for each priority level. When choosing
among inputs at level the arbiter uses the pointer
and chooses using the same round-robin scheme as before.
The output notifies each input whether or not its request was
granted. The pointer is incremented (modulo to one
location beyond the granted input if and only if inputaccepts
output in step 3 of the first iteration.

Step 3: Accept. If input receives any grants, it determines
the highest level grant, i.e., it finds The
input then chooses one output among only those that have
requested at level The input arbiter maintains
a separate pointer, for each priority level. When choosing
among outputs at level the arbiter uses the pointer
and chooses using the same round-robin scheme as before.
The input notifies each output whether or not its grant was
accepted. The pointer is incremented (modulo to
one location beyond the accepted output.

Implementation of the Prioritized algorithm is more
complex than the basic algorithm, but can still be
fabricated from the same number of arbiters.

B. Threshold SLIP

Scheduling algorithms that find a maximumweight match
outperform those that find a maximumsizedmatch. In partic-
ular, if the weight of the edge between inputand output
is the occupancy of input queue then we will
conjecture that the algorithm can achieve 100% throughput
for all i.i.d. Bernoulli arrival patterns. But maximum weight
matches are significantly harder to calculate than maximum
sized matches [35], and to be practical, must be implemented
using an upper limit on the number of bits used to represent
the occupancy of the input queue.

In the Threshold algorithm, we make a compromise
between the maximum-sized match and the maximum weight
match by quantizing the queue occupancy according to a
set of threshold levels. The threshold level is then used to
determine the priority level in the Priority algorithm.
Each input queue maintains an ordered set of threshold levels

where If
then the input makes a request of level

C. Weighted SLIP

In some applications, the strict priority scheme of Prioritized
may be undesirable, leading to starvation of low-

priority traffic. The Weighted algorithm can be used
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Fig. 20. Round-robingrantarbiter foriSLIP algorithm. The priority encoder
has a programmed highest prioritygi. The accept arbiter at the input is
identical.

to divide the throughput to an output nonuniformly among
competing inputs. The bandwidth from inputto output
is now a ratio subject to the admissibility
constraints

In the basic algorithm each arbiter maintains an
ordered circular list In the Weighted

algorith,m the list is expanded at output to
be the ordered circular list where

and input appears
times in

IX. I MPLEMENTING SLIP

An important objective is to design a scheduler that is simple
to implement. To conclude our description of we
consider the complexity of implementing in hardware.
We base our discussion on single-chip versions of
that have been implemented for 16-port [6] and 32-port [26]
systems.

As illustrated in Fig. 20, each arbiter consists of
a priority encoder with a programmable highest priority, a
register to hold the highest priority value, and an incrementer
to move the pointer after it has been updated. The decoder
indicates to the next bank of arbiters which request was
granted.

Fig. 21 shows how arbiters at each input and
at each output) and an -bit memory are interconnected to
construct an scheduler for an switch. The state
memory records whether an input queue is empty or nonempty.
From this memory, an -bit wide vector presents bits to
each of grant arbiters, representing:

Step 1: Request. The grant arbiters select a single input
among the contending requests, thus implementingStep 2.
Step 2: Grant. The grant decision from each grant arbiter is
then passed to the acceptarbiters, where each arbiter se-
lects at most one output on behalf of an input, implementing
Step 3.
Step 3: Accept. The final decision is then saved in a decision
register and the values of theand pointers are updated.
The decision register is used to notify each input which cell
to transmit and to configure the crossbar switch.

Reference [42] focuses on the implementation of the al-
gorithm, but it suffices here to make the following obser-
vations. First, the area required to implement the scheduler
is dominated by the programmable priority encoders.

Fig. 21. Interconnection of2N arbiters to implementiSLIP for anN �N

switch.

TABLE I
NUMBER OF INVERTER EQUIVALENTS REQUIRED TO IMPLEMENT

1 AND N ARBITERS FOR A PRIORITIZED-iSLIP SCHEDULER,
WITH FOUR LEVELS OF PRIORITY

Fig. 22. Interconnection ofN arbiters to implementiSLIP for anN � N

switch. Each arbiter is used for both input and output arbitration. In this case,
each arbiter containstwo registers to hold pointersgi andai:

The number of inverter equivalents required to implement
the programmable priority encoders for prioritized- is
shown in Table I.9 The number of gates for a 32-port scheduler
is less than 100 000, making it readily implementable in current
CMOS technologies, and the total number of gates grows
approximately with We have observed in two implemen-
tations that the regular structure of the design makes routing
relatively straightforward. Finally, we have observed that the
complexity of the implementation is (almost) independent of
the number of iterations. When multiple iterations are used, the
number of arbiters remain unchanged. The control overhead
necessary to implement multiple iterations is very small.

9These values were obtained from a VHDL design that was synthesized
using the Synopsis design tools, and compiled for the Texas Instruments
TSC5000 0.25-�m CMOS ASIC process. The values for regulariSLIP will
be smaller.
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In some implementations, it may be desirable to reduce
the number of arbiters, sharing them among both the grant
and accept steps of the algorithm. Such an implementation
requiring only arbiters10 is shown in Fig. 22. When the
results from the grant arbiter have settled, they are registered
and fed back to the input for the second step. Obviously each
arbiter must maintain a separate register for theand
pointers, selecting the correct pointer for each step.

X. CONCLUSION

The Internet requires fast switches and routers to handle
the increasing congestion. One emerging strategy to achieve
this is to merge the strengths of ATM and IP, building IP
routers around high-speed cell switches. Current cell switches
can employ shared output queueing due to relatively low band-
widths. Unfortunately, the growth in demand for bandwidth far
exceeds the growth in memory bandwidth, making it inevitable
that switches will maintain queues at their inputs. We believe
that these switches will use virtual output queueing, and hence
will need fast, simple, fair, and efficient scheduling algorithms
to arbitrate access to the switching fabric.

To this end, we have introduced the algorithm,
an iterative algorithm that achieves high throughput, yet is
simple to implement in hardware and operate at high speed.
By using round-robin arbitration, provides fair access
to output lines and prevents starvation of input queues. By
careful control of the round-robin pointers, the algorithm can
achieve 100% throughput for uniform traffic. When the traffic
is nonuniform, the algorithm quickly adapts to an efficient
round-robin policy among the busy queues. The simplicity
of the algorithm allows the arbiter for a 32-port switch to
be placed on single chip, and to make close to 100 million
arbitration decisions per second.
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