188 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 2, APRIL 1999

The ISLIP Scheduling Algorithm
for Input-Queued Switches

Nick McKeown, Senior Member, |IEEE

Abstract—An increasing number of high performance inter- is nonblocking; it allows multiple cells to be transferred across
networking protocol routers, LAN and asynchronous transfer the fabric simultaneously, alleviating the congestion found on
mode (ATM) switches use a switched backplane based on a, cqnyentional shared backplane. In this paper, we describe an

crossbar switch. Most often, these systems use input queues -
to hold packets waiting to traverse the switching fabric. It is algorithm that is designed to configure a crossbar switch using

well known that if simple first in first out (FIFO) input queues @ Single-chip centralized scheduler. The algorithm presented
are used to hold packets then, even under benign conditions, here attempts to achieve high throughput for best-effort unicast
head-of-line (HOL) blocking limits the achievable bandwidth traffic, and is designed to be simple to implement in hardware.
to approximately 58.6% of the maximum. HOL blocking can — oyr work was motivated by the design of two such systems:

be overcome by the use of virtual output queueing, which is . !)
described in this paper. A scheduling algorithm is used to con- the Cisco 12000 GSR, a 50-Gb/s IP router, andTing Tera:

figure the crossbar switch, deciding the order in which packets @ 0.5-Tb/s MPLS switch [7].
will be served. Recent results have shown that with a suitable = Before using a crossbar switch as a switching fabric, it is

scheduling algorithm, 100% throughput can be achieved. In jmportant to consider some of the potential drawbacks; we
this paper, we present a scheduling algorithm callediSLIP. = -,nqider three here. First, the implementation complexity of an

An iterative, round-robin algorithm, iSLIP can achieve 100% N t b itch i v i b
throughput for uniform traffic, yet is simple to implement in -port crossbar swilch Increases wilyr', making crossbars

hardware. Iterative and noniterative versions of the algorithms impractical for systems with a very large number of ports.
are presented, along with modified versions for prioritized traffic. Fortunately, the majority of high-performance switches and
Simulation results are presented to indicate the performance routers today have only a relatively small number of ports
of #SLIP under benign and bursty traffic conditions. Prototype (g g|ly petween 8 and 32). This is because the highest
and commercial implementations ofiSLIP exist in systems with f devi d at i ints wh ¢
aggregate bandwidths ranging from 50 to 500 Gb/s. When the per o_rm".’mce evices are l_Jse at aggregation points where por
traffic is nonuniform, iSLIP quickly adapts to a fair scheduling density is low: Our work is, therefore, focussed on systems
policy that is guaranteed never to starve an input queue. Finally, with low port density. A second potential drawback of crossbar
we describe the implementation complexity ofiSLIP. Based on switches is that they make it difficult to provide guaranteed
a two-dimensional (2-D) array of priority encoders, single-chip o \5jities of service. This is because cells arriving to the switch
schedulers have been built supporting up to 32 ports, and making t tend f to the fabri ith cells at both th
approximately 100 million scheduling decisions per second. mus contenad for access 9 e fa r'.c with cells at bo . e
input and the output. The time at which they leave the input
gueues and enter the crossbar switching fabric is dependent on
other traffic in the system, making it difficult to control when
a cell will depart. There are two common ways to mitigate
I. INTRODUCTION this problem. One is to schedule the transfer of cells from

N AN ATTEMPT to take advantage of the cell-switchind”pm_s to outputs in a sjmilar manner to that used in a time-
I capacity of the asynchronous transfer mode (ATM), theflot interchanger, 'prowdlng peak ban.dW|dth aIIocgﬂon for
has recently been a merging of ATM switches and Intefeserved ﬂow_s. Thl$ method has been implemented in at least
net Protocol (IP) routers [29], [32]. This idea is alread¥® commercial switches and routérThe second approach
being carried one step further, with cell switches forminty © €mPploy “speedup,” in which the core of the switch
the core, or backplane, of high-performance IP routers [26}"S fa§ter. than the cc_)nnected lines. S|mulat|op and.analytlcal
[31], [6], [4]. Each of these high-speed switches and routefesults |pd|cate thgt with a'smaII speedup, aswltch will deliver
is built around a crossbar switch that is configured using©&!!S uickly to their outgoing port, apparently independent of
centralized scheduler, and each uses a fixed-size cell aSCQtending traffic [27], [37]-[41]. While these techniques are
transfer unit. Variable-length packets are segmented as tfflygrowing importance, we restrict our focus in this paper to
arrive, transferred across the central switching fabric, afief efficient and fast scheduling bést-effortraffic.

then reassembled again into packets before they depart. A
crossbar switch is used because it is simple to implement antlsome people believe that this situation will change in the future, and that
switches and routers with large aggregate bandwidths will support hundreds

Manuscript received November 19, 1996; revised February 9, 1998; ag\{/_lieven thousands of ports. If these systems become real, then crossbar

proved by IEEE/ACM RaNnsacTions oN NETWORKING Editor H. J. Chao. tches—and the Fechniques _that follow i_n this paper—may nhot be suitable.
The author is with the Department of Electrical Engineering Stanfogaowever, the techniques described here will be suitable for a few years hence.

University, Stanford, CA 94305-9030 USA (e-mail: nickm@stanford.edu). 2A peak-rate allocation method was supported by the DEC AN2
Publisher ltem Identifier S 1063-6692(99)03593-1. Gigaswitch/ATM [2] and the Cisco Systems LS2020 ATM Switch.

Index Terms—ATM switch, crossbar switch, input-queueing,
IP router, scheduling.

1063-6692/99$10.001 1999 IEEE

MCKEOWN: THE iSLIP SCHEDULING ALGORITHM FOR INPUT-QUEUED SWITCHES 189

Input 1 bipartite matching algorithms [35], which have a running-time
77 complexity of O(N?log N).
A (1) Matching, M Output 1
A1) - rtTT T T T Dy
—-*C:Z: ”'V —':‘0 H A. Maximum Size Matching
: : Most scheduling algorithms described previously are heuris-
I I tic algorithms that approximate a maximusize matching
I I [1], [2], [5], [8], [18], [30], [36]. These algorithms attempt
Input ¥ : : to maximize the number of connections made in each cell
(8 i | oupuny time, and hence, maximize the instantaneous allocation of
Ap1) "Q:: i _’L. I Dp(1) bandwidth. The maximum size matching for a bipartite graph
NN, L~ . can be found by solving an equivalent network flow problem
[35]; we call the algorithm that does thisaxsize There exist

many maximum-size bipartite matching algorithms, and the
Fig. 1. An input-queued switch with VOQ. Note that head of line blockingnost efficient currently known converges '(ﬁ(n5/ 2y time
is eliminated by using a separate queue for each output at each input. [12].4 The problem with this algorithm is that although it is

)))) guaranteed to find a maximum match, for our application it
A third potential drawback of crossbar switches is that thgy {0 complex to implement in hardware and takes too long

(usually) employ input queues. When a cell arrives, itis placgg complete.

in an input queue where it waits its turn to be transferred acrosspne question worth asking is “Does theaxsizealgorithm

the crossbar fabric. There is a popular perception that inpytayimize the throughput of an input-queued switch?” The
queued switches suffer fromherentlylow performance due gnswer is nomaxsizecan cause some queues to be starved of
to head-of-line (HOL) blocking. HOL blocking arises whenseryice indefinitely. Furthermore, when the traffic is nonuni-
the input buffer is arranged as a single first in first out (FIFQyym maxsizecannot sustain very high throughput [25]. This is
queue: a cell destined to an output that is free may be hejdcayse it does not consider the backlog of cells in the VOQ's,
up in line behind a cell that is waiting for an output that iy the time that cells have been waiting in line to be served,
busy. Even with benign traffic, it is well known that HOL can g, practical high-performance systems, we desire algo-
limit thoughput to jus — /2 =~ 58.6% [16]. Many techniques rithms with the following properties.

have been suggested for reducing HOL blocking, for example,
by considering the firstX cells in the FIFO queue, where
K >1 [8], [13], [17]. Although these schemes can improve
throughput, they are sensitive to traffic arrival patterns and
may perform no better than regular FIFO queueing when the
traffic is bursty. But HOL blocking can be eliminated by using
a simple buffering strategy at each input port. Rather than
maintain a single FIFO queue for all cells, each input maintains
a separate queue for each output as shown in Fig. 1. This
scheme is called virtual output queueing (VOQ) and was first
introduced by Tamiet al. in [34]. HOL blocking is eliminated in practice, it must be implemented in special-purpose
because cells only queue behind cells that are destined to hardware breferably within a single chip

the same output; no cell can be held up by a cell ahead of) ’ . . . L .

it that is destined to a different output. When VOQ's are The SLIP algorithm presented in this paper is designed

used, it has been shown possible to increase the through fneet thesg goals, and iTQ' currently implementeq in-a 16-
of an input-queued switch from 58.6% to 100% for bot ort commercial IP router with an aggregate_ bandwidth of 50
uniform and nonuniform traffic [25], [28]. Crossbar switche bis [(_5]’ and a 32-port prqtotype_ switch with an aggregate
that use VOQ’s have been employed in a number of studi gndywdth of 0_'5 This .[26]ZSLIP is based on the parallel

[1], [14], [19], [23], [34], research prototypes [26], [31], [33]’!teratlve matching algorithm (PIM) [2], and so to understand

and commercial products [2], [6]. For the rest of this pap ||t§ operation, we start by describing PIM. Then, in Section I,

we will be considering crossbar switches that use VOQ's. we describeiSLIP and its performance. We then consider

When we use a crossbar switch, we require a scheduliig"® small modifica_ltions tSLIP fo_r various applications,
algorithm that configures the fabric during each cell time a d finally consider its implementation complexity.
decides which inputs will be connected to which outputs; this)]
determines which of théV? VOQ's are served in each cellB- Parallel lterative Matching
time. At the beginning of each cell time, a scheduler examinesPIM was developed by DEC Systems Research Center for
the contents of thév? input queues and determines a conflictthe 16-port, 16 Gb/s AN2 switch [2]Because it forms the
free matchd between inputs and outputs. This is equivalent,) N -)

. In some literature, the maximurize matching is called the maximum
to finding a bipartite matching on a graph witki vertices ¢arginality matching or just the maximum bipartite matching.
[2], [25], [35]. For example, the algorithms described in [25] 4This algorithm is equivalent to Dinic’s algorithm [9].
and [28] that achieve 100% throughput, use maximum weigh®This switch was commercialized as the Gigaswitch/ATM.

High Throughput:An algorithm that keeps the backlog
low in the VOQ's; ideally, the algorithm will sustain an
offered load up to 100% on each input and output.
Starvation Free: The algorithm should not allow a
nonempty VOQ to remain unserved indefinitely.

Fast: To achieve the highest bandwidth switch, it is im-
portant that the scheduling algorithm does not become the
performance bottleneck; the algorithm should therefore
find a match as quickly as possible.

Simple to Implementif the algorithm is to be fast

190 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 2, APRIL 1999

Input 1

AW

Ay =1 My, =

Fig. 3. Example of unfairness for PIM under heavy oversubscribed load with
more than one iterations. Because of the random and independent selection
by the arbiters, output 1 will grant to each input with probability 1/2, yet
input 1 will only accept output 1 a quarter of the time. This leads to different

® L4 rates at each output.
g=2 grants ° °

™ e—>a that no input queue is starved of service. Third, it means that
(b) ©) no memory or state is used to keep track of how recently a
Fig. 2. An example of the three steps that make up one iteration of the Pﬁ\?nnecuon was ma‘?'e in the PaSt' At the beglnnlng of each cell
scheduling algorithm [2]. In this example, the first iteration does not matdine, the match begins over, independently of the matches that
input 4 to output 4, even though it does not conflict with other connectiongzere made in previous cell times. Not only does this simplify
This connection would be made in the second iteration. (a) Stéteduest ; : : :
Each input makes a request to each output for which it has a cell. This is sho%r underStandmg of the, algomhm’ but it a!so ma.kes a”a'}’s's
here as a graph with all weights;; = 1. (b) Step 2:Grant Each output Of the performance straightforward; there is no time-varying
$e|ectslan idrI%UE) urrl]iformly anéong thosze gh':\t reqzuef]ted it. In this examp;l%ate to consider, except for the occupancy of the input queues.
inputs 1 an oth requested output 2. Output 2 chose to grant to input 3, |.; S :
(c) Step 3:Accept Each input selects an output uniformly among those that _US'_”Q randomness Co_mes Wlth Its problems_, however. First,
granted to it. In this example, outputs 2 and 4 both granted to input 3. IndtitiS difficult and expensive to implement at high speed; each
3 chose to accept output 2. arbiter must make a random selection among the members of

a time-varying set. Second, when the switch is oversubscribed,

basis of theiSLIP algorithm described later, we will describe”!M €an lead to unfairness between connections. An extreme
the scheme in detail and consider some of its performané@mple of unfaimess for ax22 switch when the inputs are
characteristics. oversubscribed is shown in Fig. 3. We will see examples later

PIM usesrandomnesdo avoid starvation and reduce thefor ,Wh'Ch PIM and.some other glgonth_ms are unfair when
number of iterations needed to converge on a maximal-siZ&g 'NPut or output IS over;ubsgrlbeq. Flr?ally, PIM does not
match. A maximal-sized match (a type of on-line match) i[gerform well for a single iteration; it limits the throughput

.) o : :

one that adds connections incrementally, without removir’i approximately 63%, only slightly higher than for a FIFO

connections made earlier in the matching process. In generasf fch. This is because the probabiliy that an input wil

, en N :
maximal match is smaller than a maximum-sized match, butr%mam ungranted igN — 1/V) ,Ohence asy increases, the
throughput tends taé — (1/¢) = 63%. Although the algorithm

much simpler to implement. PIM attempts to quickly convequi” often converge to a good match after several iterations,

on a conflict-free maximal match in multiple iterations, wher . . .
. .) . Fpe time to converge may affect the rate at which the switch
each iteration consists of three steps. All inputs and outputs

are initially unmatched and only those inputs and outputs n% N o_perate._We W.OL"d _prefer an algorithm that performs well
. ! . . With just a single iteration.

matched at the end of one iteration are eligible for matching in

the next. The three steps of each iteration operate in parallel on

each output and input and are shown in Fig. 2. The steps are:
Step 1: RequesEach unmatched input sends a request to In this section we describe and evaluatedBklP algorithm.

every output for which it has a queued cell. This section concentrates on the behavioi SEIP with just
Step 2: Grant If an unmatched Output receives any red Single iteration per cell time. Later, we will consid&LIP

quests, it grants to one by randomly selecting a requadth multiple iterations.

uniformly over all requests. The ¢SLIP algorithm uses rotating priority (“round-robin”)
Step 3: Accept|f an input receives a grant' it accepts On@.rbitration to schedule each active input and Output in turn.

by selecting an output randomly among those that granted-F[Be main characteristic GSLIP is its simplicity; it is readily

this output. implemented in hardware and can operate at high speed. We
By considering only unmatched inputs and outputs, eaffd that the performance ofSLIP for uniform traffic is

iteration only considers connections not made by earlier itdh9h; for uniform independent identically distributed (i.i.d.)

ations. Bernoulli arrivals,iSLIP with a single iteration can achieve
Note that the independent output arbiteemdomly select 100% throughput. This is the 'resqlt of a phenomenon that we

a request among contending requests. This has three effegfigounter repeatedly; the arbiters:8LIP have a tendency to

first, the authors in [2] show that each iteration will matcH€Synchronizavith respect to one another.

or eliminate, on average, at least4 of the remaining pos-)) _ _

sible connections, and thus, the algorithm will converge to’ Basic Round-Robin Matching Algorithm

maximal match, on average, fi(log /V) iterations. Second, ¢SLIP is a variation of simple basic round-robin matching

it ensures that all requests will eventually be granted, ensurialgorithm (RRM). RRM is perhaps the simplest and most

Il. THE ¢SLIP ALGORITHM WITH A SINGLE |TERATION

MCKEOWN: THE iSLIP SCHEDULING ALGORITHM FOR INPUT-QUEUED SWITCHES 191

Input 1 &2 15+03||v|v|||:||l]ll

L0=1
L(1,2)=4

FIFO
ooa
PIM 1

Pl x —
84 M RRM

Input 3
L(32)=2

x x
x SLIP
100

(@)

Avg Cell Latency (Cells)
2

(b) ©

Fig. 4. Example of the three steps of the RRM matching algorithm. (a) Step n Pty
1: RequestEach input makes a request to each output for which it has a cell. -
Step 2:Grant Each output selects the next requesting input at or after the] =
pointer in the round-robin schedule. Arbiters are shown here for outputs 2 and ..,r

4. Inputs 1 and 3 both requested output 2. Sipge= 1, output 2 grants to o

input 1.¢»> andgs are updated to favor the input after the one that is granted. -~

(b) Step 3:Accept.Each input selects at most one output. The arbiter for input
1 is shown. Sincer; = 1, input 1 accepts output L., is updated to point to 0. T
output 2. (c) When the arbitration is completed, a matching of size two has 21 30 40 Ofsfor dél(joad Z(‘)7) 8% 90 99
been found. Note that this is less than the maximum sized matching of three. ere °

Fig. 5. Performance of RRM andSLIP compared with PIM for i.i.d.

. Bernoulli arrivals with destinations uniformly distributed over all outputs.
obvious form of iterative round-robin scheduling algorithmszesuits obtained using simulation for a ¥616 switch. The graph shows the

comprising a 2-D array of round-robin arbiters; cells araverage delay per ‘ceII, measured i_n cell times, between arriving at the input
scheduled by round-robin arbiters at each output, and at e&¢fiers and departing from the switch.

input. As we shall see, RRM does not perform well, but it

helps us to understand hoi8LIP performs, so we start here A=A, =1 P = By, =025

with a description of RRM. RRM potentially overcomes two
problems in PIM:complexityand unfairness Implemented as
priority encoders, the round-robin arbiters are much simpler
and can perform faster than random arbiters. The rotating
priority aids the algorithm in assigning bandwidth equally A1 = hgyp =1 Hoq = Hyp =025

and more falrly among requesting connections. The RRMg. 6. 2x 2 switch with RRM algorithm under heavy load. In the example

algorithm, like PIM, consists of three steps. As shown igrFig. 7, synchronization of output arbiters leads to a throughout of just 50%.
Fig. 4, for an N x N switch, each round-robin schedule

containsV ordered elements. The three steps of arbitraticgwemou"i arrivals. For an offered load of just 63% RRM

are: . _ becomes unstabfe.
Step 1. RequesEach input sends a request to every outpUt e reagon for the poor performance of RRM lies in the

for Whlch it has a queued cell. . . rules for updating the pointers at the output arbiters. We
Step 2: Grantlf an output receives any requests, it choos ?ljstrate this with an example, shown in Fig. 6. Both inputs
e

_ _ ! q
the one that appears nexF in-a fixed, roundrobin SCh?(_jli and 2 are under heavy load and receive a new cell for
startmg from the highest p.rlorlty element. The output nOt'f.'er?oth outputs during every cell time. But because the output
each input whether or not its request was granted. The pom&:ﬁedulers move in lock-step, only one input is served during

gi to the highest priority element of th_e round-robin schedule Eich cell time. The sequence of requests, grants, and accepts
incremented (moduldV) to one location beyond the granteqor four consecutive cell times are shown in Fig. 7. Note that

input. . .) the grant pointers change in lock-step: in cell time 1, both
Step 3: Acceptlf an input receives a grant, it accepts th%

h in a fixed d-robi hedul oint to input 1, and during cell time 2, both point to input
one that appears next in a fixed, round-robin schedule start 'Y%tc. This synchronization phenomenon leads to a maximum

fro_m_:he Tighestt p;i(:r:ity elemdent.b'_l'he prc])ir(ljteirto_ th_e highestt tgroughput of just 50% for this traffic pattern.
priority element of the round-robin schedule 1S incremente Synchronization of the grant pointers also limits perfor-

(modulo) to one location beyond the accepted output. mance with random arrival patterns. Fig. 8 shows the number
of synchronized output arbiters as a function of offered load.
The graph plots the number of nonunigyés, i.e., the number

As an introduction to the performance of the RRM algosef output arbiters that clash with another arbiter. Under low
rithm, Fig. 5 shows the average delay as a function of offeretstye propabiiity that an input will remain ungranted @& — 1/3)~,
load for uniform independent and identically distributed (i.i.djence asV increases, the throughput tendslte- (1/e) ~ 63%.

B. Performance of RRM for Bernoulli Arrivals

192
—Key:
81 . a; .
are the grant pointers, are the accept pointers,
82 a,
i R J1Ja means: (Input 1 requests outputs 1 and 2)
71'2_ J1 Ja Input 2 requests outputs 1 and 2
.] t .
71 G i means: (Ou put 1 grants to ?nput 1)
J) i Output 2 grants to input 1
i A i (Input 1 accepts output 2)
means:
,il, jl_ Input 2 accepts output 1
can: (@<L 12 1] RO L NGI S A
&2 L[4 UL bl Uidl) iy
Ca o I oo
cara: |0 <[22 2RI LGl LA
8 L o) U I 21 VY R
cen3: |51 = {1,111 = 2} DRI LING|Y S 4 A,
82) LU [ay] 12 ZI) N Y I (21
cetia: |51 = |3,] = 1} R LG S A,
&2 12 |4 12 b Wikl A

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 2, APRIL 1999

arbiters with the same highest priority value is 9.9. This agrees
well with the simulation result for RRM in Fig. 8. As the
offered load increases, synchronized output arbiters tend to
move in lockstep and the degree of synchronization changes
only slightly.

IIl. THE 4SLIP ALGORITHM

The¢SLIP algorithm improves upon RRM by reducing the
synchronization of the output arbiteiSLIP achieves this by
not moving the grant pointers unless the grant is accepted.
4{SLIP is identical to RRM except for a condition placed on
updating the grant pointers. TkBrantstep of RRM is changed
to:

Step 2: Grantlf an output receives any requests, it chooses
the one that appears next in a fixed round-robin schedule,
starting from the highest priority element. The output naotifies
each input whether or not its request was grantéu pointer
g; to the highest priority element of the round-robin schedule
is incremented (moduldy) to one location beyond the granted
input if, and only if, the grant is accepted in Step 3

This small change to the algorithm leads to the following
properties ofiSLIP with one iteration:

Fig. 7. lllustration of low throughput for RRM caused by synchronization Property 1 !_OW6$'[_ p_I’IOI’Ity is given to the m_OSt recently)
of output arbiters. Note that pointefg;] stay synchronized, leading to a made connection. This is because when the arbiters move their
maximum throughput of just 50%.

Avg Number of Synchronized Output Schedulers

0 T T

-+

RRM

x-x
T suip

0 10 20

Fig. 8. Synchronization of output arbiters for RRM a@8LIP for i.i.d.

T T T T T T

3040 50 60 710 80 90 100
Offered Load (%)

pointers, the most recently granted (accepted) input (output)
becomes the lowest priority at that output (input). If input
successfully connects to outpgtboth a; and g,; are updated
and the connection from inputo outputj becomes the lowest
priority connection in the next cell time.

Property 2: No connection is starved. This is because an
input will continue to request an output until it is successful.
The output will serve at mosV — 1 other inputs first, waiting
at mostNV cell times to be accepted by each input. Therefore,
a requesting input is always served in less théncell times.

Property 3: Under heavy load, all queues with a common
output have the same throughput. This is a consequence of
Property 2: the output pointer moves to each requesting input
in a fixed order, thus providing each with the same throughput.

But most importantly, this small change prevents the output
arbiters from moving in lock-step leading to a large improve-
ment in performance.

IV. SIMULATED PERFORMANCE OFiSLIP

A. With Benign Bernoulli Arrivals

Fig. 5 shows the performance improvement:StIP over
RRM. Under low load;SLIP’s performance is almost identical
to RRM and FIFO; arriving cells usually find empty input
queues, and on average there are only a small number of inputs
requesting a given output. As the load increases, the number

Bernoulli arrivals with destinations uniformly distributed over all outputsgf Synchronized arbiters decreases (see Fig 8) Ieading to a
Results obtained using simulation for a 66 switch. s

large-sized match. In other words, as the load increases, we
can expect the pointers to move away from each, making it

offered load, cells arriving for outpuj will find g; in a more likely that a large match will be found quickly in the
random position, equally likely to grant to any input. Thaext cell time. In fact, under uniform 100% offered load, the

probability thatg;, # g for all k # j is (N — 1/N)N-1,

i{SLIP arbiters adapt to a time-division multiplexing scheme,

which for N = 16 implies that the expected number ofproviding a perfect match and 100% throughput. Fig. 9 is an

MCKEOWN: THE iSLIP SCHEDULING ALGORITHM FOR INPUT-QUEUED SWITCHES

le+05

193

1c+04

le+03

ol _N] |a_[B Rl | A
Cell 1: |°! :1, N = {] ! R _' _2 _' G =g A]l
82 LU [ag] LI 2] [ido M]
Cell2: |81 2] @l _ H WRP | L H Gl A 12
82 LU o) [I Y P B 41 I T R VA
cens: &1 1}] _ H QRPN Gl 5 1A P
82 12 |5 [2 LS I 0 1 I U R LY S YR Y
celt4: |51 2} o =H MR S NG S 1A e
82 LU {af U L I 23 R VB 1 I Y 1
Fig. 9. lllustration of 100% throughput faSLIP caused by desynchroniza-

tion of output arbiters. Note that pointefig;] become desynchronized at the
end of Cell 1 and stay desynchronized, leading to an alternating cycle of 2
cell times and a maximum throughput of 100%.

Avg Latency per Cell (Cells)

example for a Z 2 switch showing how, under heavy traffic,
the arbiters adapt to an efficient time-division multiplexing
schedule.

B. With Bursty Arrivals

Real network traffic is highly correlated from cell to cell
and so in practice, cells tend to arrive in bursts, corresponding

1004

104

0.1

T T T T T T T T
J1 x>
, 7] Bernouili
[P
rid
S Burst=16
i I// o e
" dl | Burst=32
/ 4
PR
e 1 Bursi=64
- oa
e o
e e e
R s
Pt x
L E
P d
rros x
s x
SR x
I3
./ 35
P K
Pl X
a i
. ~ 0, o
- uﬂf i X
- £
-
L ,// 20
-7 /w”"aﬂ e x*’(‘
- - o X
- . X
Phd Xx
o 4
//(xX
x
o x
x
X
X
x
Xxx
X
XXX
)?(XX -
o
X
xxxx
xxxxx
xxxxxx
S
T T T T T T T T T T T T T T
20 30 40 50 60 70 80 90 100
Offered Load (%)

p_erhaps toa paCket that has been_ SeQmente_d ortoa packe.T,EIde.qO. The performance ofSLIP under two-state Markov-modulated
video frame. Many ways of modeling bursts in network traffigemoulii arrivals. All cells within a burst are sent to the same output.

have been proposed [11], [15], [3], [22]. Lelard al. [32]
have demonstrated that measured network traffic is bursty at
every level making it important to understand the performance
of switches in the presence of bursty traffic.

We illustrate the effect of burstiness aSLIP using an
on—off arrival process modulated by a two-state Markov chain.
The source alternately produces a burst of full cells (all with
the same destination) followed by an idle period of empty cells.
The bursts and idle periods contain a geometrically distributed
number of cells. Fig. 10 shows the performance:SEIP
under this arrival process for a X616 switch, comparing it
with the performance under uniform i.i.d. Bernoulli arrivals.
The burst length indicated in the graph represents the average
length of each busy period. As we would expect, the increased
burst size leads to a higher queueing delay. In fact, the average
latency is proportional to the expected burst length. With
bursty arrivals, the performance of an input-queued switch
becomes more and more like an output-queued switch under
the save arrival conditions [9]. This similarity indicates that
the performance for bursty traffic is not heavily influenced by
the queueing policy or service discipline. Burstiness tends to
concentrate the conflicts on outputs rather than inputs; each
burst contains cells destined for the same output, and each
input will be dominated by a single burst at a time, reducing
input contention. As a result, the performance becomes limited
by output contention, which is present in both input and outpgiy. 11.
queued switches.

Average Latency per Cell (Cells)

C. As a Function of Switch Size
Fig. 11 shows the average latency imposed bySBIP

1e+03

Destinations of bursts are uniformly distributed over all outputs.

100

10

o--a
Size=16

Size=32

40 50 60 70
Offered Load (%)

80

90

99

The performance @ELIP as function of switch size. Uniform i.i.d.

Bernoulli arrivals.

However, the performance degrades differently under low
and heavy loads. For a fixed low offered load, the queueing de-

scheduler as a function of offered load for switches with 4y converges to a constant value. However, for a fixed heavy
8, 16, and 32 ports. As we might expect, the performanoffered load, the increase in queueing delaprisportional to

degrades with the number of ports.

N. The reason for these different characteristics under low and

194 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 2, APRIL 1999

heavy load lies once again in the degree of synchronization of 64

the arbiters. Under low load, arriving cells find the arbiters in o] Buris

random positions andsLIP performs in a similar manner to

the single iteration version of PIM. The probability that the cell

is scheduled to be transmitted immediately is proportional to
- . . 50 B

the probability that no other cell is waiting to be routed to the ‘

same output. Ignoring the (small) queueing delay under low

offered load, the number of contending cells for each output is

approximatelyA(1 — (N — 1/N)N¥=1), which converges with

increasingN to A(1 — (1/¢)).” Hence, for constant smak,

the queueing delay converges to a constaniVagcreases.

Under heavy load, the algorithm serves each FIFO once every

N cycles, and the queues will behave similarly to an M/D/1

queue with arrival rates/N and deterministic service time

N cell times. For an M/G/1 queue with random service times “!

S, arrival rate A, and service rate:, the queueing delay is g

XX
Burst=32
oo

Burst=64

P
T

304 !

Avg Burst length (Cells)

N
T

. b 'a_\\
given by
AE(S? 0 L]
a= S0 ®
N M‘n—u—n—n—a—
i . O ooy et Lo niadd s bt aiass sidashoiss Lot iatnd bt A a LA
So, for theiSLIP switch under a heavy load of Bernoulli 0o o 2 . Losagd(,;o) 70 80 90
. . . (4
arrivals, the delay will be approximately
Fig. 12. Average burst length at switch output as a function of offered load.
d = AN (2) The arrivals are on-off processes modulated by a two-state DTMC. Results
- 2(1 _)\) are for a 16x 16 switch using theSLIP scheduling algorithm.

which is proportional toN.

bursts are interleaved at the output. In fact, if the offered load
D. Burstiness Reduction exceeds approximately 70%, the average burst length drops to

exactly one cell. This indicates that the output arbiters have

Intuitively, if a switch decreases the average burst leng come desynchronized and are operating as time-division
of traffic that it forwards, then we can expect it to improv?‘nultiplexers serving each input in tumn

the performance of its downstream neighbor. We can expect

any scheduling policy that uses round-robin arbiters to be

burst-red_ucm@ this IS als_o the case fQSL_IP' . V. ANALYSIS OF ¢SLIP RERFORMANCE
¢SLIP is a deterministic algorithm serving each connection

in strict rotation. We therefore expect that bursts of cells at!n general, it is difficult to accurately analyze the per-
different inputs contending for the same output will becom@'mance of aiSLIP switch, even for the simplest traffic
interleaved and the burstiness will be reduced. This is inde@tpdels. Under uniform load and either very low or very high
the case, as is shown in Fig. 12. The graph shows the averg§gred load, we can readily approximate and understand the
burst length at the switch output as a function of offere@§@y in whichiSLIP operates. When arrivals are infrequent,
load. Arrivals are on—off processes modulated by a two-std#§ can assume that the arbiters act independently and that
Markov chain with average burst lengths of 16, 32, and @yriving cells are successfully scheduled with very low delay.
cells. At the other extreme, when the switch becomes uniformly
Our results indicate thaiSLIP reduces the average bursbacklogged, we can see that desynchronization will lead the
length, and will tend to be more burst-reducing as the offerédoiters to find_ an efficient ti.me division muItipIexi_ng schemg
load increases. This is because the probability of switchiﬁ@d operate without contention. But when the traffic is nonuni-
between multiple connections increases as the utilization #'m. or when the offered load is at neither extreme, the
creases. When the offered load is low, arriving bursts do ppteraction between the arbiters becomes difficult to describe.
encounter output contention and the burst of cells is passBde Problem lies in the evolution and interdependence of the
unmodified. As the load increases, the contention increases 8f€ of each arbiter and their dependence on arriving traffic.

"Note that the convergence is quite fast, and holds approximately even for

small N. For examplel — [(N — 1)/N]¥~! equals 0.6073 whetv =8, ~A. Convergence to Time-Division Multiplexing
and 0.6202 whedV = 16 and0.63 when N is infinite. Under Heavy Load

8There are many definitions of burstiness, for example the coefficient of) o
variation [36], burstiness curves [20], maximum burst length [10], or effective Under heavy load;SLIP will behave similarly to an M/D/1

bandwidth [21]. In this section, we use the same measure of burstiness @iabue with arrival rate&/N and deterministic service time
we use when generating traffic: the average burst length. We define a burst

of
cells at the output of a switch as the number of consecutive cells that enteF&Jl tlm(:,"S. So, under a heavy load of Bernoulli arrivals, the
the switch at the same input. delay will be approximated by (2).

MCKEOWN: THE iSLIP SCHEDULING ALGORITHM FOR INPUT-QUEUED SWITCHES 195

le+03 e T B e e

o x x -

SLIP bernoulli_iid_uniform

— o-a
M/D/L Tl train_64

Analytical

Avg Cell Latency (Cells)

Avg Number of Synchronized Qutput Schedulers

0.1 LS R LS s o Ao e RS LA s ed AaL) aa et i ss nanas
20 30 40 50 60 70 80 90 99
Offered Load (%)

0 T T T T

Fig. 13. Comparison of average latency for tHeLIP algorithm and an o 1020 Off:gedsl(joago(%)m 80 90 100

M/D/1 queue. The switch is 1& 16 and, for theiSLIP algorithm, arrivals
are uniform i.i.d. Bernoulli arrivals.

Fig. 14. Comparison of analytical approximation and simulation results for
the average number of synchronized output schedulers. Simulation results
are for a 16x 16 switch with i.i.d. Bernoulli arrivals and an on—off process
To see how closeSLIP approximates to time-division modulated by a two-state Markov chain with an average burst length of 64

multiplexing under heavy load, Fig. 13 compares the averagf¥s: The analytical approximation is shown in (3).
latency for both:SLIP and an M/D/1 queue (2). Above

an offered load of approximately 70%5LIP behaves very \yhere

similarly to the M/D/1 queue, but with a higher latency. This N number of ports;

is because the service policy is not constant; when a queus, ival rate averaged over all inputs:
changes between empty and nonempty, the scheduler mus;((1-A).

adapt to the new set of queues that require service. Thi
adaptation takes place over many cell times while the arbiters
desynchronize again. During this time, the throughput will bﬁ

%Ne have found that this approximation is quite accurate
er a wide range of uniform workloads. Fig. 14 compares
e approximation in (3) with simulation results for both i.i.d.
ernoulli arrivals and for an on—off arrival process modulated
by a two-state Markov-chain.

worse than for the M/D/1 queue and the queue length wil|
increase. This in turn will lead to an increased latency.

B. Desynchronization of Arbiters

We have argued that the performanceiSLIP is dictated /| T 4SLIP ALGORITHM WITH MULTIPLE ITERATIONS
by the degree of synchronization of the output schedulers. InU i h | idered th T
this section, we present a simple model of synchronization for ntil now, we have only considered the operation
a stationary and sustainable uniform arrival process. with a single iteration. We now examine how the algorithm
In [24, Appendix 1], we find an approximation fd#[S(t)], must change when multiple iterations are performed.

the expected number of synchronized output schedulers at tim éN'th more than one iteration, the iterativ8LIP algorithm
¢. The approximation is based on two assumptions: |mproves the size of the match; each iteration attempts to add

1) inputs that tched at tim iformlv di connections not made by earlier iterations. Not surprisingly,
) Inputs that are unmatched at imere uniformly dis= e fing that the performance improves as we increase the
tributed over all inputs;

2 th b ¢ tehed inouts at timeh number of iterations (up to aboldfg, IV, for an N x N switch).
) the number of unmatiched inputs at @ as z€r0 gnce again, we shall see th@gsynchronizatiof the output

_vanance. o arbiters plays an important role in achieving low latency.
This leads to the approximation When multiple iterations are used, it is necessary to modify
N _ CN_1 the :SLIP algorithm. The three steps of each iteration operate

E[S(8)] ~ N—AN(AN_1> _)\zN()\N—l) in parallel on each output and input and are as follows:
AN AN Step 1: RequesEach unmatched input sends a request to

(3) every output for which it has a queued cell.

196 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 2, APRIL 1999

1 o' grant to input 1 with highest priority until it is successful.

2 2 B. Properties

With multiple iterations, theSLIP algorithm has the fol-
lowing properties:
Property 1: Connections matched in the first iteration be-
come the lowest priority in the next cell time.
Y AR AT Property 2: No connection is starved. Because pointers are
HR { J -}* GH{ A } not updated after the first iteration, an output will continue
SECh to grant to the highest priority requesting input until it is

&1 1
Cell 1, Tteration 1:| g | = |1|,
g U
3 2| |4
Cell 2, lteration 1: 8| = 13| |ay| =
83 1 ey

3

NIRRT successful.
Cell 1, Tteration 2: |, GH{QA% Property 3: For +SLIP with more than one iteration, and
. L- under heavy load, queues with a common output may each
W lhnal W TG have a different throughput. repeats every three cell times.
HR { J ,}_) GH—{ A } Property 4: The algorithm will converge in at mosiv
- d iterations. Each iteration will schedule zero, one, or more
N RERRNN connections. If zero connections are scheduled in an iteration,
Cell 2, Iteration 2: 1}%\G\}{‘—){ A{}

b

'3

then the algorithm has converged; no more connections can be
added with more iterations. Therefore, the slowest convergence
j will occur if exactly one connection is scheduled in each
iteration. At most N connections can be scheduled (one

Fig. 15. Example of starvation, if pointers are updated after every iteratidi® €VEry input and one to every output), which means the
The 3x 3 switch is heavily loaded, i.e., all active connections have an offerglgorithm will converge in at mosd iterations.

load of 1 cell per cell time. The sequence of grants and accepts repeats aft . ; ; ;

two cell times, even though the (highlighted) connection from input 1 to outputeprm’:)erty 5'.The algorlthm will n.Ot qegessanly Convergej to
2 has not been made. Hence, this connection will be starved indefinitely. & Maximum S'Zed matCh-.At best, it W|." fmdmaX'm?-lmatCh- '
the largest size match without removing connections made in

Step 2: Grant.If an unmatched output receives any re€arlier iterations.
guests, it chooses the one that appears next in a fixed, round-
robin schedule starting from the highest priority element. The VII. SIMULATED PERFORMANCE OFITERATIVE $SLIP
output notifies each input whether or not its request was
granted. The pointey; to the highest priority element of A, How Many Iterations?
the round-robin schedule is incremented (moddip to one

location beyond the granted input if and only if the grant is V\:jh;end|m.|zler;]1entlngiSL_{P Vt\.”th rtnultlplfe |te(;at|pns, wre] I
accepted in Step 8f the first iteration need to decide how many iterations to perform during each ce

Step 3: Acceptlf an unmatched input receives a grantt'me' Ideally, from Property 4 above, we would like to perform

it accepts the one that appears next in a fixed round—rol]iYw iteration_s. Ho_wever, in practice there may be insufficient
schedule starting from the highest priority element. The pointté N f(f)r N_|terat|(|)r1§,t an(ttl_ S0 wehneqd t?vc?nild?r ;he penalty
a; to the highest priority element of the round-robin schedule f Performing only: iterations, where < Jv. In 1act, because

incrementedrfiodulo V) to one location beyond the accepte&’ the de;ynchromzaﬂon_of the arblten§,LIP W.'” usually
output. converge in fewer tharV iterations. An interesting example

of this is shown in Fig. 16. In the first cell time, the algorithm
takesN iterations to converge, but thereafter converges in one
less iteration each cell time. Afte¥ cell times, the arbiters
Note that pointerg; anda; are only updated for matcheshave become totally desynchronized and the algorithm will
found in the first iteration. Connections made in subsequemgm,erge in a single iteration.
iterations do not cause the pointers to be updated. This is tqygy many iterations should we use? It clearly does not
avoid starvation. To understand how starvation can occur, WRvays takeN. One option is to always run the algorithm to
refer to the example of a 83 switch with five active and completion, resulting in a scheduling time that varies from cell
heavily loaded connections, shown in Fig. 15. The switch {§ cell. In some applications this may be acceptable. In others,
scheduled using two iterations of theLIP algorithm, except gych as in an ATM switch, it is desirable to maintain a fixed
in this case, the pointers are updated affteth iterations. The scheduling time and to try and fit as many iterations into that
figure shows the sequence of decisions by the grant and acGgpt as possible.
arbiters; for this traffic pattern, they form a repetitive cycle in ynder simulation, we have found that for &hx N switch
which the highlighted connection from input 1 to output 2 i takesaboutlog, V iterations foriSLIP to converge. This

never servedEach time the round-robin arbiter at output Zs similar to the results obtained for PIM in [2], in which the
grants to input 1, input 1 chooses to accept output 1 insteaglthors prove that

Starvation is eliminated if the pointers are not updated after
the first iteration. In the example, output 2 would continue to E[I] < logy N + (4/3) 4)

J

A. Updating Pointers

MCKEOWN: THE iSLIP SCHEDULING ALGORITHM FOR INPUT-QUEUED SWITCHES

Cell 1, Iteration 1:

197

1e+03

£ a 1 i Jrdy e dn h i 1
82| dy _ |1 iszljz-”jN_,szil_,ilAj]
8y dy L iy iy Ja e n Un iy
100
Iteration N:
J1 lﬂ i i %]
. . . =
/2 G LFT RN Y A 2 L
. . QO
: : : : =
Cell 2, Iteration 1: Jn in| iy Jn| <=a
: R R AT 2 10
8 20 |4 2 i JiJz - In N] -
& _ 1] || _ |1 IR W 2 x| || G| = |3 A |2 =]
: : : : H S : H iy J1 ©
o W eyl UL iy iy e Ja _jN iy i
b b <
r1 i Ja
J1 b ; j 1
at1 -1 . 1
Iteration N-1: Gl 2 Al
i . i J3 1
iy iy ;
o iyl N
0.1 | AR A LA L) R LA MALAL LAAS) RALLLAALAS RARAL MEALS RARSS
Cell N, Iteration 1: 20 30 40 o ngredél(joad 7((370) 80 90 100
& N || N iy Yohede D o i v\ Fig. 17. Performance GBLIP for 1, 2, and 4 iterations compared with FIFO
& _|N-1) [d| _ |N-1 DRV v L || G155 || A Pv-1] and output queueing for i.i.d. Bernoulli arrivals with destinations uniformly
: : : : : T : ; : : distributed over all outputs. Results obtained using simulation for & 16
e L1 la L1 R LIW A M T I I iy 4y
Fig. 16.

Example of the number of iterations required to converge for a

switch. The graph shows the average delay per cell, measured in cell times,
between arriving at the input buffers and departing from the switch.

heavily loadedN x N switch. All input queues remain nonempty for the
duration of the example. In the first cell time, the arbiters are all synchronized. 15
During each cell time, one more arbiter is desynchronized from the others

After N cell times, all arbiters are desynchronized and a maximum sized
match is found in a single iteration.

T
.
W~r::u"“uun
“.

?
7
v d] .
] ™ /
\‘ id
\]

AN
wherel is the number of iterations that PIM takes to converge.
For all the stationary arrival processes we have tried

E[I] <log, N

for ¢«SLIP. However, we have not been able to prove that this
relation holds in general.

=1
]

IT)X
wa wmix w4
=

v

-
h'n
IS
B 7
5

v
0.9

0.8+
B. With Benign Bernoulli Arrivals
To illustrate the improvement in performance ¢§LIP

when the number of iterations is increased, Fig. 17 shows
the average queueing delay for one, two, and four iterations \]
under uniform i.i.d. Bernoulli arrivals. We find that multiple "
iterations ofiSLIP significantly increase the size of the match
and, therefore, reduce the queueing delay. In f&titIP can 1
achieve 100% throughput for one or more iteration with uni-

form i.i.d. Bernoulli arrivals. Intuitively, the size of the match 06
increases with the number of iterations; each new iteration
potentially adds connections not made by earlier iterations.
This is illustrated in Fig. 18, which compares the sizéSifIP

Percentage of Maximum Sized Match

20 30 40 50 60 70
Offered Load (%)
Fig. 18. Comparison of the match size 1&LIP with the size of a maximum
matching with the size of the maximum matching for the sans&ed match for the same set of requests. Results are forsa 16 switch
instantaneous queue occupancies. Under low offered load, & uniform i.d. Bemoulli arrivals.
+SLIP arbiters move randomly and the ratio of the match size

to the maximum match size decreases with increased offexrgith the number of iterations indicating that the matching gets
load. But when the load exceeds approximately 65%, the ratimser to the maximum-sized match, but only up to a point.

begins to increase linearly. As expected, the ratio increages a switch under this traffic load, increasing the number

198 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 2, APRIL 1999

le+04 The Prioritized:SLIP algorithm givesstrict priority to the
highest priority request in each cell time. This means that
(4, j) will only be served if all queue®,,(i,5),l<m < P
are empty.

The ¢SLIP algorithm is modified as follows.

Step 1. RequestInput ¢ selects the highest priority
nonempty queue for outpyt The input sends the priority
7 level [;; of this queue to the outpyt

Step 2: Grant If output 5 receives any requests, it deter-
mines the highest level request, i.e., it fildg) = max; (;;).
The output then chooses one input among only those inputs
that have requested at levi{j). The output arbiter maintains
a separate pointep,;; for each priority level. When choosing
among inputs at level(j), the arbiter uses the pointesy, ;)
and chooses using the same round-robin scheme as before.
The output notifies each input whether or not its request was
granted. The pointey; 1, is incremented (moduld’) to one
location beyond the granted input if and only if inpuaccepts
output j in step 3 of the first iteration.

Step 3: Acceptlf input ¢ receives any grants, it determines
N the highest level grant, i.e., it finds'(¢) = max; ({;;). The

40 50 60 70 80 90 100 input then chooses one output among only those that have

Offered Load (%) requested at level;; = L’(i). The input arbiter maintains
Fig. 19. Performance aSLIP for one, two, and four iterations under burstya Separate pointes,; for each priority level. When choosing
arrivals. Arrival process is a two-state Markov-modulated on-off procesgmong outputs at level' (i), the arbiter uses the poime{L,(i)
Average burst lengths are 16, 32, and 64 cells. and chooses using the same round-robin scheme as before.
of iterations beyond four does not measurably increase t-ll:lge Input notn‘les.each OUtqu whether or not its grant was
average match size. accepted._ The pointer;;,(;) is incremented (moduldV) to
one location beyond the accepted output.

C. With Bursty Arrivals Implementation of the PrioritizedSLIP algorithm is more

complex than the basi¢SLIP algorithm, but can still be
We llustrate the effect of burstiness aSLIP USing an fabricated from the same number of arbiters.

on—off arrival process modulated by a two-state Markov-chain.

Fig. 19 shows the performance ¢>‘$LIP_ under this arrival B. ThresholdiSLIP

process for a 1& 16 switch, comparing the performance

for one, two, and four iterations. As we would expect, the Scheduling algorithms that find a maximuneight match
increased burst size leads to a higher queueing delay wher@a@erform those that find a maximusizedmatch. In partic-

an increased number of iterations leads to a lower queuektg', if the weight of the edge between inpuand output;
delay. In all three cases, the average latengyaportionalto is the occupancyL; ;) of input queueQ(i, j), then we will

the expected burst length. The performance for bursty traf@njecture that the algorithm can achieve 100% throughput

le+03

100+

Avg Latency per Cell (Cells)

is not heavily influenced by the queueing policy. for all i.i.d. Bernoulli arrival patterns. But maximum weight
matches are significantly harder to calculate than maximum
VIII. V ARIATIONS ON iSLIP sized matches [35], and to be practical, must be implemented
using an upper limit on the number of bits used to represent
A. Prioritized iSLIP the occupancy of the input queue.

L . o In the ThresholdSLIP algorithm, we make a compromise
Mapy gpphcaﬂons use ”.‘,“'“p'e classes of traffic with dIﬁerbetween the maximum-sized match and the maximum weight
ent.pnonty levels. The basmS_LIP algor!thm can be _extendedmatch by quantizing the queue occupancy according to a
to include requests at multiple _prlorlty levels with on_ly %et of threshold levels. The threshold level is then used to
small performance and complexity penalty. We call this th(?etermine the priority level in the PriorigsLIP algorithm.

Pr|or|t|z.ed-z.SLIP algorithm. . o Each input queue maintains an ordered set of threshold levels
In Prioritized éSLIP, each input now maintains a separatg. _ (f1,80, - 1}, Where | <ta< --- <tp. If t, <

FIFO for each priority leveland for each output. This means,,,. . :

that for an N x N switch with P priority levels, each input Q(i, J) <tat1, then the input makes a request of leliet- a.
maintainsP x N FIFO’s. We shall label the queue between))
input 7 and outputj at priority level 7, (i, j), where1 < C- Weighted:SLIP

1,7 < N,1 <1 < P. As before, only one cell can arrive in In some applications, the strict priority scheme of Prioritized
a cell time, so this does not require a processing speedupiBl.IP may be undesirable, leading to starvation of low-
the input. priority traffic. The WeightediSLIP algorithm can be used

MCKEOWN: THE iSLIP SCHEDULING ALGORITHM FOR INPUT-QUEUED SWITCHES 199

8i g >
0 » 1 1 — = g I 1 |
1 > 5 22— 4 >
1 > 3 3 —» °:1 >
0 ™ 4 4 —» g ;' 2 2 l
1 > 5 A 5— M 2 !
§ l | log(N) ? E
k] Lag N N
1 ™ N N—™ £ I |
Request 7] " Grant " Acce isi
— pt
Vector Enr;ga‘g_’ Decoder Arbiters Arbiters Iﬁi;'?;&';

Fig. 20. Round-robimgrantarbiter for;SLIP algorithm. The priority encoder Fig. 21. Interconnection atV arbiters to implementSLIP for an/N x N
has a programmed highest priority. The acceptarbiter at the input is switch.

identical.
TABLE |
- . NUMBER OF INVERTER EQUIVALENTS REQUIRED TO IMPLEMENT
to dIVId_e th_e throughput to an_ output n9nqn|form|y among 1 AND NV ARBITERS FOR APRIORITIZED-#SLIP SCHEDULER,
competing inputs. The bandwidth from inputto output ; WITH FOUR LEVELS OF PRIORITY
is now a ratiof;; = (n;;/d;;), subject to the admissibility -
constraintsy; fi; <1,%; fi; <1. I Number of inverter | . L0tal number of
I Switch Size (N) . . inverter equivalents
In the basiciSLIP algorithm each arbiter maintains an equivalents per arbiter for N arbiters
ordered circular listS = {1,---,N}. In the Weighted = o1
+SLIP algorith,m the list is expanded at outpuyt to -
be the ordered circular listS; = {1,---,W;}, where 8 384 6,148
W; = lowest common multiple(d;;) and input: appears 16 642 20,560
(nij/di;) x W; times in S;. 32 1,210 77,440
) 64 2,420 154,848
IX. IMPLEMENTING :SLIP
128 4,591 587,648

An important objective is to design a scheduler that is simple
to implement. To conclude our description éSLIP, we
consider the complexity of implementin§LIP in hardware. N
We base our discussion on single-chip versions:&itIP
that have been implemented for 16-port [6] and 32-port [26]
systems.

As illustrated in Fig. 20, eacliSLIP arbiter consists of
a priority encoder with a programmable highest priority, a
register to hold the highest priority value, and an incrementer
to move the pointer after it has been updated. The decodef
indicates to the next bank of arbiters which request was
granted.

Fig. 21 shows how2N arbiters(NN at each input andv _ o _
at each output) and aiV2-bit memory are interconnected to"'9; 22-_ Interconnection ol arbiters to implementSLIP for anN' x N

- . switch. Each arbiter is used for both input and output arbitration. In this case,
construct anSLIP scheduler for anV x N switch. The state each arbiter containsvo registers to hold pointergi anda;.
memory records whether an input queue is empty or nonempty.

From this memory, adV2-bit wide vector presentd’ bits to h b £ val ired impl
each of N grant arbiters, representing: The number o inverter equivalents reqm_re__tq implement
he programmable priority encoders for prioritiz&td-IP is

S:spnl tl?]equerit -;:l?n grrant arlt:)ltetr;, s?lﬁc: ?ns:%gle Ianuihown in Table P. The number of gates for a 32-port scheduler
among the conte g requests, thus impieme 'm_p_ ’ g less than 100 000, making it readily implementable in current
. . MOS technologies, and the total number of gates grows
then passed to th& acceptarbiters, where each arbiter se- proximately WghNQ' We have observed in two igmplemgen-

. . " a
lects at most one output on behalf of an input, mplemennqiions that the regular structure of the design makes routing

Step 3. . . .
Step 3: AccepfThe final decision is then saved in a decisioF\ela‘uvely straightforward. Finally, we have observed that the

! C complexity of the implementation is (almost) independent of
register fmd the _/alue_s of the andaz_pomters_ are updf':\ted. tre number of iterations. When multiple iterations are used, the
The decision register is used to notify each input which cell : .
to transmit and to confiaure the crossbar switch humber of arbiters remain unchanged. The control overhead

9) T necessary to implement multiple iterations is very small.
Reference [42] focuses on the implementation of the al-

gorithm, but it suffices here to make the following obser- .These values were o_btalned from a VHD!_ design that was synthesized
. First th ired to i | t th hed sing the Synopsis design tools, and compiled for the Texas Instruments
vations. First, the area required to implemen € schedusgicsooo 0.25¢m CMOS ASIC process. The values for regui8LIP will

is dominated by the2N programmable priority encoders.be smaller.

IYY VY

Y

Y

%
| VY

Arbiters Decision

State of Input Queues (N? bits)
N

Step

200

In some implementations, it may be desirable to reduce]
the number of arbiters, sharing them among both the grant
and accept steps of the algorithm. Such an implementation
requiring only N arbiters® is shown in Fig. 22. When the [7]
results from the grant arbiter have settled, they are registered
and fed back to the input for the second step. Obviously each
arbiter must maintain a separate register for theand a; (8]
pointers, selecting the correct pointer for each step. [9]

X. CONCLUSION

The Internet requires fast switches and routers to handfé!
the increasing congestion. One emerging strategy to achigyvg
this is to merge the strengths of ATM and IP, building IP
routers around high-speed cell switches. Current cell switches
can employ shared output queueing due to relatively low bandz]
widths. Unfortunately, the growth in demand for bandwidth far
exceeds the growth in memory bandwidth, making it inevitabjgs
that switches will maintain queues at their inputs. We believe
that these switches will use virtual output queueing, and henlddl
will need fast, simple, fair, and efficient scheduling algorithms
to arbitrate access to the switching fabric. [15]

To this end, we have introduced th&LIP algorithm,
an iterative algorithm that achieves high throughput, yet |ss)
simple to implement in hardware and operate at high speed.
By using round-robin arbitratior,SLIP provides fair access [17]
to output lines and prevents starvation of input queues. By
careful control of the round-robin pointers, the algorithm ¢
achieve 100% throughput for uniform traffic. When the traffi
is nonuniform, the algorithm quickly adapts to an efficienil9]
round-robin policy among the busy queues. The simplicity
of the algorithm allows the arbiter for a 32-port switch tqaqj
be placed on single chip, and to make close to 100 million
arbitration decisions per second. (21

8]

ACKNOWLEDGMENT

[22]

Along the way, the development @SLIP was helped by 23]
discussions with T. Anderson, R. Edell, J. Walrand, and I[D

Varaiya, all at the University of California at Berkeley. The
gate counts shown in Section IX were obtained by P. Gu

at Stanford University, Stanford, CA. [25]

REFERENCES [26]

[1] M. Ali and H. Nguyen, “A neural network implementation of an input
access scheme in a high-speed packet switchPrisc. GLOBECOM [27]
‘89, pp. 1192-1196.

[2] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High speed switch

scheduling for local area networkshCM Trans. Comput. Systol. 11, [28]

no. 4, pp. 319-352, Nov. 1993.

D. Anick, D. Mitra, and M. M. Sondhi, “Stochastic theory of a data-

handling system with multiple sourcesBell Syst. Tech. Jvol. 61, pp. [29]

1871-1894, 1982.

“GRF Multigigabit Router,” GRF IP Switch Tech. Product Description,[3o]

Ascend Communications, Westford, MA. [Online]. Available HTTP:
http://www.ascend.com/230.html [31]

[5] T. X. Brown and K. H. Liu, “Neural network design of a Banyan net-
work controller,”IEEE J. Select. Areas Communwol. 8, pp. 1289-1298, [32]
Oct. 1990.

(3]

(4]

10A slight performance penalty is introduced by registering the output ¢83]
the grant step and feeding back the result as the input to the accept step. This
is likely to be small in practice.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 2, APRIL 1999

“Performing Internet Routing and Switching at Gigabit Speeds,” GSR
12000 Tech. Product Description, Cisco Systems, San Jose, CA. [On-
line]. Available HTTP: http://www.cisco.com/warp/public/733/12000
/index.shtml

Y. Rekhter, B. Davie, D. Katz, E. Rosen, and G. Swallow. (1997).
“Cisco systems’ tag switching architecture overview,” Internet RFC
2105, Cisco Systems, San Jose, CA. [Online]. Available HTTP:
http://info.internet.isi.edu/in-notes/rfc/files/rfc2105.txt

M. Chen and N. D. Georganas, “A fast algorithm for multi-channel/port
traffic scheduling” inProc. IEEE Supercom/ICC ‘94p. 96-100.

F. M. Chiussi and F. A. Tobagi, “Implementation of a three-stage
Banyan-based architecture with input and output buffers for large fast
packet switches,” Stanford, CA, Stanford CSL Tech. Rep. CSL-93-577,
June 1993.

R. Cruz, “A calculus for network delay, Part I: Network elements in
isolation,” IEEE Trans. Inform. Theoryol. 37, pp. 114-121, 1991.

H. Heffes and D. M. Lucantoni, “A Markov modulated characterization
of packetized voice and data traffic and related statistical multiplexer
performance,”|EEE J. Select. Areas Communol. 4, pp. 856-868,
1988.

J. E. Hopcroft and R. M. Karp, “An algorithm for maximum matching
in bipartite graphs,”Soc. Ind. Appl. Math. J. Computatiowol. 2, pp.
225-231, 1973.

A. Huang and S. Knauer, “Starlite: A wideband digital switch,'Hroc.
GLOBECOM ‘84 pp. 121-125.

J. Hui and E. Arthurs, “A broadband packet switch for integrated
transport,”IEEE J. Select. Areas Commupmiol. 5, pp. 1264-1273, Oct.
1987.

R. Jain and S. A. Routhier, “Packet trains: Measurements and a new
model for computer network traffic,JEEE J. Select. Areas Commun.
vol. 4, pp. 986-995, Apr. 1986.

M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing on
a space division switchJEEE Trans. Communvol. 35, pp. 1347-1356,
1988.

M. Karol and M. Hluchyj, “Queueing in high-performance packet-
switching,” IEEE J. Select. Areas Commurvol. 6, pp. 1587-1597,
Dec. 1988.

M. Karol, K. Eng, and H. Obara, “Improving the performance of input-
queued ATM packet switches,” iRroc. INFOCOM ‘92 pp. 110-115.

R. O. LaMaire and D. N. Serpanos, “Two-dimensional round-robin
schedulers for packet switches with multiple input queutSEE/ACM
Trans. Networkingvol. 1, pp. 471-482, Oct. 1993.

S. Low and P. Varaiya, “Burstiness bounds for some burst reducing
servers,” inProc. INFOCOM ‘93 pp. 2-9.

] G. Kesidis, J. Walrand, and C.-S. Chang, “Effective bandwidths for

multiclass Markov fluids and other ATM sourcedPEE/ACM Trans.
Networking vol. 1, pp. 424-428, Aug. 1993.

W. E. Leland, W. Willinger, M. Tagqu, D. Wilson, “On the self-similar
nature of Ethernet traffic,” iffroc. SIGCOMM San Francisco, CA, pp.
183-193, Sept. 1993.

C. Lund, S. Phillips, and N. Reingold, “Fair prioritized scheduling in an
input-buffered switch,” inProc. IFIPIEEE Conf. Broadband Commun.
‘96, Montreal, Canada, Apr. 1996, pp. 358—369.

4] N. McKeown, “Scheduling algorithms for input-queued cell switches,”

Ph.D. dissertation, Univ. California at Berkeley, 1995.

N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” Proc. IEEE INFOCOM ‘96
San Francisco, CA, pp. 296-302.

N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M. Horowitz,
“The tiny tera: A small high-bandwidth packet switch coréEEE
Micro, vol. 17, pp. 26-33, Jan.—Feb. 1997.

S. Chuang, A. Goel, N. McKeown, B. Prabhakar, “Matching output
queueing with a combined input output queued switefEE J. Select.
Areas Commur.,to be published.

A. Mekkittikul and N. McKeown, “A practical scheduling algorithm
for achieving 100% throughput in input-queued switches,”Proc.
INFOCOM ‘98 San Francisco, CA, vol. 2, pp. 792—799.

P. Newman, G. Minshall, and T. Lyon, “IP switching: ATM under IP”
IEEE/ACM Trans. Networkingyol. 6, pp. 117-129, Apr. 1998.

H. Obara, “Optimum architecture for input queueing ATM switches,”
IEEE Electron. Lett. pp. 555-557, Mar. 1991.

C. Partridgeet al. “A fifty gigabit per second IP router,JEEE/ACM
Trans. Networkingto be published.

G. Parulkar, D. C. Schmidt, and J. S. Turner, “altPm: A strategy for
integrating IP with ATM,” in Proc. ACM SIGCOMM ‘95 Cambridge,
MA, pp. 287-295.

Y. Tamir and H.-C. Chi, “Symmetric crossbar arbiters for VLS| commu-
nication switches,lEEE Trans. Parallel Dist. Systvol. 4, pp. 13-27,
1993.

MCKEOWN: THE iSLIP SCHEDULING ALGORITHM FOR INPUT-QUEUED SWITCHES 201

[34] Y. Tamir and G. Frazier, “High performance multi-queue buffers fo,
VLS| communication switches,” irfProc. 15th Annu. Symp. Comput.
Arch,, June 1988, pp. 343-354.

[35] R. E. Tarjan, “Data structures and network algorithms,”Sac. Ind.
Appl. MathematicsPA, Nov. 1983. 4

[36] T. P. Troudet and S. M. Walters, “Hopfield neural network architectu
for crossbar switch control,JEEE Trans. Circuits Systvol. 38, pp. |
42-57, Jan. 1991. |

[37] C.-Y. Chang, A. J. Paulraj, and T. Kailath, “A broadband packet swi
architecture with input and output queueing,” Bmoc. Globecom ‘94

Nick McKeown (S'91-M'95-SM’97) received the
Ph.D. degree from the University of California at
Berkeley in 1995.

He is an Assistant Professor of Electrical
Engineering and Computer Science at Stanford
University, CA. From 1986 to 1989, he was with
the Network and Communications Research Group,
Hewlett-Packard Labs, Bristol, U.K.. During the
spring of 1995, he was with Cisco Systems, San
Jose, CA, where he architected their GSR 12000

pp. 448-452.) o ' Router. His research involves techniques for
[38] 1. lliadis and W. E. Denzel, “Performance of packet switches with inpiigh-speed networks, including high-speed Internet routing and architectures

and output queueing,” ifProc. ICC ‘90 Atlanta, GA, Apr. 1990, pp. for high-speed switches. More recently, he has worked on the analysis

747-53. and design of cell scheduling algorithms, switch and buffer architectures,

[39] A. L. Gupta and N. D. Georganas, “Analysis of a packet switch with 4 lookup algorithms.
input and output buffers and speed constraints,’Pioc. INFOCOM Dr. McKeown is an Editor for the IEEE MANSACTIONS ON
91, Bal Harbour, FL, pp. 694-700. CoMMUNICATIONS. He is the Robert Noyce Faculty Fellow at Stanford,

[40] Y. Oie, M. Murata, K. Kubota, and H. Miyahara)\ E ect of speedup in L : -
nonblocking packet switch.” ifProc. ICC ‘89 Boston, MA, June 1989, and recipient of a Fellowship from the Alfred P. Sloan Foundation.
pp. 410-414.

[41] J. S.-C. Chen and T. E. Stern, “Throughput analysis, optimal buffer
allocation, and traffic imbalance study of a generic nonblocking packet
switch,” IEEE J. Select. Areas Communol. 9, pp. 439-449, Apr. 1991.

[42] P. Gupta and N. McKeown, “Designing and implementing a fast
crossbar scheduler|EEE Micro, vol. 19, pp. 20-28, Jan.—Feb. 1999.

