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ABSTRACT

Many networked applications that run in the background on a mo-
bile device incur significant energy drains when using the cellular
radio interface for communication. This is mainly due to the radio-
tail, where the cellular radio remains in a high energy state for up
to 20s after each communication spurt. In order to cut down energy
consumption, many recent devices employ fast dormancy, a feature
that forces the client radio to quickly go into a low energy state af-
ter a fixed short idle period. However, aggressive idle timer values
for fast dormancy can increase signaling overhead due to frequent
state transitions, which negatively impacts the network. In this
work, we have designed and implemented RadioJockey, a system
that uses program execution traces to predict the end of commu-
nication spurts, thereby accurately invoking fast dormancy without
increasing network signaling load. We evaluate RadioJockey on a
broad range of background applications and show that it achieves
20-40% energy savings with negligible increase in signaling over-
head compared to fixed idle timer-based approaches.
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1. INTRODUCTION
Several applications running on smartphones, tablets and laptops

perform network activity while running in the background for tasks
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such as syncing state (e.g., emails, presence, newsfeeds, etc.). Of-
ten these tasks involve only a few seconds of communication inter-
spersed between longer periods of inactivity. Nevertheless, several
platforms (e.g., iPhone and Windows Phone) prohibit background
applications or severely restrict them, primarily because of the sig-
nificant energy costs of supporting such workloads over a cellular
radio interface.

Even short network bursts have significant energy costs due to
the intrinsic nature of cellular radio operation. At the beginning
of each communication spurt, the cellular radio wakes up from a
low power idle state and transitions to a high energy active state
(DCH) to transfer packets. This DCH setup operation takes up to
30 signaling messages and about 2 seconds [9]. After the commu-
nication spurt ends, the radio continues to remain in DCH state for
a certain inactive duration (e.g., 10-20s) before transitioning back
to idle state. This inactive duration is determined by the network
operator in both the 3G and the 4G LTE standards [15] and is com-
monly referred to as the radio-tail [2, 18]. A long radio-tail cuts
down on repeated DCH setups and the attendant (unmonetized)
signaling bandwidth costs. However, while long radio-tails help
keep signaling costs low, they incur an energy penalty of up to 16J
per tail and severely impact the energy consumption of background
applications.

Many recent smartphone models cut down the energy cost of
radio-tails by implementing a feature called Fast Dormancy (FD),
which forces the radio to quickly transition from DCH to a low en-
ergy state (Idle or PCH). Fast dormancy is typically invoked with a
fixed short inactivity timer (e.g., 3-5s), thereby reducing the energy
consumed during the radio tail. However, as we show in Section 2,
aggressive fixed idle timer values face two fundamental issues: i)
some complex applications such as Outlook (email) have an inher-
ently large variance in their inter-packet arrival distribution; and
ii) even for simple applications, network conditions may change
as the device moves, significantly altering the inter-packet arrival
distribution. Since there is no fixed sweet-spot in inter-packet ar-
rivals, the use of aggressive fixed idle timers can result in unpre-
dictable increases in signaling load as the device repeatedly tran-
sitions between idle and DCH states. Indeed, in the early days of
fast dormancy, popular devices employing aggressive timers lead
to episodes of severe signaling channel congestion [1].

Fundamentally, there is an inherent trade-off between energy
saved using fast dormancy and the signaling overhead generated by
the device. To date, this trade-off has mostly been explored in an
ad-hoc manner through the use of idle timers. Instead, in this paper,
we have designed a system called RadioJockey that uses program

analysis to predict end of communication spurts and thereby accu-

rately invokes fast dormancy without increasing signaling costs.



The hypothesis behind our program analysis-based approach is
that application developers typically invoke a unique set of func-
tions in their code just before/after the end of communication spurts
(e.g., cleanup activity such as close socket or flush buffers, update
UI elements, etc.) If this hypothesis is true, by mining program
execution traces offline, we should be able to automatically iden-
tify a set of program features (e.g., system or function calls) that
only occur (or never occur) near the end of communication spurts.
Since these features are inherent to the way the program operates,
they should not be affected by the network dynamics, and closely
track dynamic application communication behavior, the two issues
that adversely affect a fixed idle timer-based approach.

The advantage of the above program analysis-based approach
over a timer-based approach is two-fold. First, during the execu-
tion of the program, we can simply invoke fast dormancy as soon
as the respective features are detected, thereby being even more
aggressive in energy savings than the 3–5s idle timers. Second, de-
spite being more aggressive in invoking fast dormancy, we are still
assured that the application will not be communicating imminently
(i.e., the idle-timer would anyway have fired, albeit after a 3–5s
delay). Thus we avoid adversely impacting the network signaling
load as compared to today.

RadioJockey operates in two modes, offline training and online
application (Section 3). For offline training, we intercept system
calls using either DETOUR [5] for windows applications or sys-
trace for Android applications and collect program execution traces
while the application is running in the background with no user in-
teractions. We also simultaneously capture packet traces. From
these traces, we extract a variety of features such as function calls,
additional attributes like return values, arguments, history, stack
depth, call stack, at the time of invoking the call. We mine these
traces using the C5.0 decision tree-based classifier and classify pe-
riods as active (communication on-going) or inactive (end of com-
munication spurt). A unique decision tree is learned for each ap-
plication which is then used in the online phase for dynamically
invoking fast dormancy during the execution of the application in
the background. We have implemented the online runtime com-
ponent of the RadioJockey system on Windows and show that it
results in negligible runtime overhead (Section 4).

We evaluate RadioJockey using a variety of mobile smartphone
as well as tablet and laptop applications for the android and win-
dows platforms. The applications evaluated range from simple ones
like gnotify, to complex applications like the Outlook email client
(Section 5). We show that the rules mined have a high prediction
accuracy and negligible false positive rates. A surprising finding is

that system call features alone are sufficient to identify high quality

rules, thereby allowing a simple, generic implementation to sup-
port a broad class of legacy, native, and managed applications. For
over a dozen background applications, we show that RadioJockey
is able to save 20-40% energy consumed by the cellular radio com-
pared to a 3s idle timer while resulting in less than 2% increase in
signaling costs for the network operator.

While application developers may be able to modify their code
to invoke fast dormancy accurately at the end of each communica-
tion spurt [15], there are several advantages to using an automated
approach like RadioJockey. First, most application developers are
simply unaware of the energy characteristics of the cellular radio;
RadioJockey allows these developers to focus on the design of their
application while providing the energy savings of fast dormancy
automatically. Second, based on the complexity of some of the
rules that RadioJockey learns, we suspect that it is non-trivial for a
developer to manually identify the end of all communication spurts
for large complex applications such as Outlook. Finally, we believe
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Figure 1: Energy consumption of the cellular interface

Duration (s) Energy(mJ) #Signals

Ramp up IDLE to DCH 2 2 30
Ramp up PCH to DCH 0.5 0.5 12

Default Tail 20 15 2
5-sec Timer + FD 6 6 2
3-sec Timer + FD 4 4 2

Table 1: Cellular Radio Characteristics

that automated solutions like RadioJockey would allow platforms
such as iPhone/Windows Phone to relax constraints imposed on
background applications, secure in the knowledge that energy cost
of all background applications are automatically optimized.

In summary, this paper makes the following contributions.

• We present a novel approach for accurately invoking fast dor-
mancy based on mining program execution traces.

• Wefind that system call features alone are sufficient in identi-
fying high quality rules, allowing generic fast dormancy sup-
port for broad class of legacy, native and managed applica-
tions.

• We present the design and implementation of RadioJockey
that delivers 20-40% energy savings with negligible increase
in operator signaling costs.

2. BACKGROUND AND MOTIVATION

2.1 Energy and Signaling Overhead
During normal usage, a cellular radio switches between different

internal states called Radio Resource Control (RRC) states depend-
ing on the volume of network traffic. These state transitions are not
instantaneous, and they incur both energy and signaling costs. This
has a major implication on the energy consumed by background
applications that typically perform short bursts of network activity
for operations such as sending periodic heart beat messages, updat-
ing buddy status, checking for new emails, and pulling news feeds,
etc. The energy consumption is mainly dominated by the switching
overhead for short network transactions.

Figure 1 illustrates the power consumption characteristics of dif-
ferent states of a typical cellular radio during a short network ses-
sion. Initially, when there is no network activity, the radio is in
IDLE state, consuming very low power. It transitions to an active
DCH state when there are one or more packets to be transmitted
or received. The state transition (ramp up) usually takes up to 2
seconds since it requires authentication and a layer-2 connection to



be established, involving exchange of several signaling messages
with different entities in the operator’s network. The radio remains
in DCH state while the network session is active. The radio is tran-
sitioned to a lower power state (IDLE or PCH), sometimes via an-
other intermediate state (FACH), using an inactivity timer that is set
by the operator. However, the timers are typically very large (for
example, 20 seconds) resulting in significant energy cost for the
radio-tail. Table 1 summarizes the energy and signaling overheads
associated with different cellular states transitions.

To address the high energy drain due to long radio tails, many
phone vendors use a feature called fast dormancy that enables quick
transition to IDLE. The client device invokes fast dormancy using a
shorter inactivity timer to cut down the radio tail. Fast dormancy is
achieved by sending a specific signaling message called Signaling
Connection Release Indication message (SCRI). In the early days,
the mobiles simply used SCRI with cause value set to unknown-

cause which resulted in releasing the RRC connection and moving
the mobile to IDLE state. In some newer networks with support for
3GPP Release 8 Fast Dormancy (HSPA and LTE), the client sets
the cause value to PS Data session end which allows the network to
move the mobile to PCH state. PCH has slightly higher consump-
tion than IDLE but requires fewer signaling messages to ramp-up
from from PCH to DCH state (12 instead of 30 for IDLE) [9]. In
either case, the signaling cost to transition to DCH is significant.

Note that current best practices limit fast dormancy usage to

background applications [9]. This is because, when the user is
interacting with the application, it is difficult to predict when the
user may cause an interaction that results in new network traffic. In
fact, iPhone OS v4.2 disabled fast dormancy usage when the screen
backlight is on primarily because usage of fast dormancy for fore-
ground applications in v4.1 resulted in significant increase in oper-
ator signaling costs [9]. Thus, in this paper, we restrict ourselves
to applications that are running in the background while the screen
is off, which typically constitutes a significant portion of mobile
device usage.

While fast dormancy has been helpful in reducing energy con-
sumption of background applications on mobile devices, existing
approaches of employing aggressive timers can cause significant
increase in the signaling load in the operator’s network, even for
networks that support PCH state.

2.2 Drawbacks of Timer based approach
We now describe two fundamental issues with fixed idle timer-

based fast dormancy approaches, which can cause an unpredictable
and significant increase in signaling load.

First, some applications are very chatty in the background, e.g.,
email clients such as Outlook and instant messaging clients like
Lync and Skype. Figure 2 shows the CDF of inter-packet times
when the client is running in the background. Notice that the inter-
packet times span a large range of values with no distinctive knee.
No matter what value is chosen for a fixed inactivity timer, pack-
ets can still arrive immediately after the timer has expired, causing
the radio to be woken up immediately, thereby increasing the sig-
naling overhead. RadioJockey operates at the granularity of ses-
sions rather than packets. As we show in Section 5, our program
analysis-based approach is able to distinguish between active and
inactive sessions since it identifies/predicts the end of communica-
tion spurts.

Secondly, cellular network characteristics can change dramati-
cally due to user mobility or changes in load characteristics. Pack-
ets may be delayed when there are sudden latency spikes. If ag-
gressive idle timers are used, such scenarios can cause the signaling
load to increase tremendously.
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Figure 2: CDF of inter-packet times for Outlook application
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Figure 3: CDF of inter-packet times for Lync application on static
and mobile scenarios

Figure 3 shows the CDF of packet inter-arrival distribution for
Lync, an instant messenger application running in the background,
for two cases: 1) when the node is stationary, and 2) when the node
is mobile while attached to a 3G network. The 98 percentile of
packet inter-arrival times increases from around 500ms for the sta-
tionary node to over 3s for the mobile node. Again, as we show
in Section 5, since our program analysis-based approach is looking
for rules identifying end of sessions, learning rules from the station-
ary node trace and applying the rules to the mobile scenario works
well, which accords with the intuition that the program execution
would remain unaffected by mobility.

In summary, inactivity timer based approaches are oblivious to
whether there will a packet transmission in the near future. It is
based on ad-hoc timers values, which is prone to errors. We take
a different approach. We predict inactivity based on program be-
havior. Our prediction-based technique has two advantages: 1) it
is able to shut down the radio as soon as the communication spurt
ends, without waiting for an inactivity timer, and 2) makes it un-
likely that there will be an immediate packet transmission, which
would otherwise increase signaling costs.

3. RADIOJOCKEY DESIGN
The objective of RadioJockey is to learn application-level signa-

tures that predict network-level behavior. In this section, we first
describe our intuition behind this approach. We then provide rele-
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vant definitions and describe RadioJockey’s learning engine. Next,
we describe the design of the run-time engine that implements rule-
matching and the invocation of fast-dormancy. Finally, we describe
several design decisions we made in the course of determining the
specifics of the learning strategy.

3.1 Intuition
A program consists of one or more code paths (sequence of func-

tion calls) where each path is invoked in response to application
logic and data. The various code paths can be identified by the
function calls, stack traces, and system calls invoked as the pro-
gram executes.

Often, for programs which perform sporadic background net-
work tasks, a certain set of code paths lead to the application ac-
tively using the network, and a different set of code paths exe-
cute when the application stops using the network. The code paths
include operations such as message processing, updating internal
state, GUI window updates, memory allocation/deallocation, and
closing of sockets/object handles. By identifying code paths that
are correlated with the state of the program at the end of network
sessions, and also during active network usage, we should be able
to predict when the program is likely to stop communicating for a
prolonged duration of time. Predicting such inactivity in advance
allows us to determine when to invoke fast-dormancy and achieve
energy savings while limiting the signaling overhead.

3.2 Definitions
We define an active network session as a time period over which

the application sends or receives packets such that no two consec-
utive packets occur more than ts seconds apart. ts is the end-of-

session window parameter. An end-of-session (EOS) is an event
that occurs when the last packet of an active network session is
seen. Therefore, ts defines when EOS events occur in a given net-
work trace that an application generates. Figure 4 depicts a traffic
trace of an application, where packets are grouped into two active
network sessions separated by more than ts seconds.

The period ts is chosen such that by invoking fast-dormancy im-
mediately after the last packet in a session, there will be energy
savings compared to a scenario where the radio remains in the ac-
tive state between the two sessions. The goal of RadioJockey is

therefore to predict whether the most recent packet transferred over
the cellular interface happens to be the last packet in the current
active network session, and if so invoke fast-dormancy.

If this prediction is correct (i.e., an idle timer based FD would
have anyway fired for the same interval, albeit after a 3–5 second
delay), we achieve the energy savings without any increase in sig-
naling costs.

To check the feasibility of this idea, we collected function call
traces that are executed at runtime for over a dozen background ap-
plications. We look at whether there are any unique function calls
that are being called near an end of session. Visually inspecting
did not seem promising as there were no obvious patterns in func-
tion calls called at an EOS event which we could manually discern.
Consequently, we decided to use a machine learning approach to-
wards discovering patterns that predict EOS.

3.3 Rule Learning
RadioJockey uses the C5.0 decision tree classifier as its principal

learning tool. The algorithm builds trees using the concept of infor-
mation gain. Starting at the root, it chooses the feature that splits the
input data and reduces the entropy of the data set by the maximum
amount. The final result is a tree in which branch points at higher
levels of the tree correspond to attributes with greater predictive
power. To avoid over-fitting, the algorithm includes a pruning step,
wherein some branches in the tree are discarded while keeping the
error with respect to the training data within a certain confidence
threshold.

The input to the decision tree classifier consists of a set of labeled
data-items. Each data-item consists of a set of key-value pairs, and
the label assigned to it can either be “ACTIVE” or “EOS”. The
decision tree then outputs a set of boolean expressions, or rules,
over these key-value pairs that indicate when a session is in an
ACTIVE state, and when it has reached EOS. We now describe
the method by which we generate the input data-items for training
Radio-Jockey’s classifier.

To profile an application using the classifier, we simultaneously
collect raw system call traces and network traces while the appli-
cation performs background tasks using the network. The required
size of the traces varies depending on the complexity of the applica-
tion. For a simple application, such as gnotify, whose sole purpose
is to periodically poll an email server and determine if there is any
new mail, the classifier may require only thirty minutes to an hour
of data to learn accurate rules. On the other hand for a signifi-
cantly more complex application such as the Outlook email client
that performs multiple kinds of background network-related tasks,
the classifier may need several hours of data to learn a potentially
larger set of rules that characterize the application.

Figure 5 illustrates how we extract a set of training data-items
from the system call traces and the packet traces. We use the net-
work packet trace to divide the function call traces into active and
inactive segments based on periods of network activity and inactiv-
ity. The period between any two consecutive packets is a segment.
We create data-items from these segments using the following pro-
cedure.
Case 1 (segment > ts): If a segment is longer than ts seconds, the
system calls made from the time of the start of the segment up to a
duration of tw seconds form a data-item labeled EOS (middle data-
item in Figure 5). The parameter tw is called the shutdown window
parameter and is less than ts. We truncate every data-item to at
most tw seconds in length because we want to restrict our learn-
ing to features that lie within a short time of observing a packet.
Without the truncation, the classifier may learn rules for EOS using
features that occur well after observing a packet. Such a rule would
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Figure 5: Generating data-items for the decision tree classifier.

be matched much after the actual end-of-session, and so the radio
would be unnecessarily on from the end-of-session to the time of
the match.
Case 2 (tw < segment < ts): If a segment is shorter than ts

seconds but longer than tw seconds apart, the system calls made
from the first packet up to tw seconds form an ACTIVE data-item
(left data-item in Figure 5). This truncation, ensures that we solely
learn rules involving system calls close to a network event.
Case 3 (segment < tw): Often, a large number of segments are
formed by observing packets within very short time intervals. Due
to inaccuracies in timestamping packets at capture-time, data-items
created over very small durations may introduce a large amount
of noise into the learning engine. Consequently, we concatenate
as many such short consecutive segments as needed to create one
ACTIVE data-item that is tw seconds in duration (right data-item
in Figure 5).

Thus every data-item contains system calls made over a period
of tw seconds. For each data-item, we extract binary features de-
termining whether a certain system call existed in it or not. In
other words, we use one binary variable for every system call. Its
value for the data-item is 1 if the application made the call in this
data-item, and 0 otherwise. In addition to these binary features, we
also use a feature to indicate the previous data-item’s state, that is,
whether the data-item just prior to the current one was labeled AC-
TIVE or EOS. This parameter, which we call PREV_STATE, helps
us capture temporal characteristics in the call trace. We found this
particularly useful in capturing rules in complex applications, as
we explain in Section 3.5.

Using this procedure, from the traces, we therefore generate a
set of data-items labeled ACTIVE or EOS. From these, the clas-
sifier learns rules in the form of boolean expressions. We provide
two costs to the learning algorithm. The cost of misclassifying an
ACTIVE data-item as EOS has two components: first, we specify
the energy expended in shutting-down the radio and then bringing
it up again. Second, we specify the corresponding signaling over-
head of mis-predicting an EOS. The cost of misclassifying an EOS
data-item as ACTIVE involves purely the energy cost of keeping
the radio up when it could have been put into fast-dormancy.

Figure 6a shows the tree learned for the gnotify application run-
ning on a Windows 7 system. The gnotify application periodically

DispatchMessage

sendACTIVE

EOS ACTIVE

0 1

0 1

(a) The decision tree learned for Gnotify

DISPATCHMESSAGE = 0⇒ ACTIVE (35)
DISPATCHMESSAGE = 1 AND SEND = 0⇒ EOS (24)
DISPATCHMESSAGE = 1 AND SEND = 1⇒ ACTIVE (1)

(b) The rules learned for Gnotify

Figure 6: Classifying Gnotify Behavior

polls gmail and pops up a message when there is a new email (more
elaborate results are shown in Section 5). The system call trace
used to learn this tree was 5 minutes long. Every path from root to
leaf yields one boolean expression. Consequently, the rules that the
classifier learned for gnotify are listed in Figure 6b.

The numbers in parenthesis next to each rule are the number
of data-items that contribute to learning that rule. They indicate
that the first two rules have much higher confidence than the third
rule. The DISPATCHMESSAGE system call dispatches an inter-
thread message to a specified window procedure in the GUI thread,
while the SEND call is used to send data out on a socket. Hence
this set of rules indicate that, at run-time, in a data-item, if no
DISPATCHMESSAGE is seen, the session is ACTIVE and therefore
we should not invoke fast-dormancy. However, if DISPATCHMES-
SAGE is seen and SEND is not seen, the rules predict an EOS, and
therefore we should invoke fast dormancy. If DISPATCHMESSAGE

is seen and SEND is seen, then the session is still ACTIVE, and the
radio should stay on.

It is easy to see why the SEND call appears in the rules since it
directly results in network activity. Learning the DISPATCHMES-
SAGE call is, on the other hand, not as obvious. We believe that
the classifier learns this call because gnotify, after polling the email
server (i.e. at EOS), updates certain GUI artifacts (such as setting
the last-checked-at message in the tool-tip of the application’s icon
in the system tray), which registers as a causality between EOS and
DISPATCHMESSAGE.
Figure 7 shows a part of the tree learned for the Outlook email

application running on a Windows 7 system. Outlook is a sig-
nificantly more complex application than gnotify, and as a result,
our learning engine learned approximately thirty rules of which
the figure shows four prominent ones. An interesting observa-
tion is that the top-level feature in this tree is the previous state,
or PREV_STATE: in Section 3.5 we explain why this is an impor-
tant feature for complex applications. When PREV_STATE is EOS,
the next session is predicted to be ACTIVE. On the other hand, if
PREV_STATE is ACTIVE, if the LOCALFREE call is seen, the ses-
sion remains ACTIVE. If LOCALFREE is not seen, but WSARECV

is seen, the session is still ACTIVE. If WSARECV is not seen, the
learning predicts that an end-of-session has been reached.

This tree shows the importance of learning different rules for
different kinds of ACTIVE sessions that an application can have.
Each path ending in an ACTIVE leaf node potentially represents
a distinct background network behavior. It is important that our
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Figure 7: The decision tree learned for Outlook

learning technique capture each of these different behaviors auto-
matically and completely.

3.4 Run-time
We now describe how our run-time engine uses the learned rules

to decide when to shut down the network radio.
Whenever an application sends or receives a packet, say at time

t, the run-time engine resets state and starts collecting system call
traces as part of a new session. If the application sends or receives
the next packet within the shutdown window tw, we automatically
determine that the current session (started by the first packet) is
ACTIVE, and start collecting traces as part of the session started
by the second packet. If, on the other hand, we see no network
activity for the time window tw since the first packet, the engine
needs to decide whether the system calls in the current session pre-
dict EOS or not. If the set of system calls in the current session
matches a rule for EOS learned in the rule-learning phase, thereby
predicting that the network session has ended, the engine invokes
fast dormancy. We elaborate further on this process while describ-
ing our implementation in Section 4. We repeat this process every
time we see the application send or receive a packet.

3.5 Design Decisions
We now describe various decisions we made in the design of our

data collection, learning and run-time engines.
Feature Selection: Initially, our learning engine used a signifi-

cantly richer feature set that included application-level stack traces.
We treated each call-site in the stack trace as a binary feature, just
as we did with the system calls. We also included the return values
to every system call and the system call as key-value pairs, as op-
posed to using just a binary variable to indicate whether a system
call is present or absent in the data-item. We also tracked nested
system calls (where a system call implementation calls another sys-
tem call before returning to the caller). Surprisingly, we found that
using only binary features for system calls was sufficient in learn-

ing accurate rules: adding the extra call stack information and the
return values did little to increase the power of our learning. Track-
ing nested system calls made things worse because it introduced
non-application-specific features (i.e., OS/library implementation
features), which overwhelmed the application-specific features that
are of primary interest. While counter-intuitive, this is a welcome
result since tracking only the system calls that an application makes
is a low-overhead task.

Use of previous state: While learning with only system calls
worked well for simple applications, we found that the learning was
noisy for more complex applications such as Outlook and Lync,
even with stack traces. To address this, we added the binary feature
PREV_STATE to every data-item, which tracks whether the previ-
ous data-item’s label was ACTIVE or EOS. With this addition, our
learning for complex applications such as Outlook improved dra-
matically. On closer observation, we found that these applications
had different types of background network activity: while some
sessions were long-lived and involved significant traffic, many oth-
ers were very short and extremely periodic, such as application-
level keep-alive messages being sent every 10 seconds. This behav-
ior results in alternating data-items being in the ACTIVE and EOS
states. Introducing the PREV_STATE parameter helped the classi-
fier learn a different signature for such short and periodic sessions
as compared to the longer, more heavyweight sessions.

Static vs Dynamic Learning: Our results indicate that using
off-line, static learning on a per-user basis is very effective at learn-
ing accurate rules. We also found that our learning engine has very
good turnaround time. For a complex application such as Outlook,
using 6500 data-items involving 269 binary features, the classifier
ran within 0.5 seconds on a desktop-grade machine. Since this is
a fairly quick turnaround time in learning rules, we decided to im-
plement a dynamic learning engine (as described in Section 4) in
addition to the static learning engine. In case applications change
their behavior over time, the dynamic learner running alongside the
application will automatically generate new and updated rules.

4. IMPLEMENTATION
We have implemented the RadioJockey learning engine and run-

time engine. Figure 8 describes the RadioJockey components at a
high-level.

Learning engine. The learning engine comprises a call-tracing
module, a packet-timings module, and the standard C5.0 decision
tree classifier. The call-tracing module collects system call traces
(on Android phones and tablets), and library call traces (on Win-
dows tablets). System call traces are collected using STRACE. Li-
brary call traces are collected by injecting our RadioJockey DLL
into the unmodified application’s address space. The DLL inter-
cepts calls to the 1634 core Win32 library functions (using DE-
TOUR) and logs them (in-memory) before calling the intended func-
tion. Note that we do not need application source-code, nor do we
need to re-write the application binary in either case. Using our
STRACE and DETOUR approach we can support native as well as
legacy applications.

The packet-timings module captures timing information for each
packet sent or received by the application. We use LIBPCAP (on
Android) and NETMON (on Windows). The key challenge we
faced was associating a network packet to the running application
process (without modifying the kernel). This was hard because
LIBPCAP and NETMON do not support filtering packets by process
ID. Our code performs the filtering in user-space. We link a packet
to process based on the TCP port number. We get the port numbers
opened by the application by periodically (every few milliseconds)
snapshotting NETSTAT output. Since establishing a new TCP con-



Figure 8: RadioJockey architecture

nection takes several round-trip-times (which are on the order of
tens of milliseconds), we are still able to track short-lived sessions,
although an in-kernel implementation would be more efficient.

The output of the call-tracing and packet-timing module are pro-
cessed as described in Section 3.3 and fed into C5.0. The decision
tree output by C5.0 is then fed into the run-time engine. Note that
our implementation supports both offline and online learning. In
offline learning the data used for learning may come from an ear-
lier execution of the application. In online learning the data used
for learning comes from the current application instance.

Run-time engine. The RadioJockey run-time engine comprises
a tree-matching module, and a fast-dormancy module. The tree-
matching module accepts a decision tree over a control channel,
and classifies sessions as ACTIVE or EOS based on the logic de-
scribed in Section 3.4. It shares much of its implementation with
the call-tracing module since both use the same data. The decision
tree can be updated at any time (and any number of times) without
having to restart the application. When the tree-matcher predicts an
EOS it informs the fast-dormancy module over a control channel.

The fast-dormancy module uses private APIs to invoke fast-dorm-
ancy on the particular platform (Android or Windows).

Overall our implementation consists of 2580 lines of C and C++
code (most of which is for the Windows DLL implementation), and
350 lines of Python scripts to process data-items and C5.0 output.
Our RadioJockey DLL, which is injected into the running applica-
tion’s address space, is 1.4 MB in size and includes both the call-
tracing and the tree-matching modules.

Avoiding mis-prediction cascades. We designed the Radio-
Jockey run-time to avoid mis-prediction cascades. Specifically, we
do not base the current prediction on the previous predicted value;
PREV_STATE is always the actual outcome of the previous data-
item. This also allows us to track the accuracy of our past predic-
tions without incurring any additional overheads. For example, if
we predict EOS and we see a packet before ts has elapsed, we set
PREV_STATE to ACTIVE to reflect the actual outcome, and log the
false positive. If we don’t see a packet within ts of an ACTIVE
prediction, we similarly set PREV_STATE to EOS and log the false
negative. If the application behavior changes, or the application en-
ters a phase that was not well-represented in the training data, this
is manifested in our log as a string of mis-predictions, which the
run-time engine detects. At that point the run-time (temporarily)
stops making predictions, which gracefully falls back to existing
behavior (of network operator defined idle timer based FD) with no
additional signaling overheads.

The run-time engine resumes making predictions after some time.
When resuming, it simply needs to wait for two consecutive pack-
ets (to set PREV_STATE); all other inputs come from the current

App Platform Avg Avg inter- Complexity
session(s) session(s)

Litestock Win 0.51 14.83 Simple

Yahoo Messenger Win 0.54 28.30 Simple

Seesmic Win 0.69 35.66 Simple

Miranda IM Win 0.31 49.38 Simple

Destroy Twitter Win 1.99 48.77 Simple

Gmail Notify Win 0.34 69.48 Simple

Desktop Changer Win 6.99 63.46 Simple

GoChat Facebook Android 0.18 26.22 Moderate

Google Talk Win 0.28 27.39 Moderate

Tweetdeck Win 0.37 24.71 Moderate

Twitdroid Android 1.81 14.81 Moderate

Live mail Win 11.42 71.11 Moderate

Lync Win 1.03 55.73 Complex

Outlook Win 0.86 18.53 Complex

Table 2: Applications and networks we evaluated RadioJockey on

data-item. Exponential back-off, where the run-time stops mak-
ing predictions for exponentially longer intervals when the mis-
prediction rate does not improve, ensures that the run-time closely
tracks slight unexpected deviations in application behavior while
minimizing overheads if application behavior changes significantly.
When the exponential back-off timer exceeds a threshold, the run-
time (optionally) switches to dynamic learning (Section 3.5) to re-
learn the new application behavior.

5. EVALUATION
We evaluate RadioJockey using both real-world experiments and

trace-driven simulations across 14 applications on multiple plat-
forms and on multiple network types. We find that our approach is
robust to a wide range of application-level and network-level fac-
tors.

5.1 Macrobenchmarks

5.1.1 Energy Savings

We ran the 14 applications listed in Table 2. Twitdroid and
GoChat are Android applications, and the remaining are Windows
applications. We captured call-traces and network-traces for each
application. We performed a 10-fold cross-validation. That is, we
partitioned the data into 10 parts, trained using 9 of them, and tested
the classifier on the 10th; we repeated this 10 times for a different
choice of the test partition. To compare with existing approaches,
we simulate a timeout-based fast-dormancy approach for common
timer values used today. The timeout-based approach invokes fast-
dormancy when it sees a period of contiguous network inactivity
for some fixed time.



 0.4

 0.6

 0.8

 1

 1.2

 1.4

Litestock Yahoo
Messenger

Seesmic Miranda
IM

Destroy
Twitter

Gmail
Notify

Desktop
Changer

GoChat
Facebook

Google
Talk

Tweetdeck Lync
(stationary)

Twitdroid Live Mail Lync
(mobile)

Outlook

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 U

s
e

 

Oracle RadioJockey 1s timeout 3s timeout 5s timeout 10s timeout

(a) Energy savings

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Litestock Yahoo
Messenger

Seesmic Miranda
IM

Destroy
Twitter

Gmail
Notify

Desktop
Changer

GoChat
Facebook

Google
Talk

Tweetdeck Lync
(stationary)

Twitdroid Live Mail Lync
(mobile)

Outlook

N
o
rm

a
liz

e
d
 S

ig
n
a
lin

g
 C

o
s
t

 

(b) Signaling overhead

 0

 5

 10

 15

 20

 25

 30

Litestock Yahoo
Messenger

Seesmic Miranda
IM

Destroy
Twitter

Gmail
Notify

Desktop
Changer

GoChat
Facebook

Google
Talk

Tweetdeck Lync
(stationary)

Twitdroid Live Mail Lync
(mobile)

Outlook

S
iz

e

 

Tree depth (#) Storage (bytes)

(c) Tree complexity

Figure 9: RadioJockey energy savings and signaling overhead as compared to today, and complexity of the decision tree learned.

We additionally compare against an aggressive timeout-based
approach that uses the same shutdown window (tw) we use. Fi-
nally, to determine the maximal savings possible, we simulate an
oracle that has perfect future knowledge about when a session ends
so it can invoke fast-dormancy at the earliest possible time. We
use energy, power, and signaling numbers measured on the Sam-
sung Focus device mentioned earlier (Table 1) for computing these
results. We disable RadioJockey’s dynamic learning to evaluate
the quality of rules we learn statically; enabling dynamic learning
would serve only to improve our results.

Figure 9a plots the (normalized) median energy consumed for
each approach and Figure 9b plots the (normalized) median signal-
ing messages for each approach. All numbers are normalized to
that of the 3 second timeout-based approach, which is the most ag-

gressive (in terms of energy-savings) fast-dormancy strategy used
by current smartphones [4]. The oracle, of course, consumes the
least energy and has no added signaling overhead as compared to
the 3s idle timer — this represents the optimal operating point.

For the simple applications, RadioJockey performance is nearly
identical to that of the oracle, saving between 44%–22% of energy
as compared to today without any additional signaling overheads.
For these applications, RadioJockey correctly predicted every EOS
(i.e., 0% false-negative) and did not mis-predict any ACTIVE ses-
sion (i.e., 0% false-positive); the slight energy difference compared
to the oracle is due to the small shutdown window that RadioJockey
needs to wait before entering fast-dormancy.

While an aggressive timeout-based approach achieves only slightly
lower energy savings, it can have significantly higher signaling



cost (between 6%–56% more than today across all applications).
The reason for this, as mentioned, is that such an approach will
be highly sensitive to application and network factors, often mis-
predicting an EOS if an application stalls briefly or packets are de-
layed. As mentioned, each mis-prediction (false-positive) incurs
an additional signaling cost of 32 messages (for 3G or for LTE)
as compared to today. More conservative timer based approaches
have lower signaling overhead (since they enter fast dormancy less
often than today), but correspondingly consume a lot more energy
than today.

For the moderate complexity applications, RadioJockey still out-
performs all timeout based approaches, and achieves 42%–90% of
the oracle’s energy savings (i.e., 6%–43% savings compared to to-
day) without any added signaling overhead. This is attributed to
RadioJockey opting to minimize false-positives (i.e., not incurring
added signaling overhead) at the expense of false-negatives (i.e.,
not saving as much energy as optimally possible) as mentioned ear-
lier. The performance of timeout based approaches is qualitatively
similar to before— higher signaling overheads for aggressive time-
outs, and lower energy savings for conservative timeouts.

For complex applications, RadioJockey manages to achieve around
65% of the oracle’s energy savings (25% compared to today) with
only 1%–4% signaling overhead. The timeout based approaches,
as before, do not achieve comparable energy savings and signaling
overheads.

Next we focus on the complexity of the decision tree learned by
RadioJockey (Figure 9c). The figure plots the depth of the tree and
the storage overhead (in bytes). The tree depth tracks the number
of boolean conditions that need to be checked at run-time. The
storage tracks the memory required to store these booleans. As is
evident from the graph, as application complexity grows, so does
the complexity of the tree. At an absolute level though, run-time
processing and storage requirements are minimal (requiring only
15 comparisons and 29 bytes of storage even for applications as
complex as Outlook).

5.1.2 Run-time Engine Evaluation

We now focus on experimentally evaluating the RadioJockey
run-time engine. The run-time operation needs to be highly per-
formant in order to issue fast dormancy commands to the cellular
interface in a timely manner. We ran 4 separate applications of
different complexity. Each application ran in isolation for around
2 hours in the background on a Windows 7 based tablet device.
The decision tree used for classification is built offline for each ap-
plication. We measured how often the RadioJockey run-time mis-
predicted EOS (false positives), and what fraction of EOS events
are predicted accurately (complement of false negatives). Energy
spent by the network interface and signaling overhead is estimated
offline using network capture trace and timestamps of EOS pre-
dictions when fast dormancy commands are invoked. Each mis-
prediction by the run-time engine leads to an unnecessary state
transition thereby spending one additional ramp-up and tail energy
cost as well as increased signaling messages. Lower accuracy im-
plies reduced energy savings since RadioJockey run-time falls back
to using timeouts to invoke fast dormancy for EOS events that are
not predicted.

Figure 10 shows percentage values for false negatives, false posi-
tives, energy savings, and signaling overhead compared to a default
3 second timer based approach. We find that false negatives to be
under 3% for the four applications we tested, and as a result we ob-
tain energy savings of 20%–30%. However, we find that signaling
overhead is marginally higher (3%–6%) compared to offline anal-
ysis owing to increased mis-predictions in run-time. This is due to
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Figure 10: Runtime performance with respect to 3s timeout scheme
for four applications.

inaccuracies in our the packet-timings module, which in our current
prototype, as mentioned, is implemented in user-space and needs to
make heavy use of netstat to link packets to processes. As a result,
it experiences scheduler-related delays and jitters. An in-kernel im-
plementation that has direct access to kernel data structures and is
not affected by the process scheduler would significantly improve
the accuracy of packet timestamps. That being said, our current
user-space approach still delivers most of the energy savings with
low signaling overheads in practice.

5.1.3 Phone experiments

We next measure the energy saved by RadioJockey on a Sam-
sung Focus Windows phone connected to a 3G network. In order
to measure only radio related energy costs, we turn off the screen
and measure the base power consumed by the phone using a Mon-
soon power monitor. Next with the screen still off, we run a rep-
resentative application (gnotify) on a device tethered to the phone
(so all network traffic uses the phone’s radio) while measuring the
power consumed. We then run the application with the Radio-
Jockey run-time engine enabled, which sends fast-dormancy com-
mands to the fast-dormancy module running on the phone. Finally,
for comparison, we measure the power for a simple timeout based
fast-dormancy approach where our fast-dormancy module on the
phone fires after the configured period of inactivity. We integrate
the power over time to compute the energy consumption.

For the 3 second timeout-based approach, the phone consumed
94.86 J of energy, whereas using the RadioJockey engine, the phone
consumed only 72.2 J. RadioJockey therefore saves 24% energy
over the aggressive 3 second timeout-based approach, which is in
line with our simulation results. This demonstrates the expected
energy savings promised by RadioJockey can actually be attained
in real-life scenarios.

5.1.4 Robustness

Network. To demonstrate the robustness of the decision tree
learned by RadioJockey, we experiment by running the learning-
engine on a static device, and use the tree to classify the application
on mobile device. Figure 11 plots the numbers for the Lync appli-
cation. Even though the network characteristics (latency, packet
loss, bandwidth) for the two scenarios are very different, Radio-
Jockey manages to extract 28% energy savings. This was identical
to training and testing on the same network condition. The ability
to use traces collected across different network types demonstrates
the robustness of RadioJockey to network characteristics, allowing
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Figure 11: Robustness of the decision tree learned by RadioJockey
to changing network and workload conditions.

Applications Energy Savings (%) Signaling Overhead (%)

Outlook 24.03 4.47
GTalk 24.07 4.57
Lync 24.14 0
All 22.8 6.96

Table 3: RadioJockey with multiple applications.

for scenarios where the phone or tablet platform provider may per-
form the RadioJockey offline learning and provide prediction rules
to the users, so that users get some baseline energy savings regard-
less of their operating scenario.

Workload. To further explore the robustness of the decision tree,
we experiment by learning on one workload, and testing on a dif-
ferent workload. We use the Lync application where user one has
a small number (9) of friends, while user two has many more (25).
We find that RadioJockey saves 26% energy in both cases, further
demonstrating the robust nature of the decision trees with respect
to workloads. This suggests that RadioJockey traces can addition-
ally be shared across users further reducing the learning burden for
individual users.

5.1.5 Multiple applications

So far we have measured each application in isolation. In prac-
tice, multiple background applications may be running at any given
time, and the radio can go into fast-dormancy only if none of the
applications is actively communicating. This naturally reduces the
energy savings. We simulate different interleaving of three applica-
tions – Outlook, Lync and GTalk. For this we use the decision trees
learned earlier, and enter fast dormancy when neither application is
classified to be in an ACTIVE session.

Where RadioJockey saves 24% energy for applications in isola-
tion compared to the 3 second timeout approach, for the interleaved
trace, RadioJockey saves on average 23%. The signaling overhead
only increases marginally to 7%, whereas individually the signaling
overhead is below 5% for each application in isolation. The small
increase in signaling overhead is due to the interference between
different applications. Although we are predicting EOS events ac-
curately, RadioJockey does not predict the start of a session (SOS).
As a result, when EOS is predicted for one application leading to
fast dormancy, an SOS event for another application can potentially
result in waking up the radio immediately resulting in a false pos-
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Figure 12: Selecting features and shutdown window size.

itive. However, the data suggests that active sessions of multiple
background applications do not overlap often. Thus RadioJockey
still manages significant energy savings even while running mul-
tiple background applications together with marginal increase in
signaling overhead.

5.2 Parameter Selection
We next focus on our choice of features to base RadioJockey’s

learning algorithm on. Figure 12 performs a parameter sweep for
tw (shutdown window) on the x-axis for Outlook, and plots the
energy savings for the choice of application features. Signaling
overheads (not shown) are low throughout.

Note first that using only system call information without PREV-
_STATE performs quite poorly, saving at best only 13% energy (as
compared to the oracle saving 41%). The reason, as we have noted,
is that the tree did not distinguish between long- and short- AC-
TIVE session. To better handle this temporal state, we add the
PREV_STATE feature.

Adding previous state significantly improves energy savings (in-
creasing it to 25% in the best case). Beyond this, small gains are
to be had by including return values, and callsite and stack trace
information (adding a further 1% and 4% respectively), however
given the significant overheads in acquiring a stack trace at every
intercepted function call, we decide to forgo this small boost.

Interestingly we found that for all the applications we tested (and
all sets of features we tested), the energy savings curve follows the
same pattern — energy savings linearly increase monotonically as
the shutdown window size decreases, but only up to a point. Be-
yond that the energy savings decrease monotonically as the window
size decreases further still. This is explained by the fact that when
the shutdown window size is large, all EOS are predicted correctly
and false-positives are rare, and energy savings is a linear function
of how long RadioJockey must wait to make a prediction (i.e., shut-
down window size tw). Beyond the critical shutdown window size,
false negatives increase as there is too little data to predict every
EOS, which results in lower energy savings.

Based on empirical measurements across different networks, and
different workloads, this critical point appears to be stable for a
given application (but different for different applications). This
suggests that this is an application-dependent quantity that can be
learned by the platform during application evaluation time, and
used by all users.



6. DISCUSSION

6.1 Network Features
RadioJockey employed features from application execution traces

to infer rules that predict an EOS events effectively. We also evalu-
ated whether network features alone can be used for predicting the
same. We used features such as TCP flags, HTTP content length,
packet payload length, and hash of first few bytes of the packet. The
intuition for using hash value is that many applications use custom
protocols for communication and most often the first few bytes of
the packet carry header related information.

For applications which tear-down network connections at the end
of a session, we are able to find good rules that predict EOS based
on TCP flags alone. These included simple background applica-
tions such as Desktop Changer, FeedReeder, and GNotify. How-
ever, for many applications that keep long standing active TCP con-
nections for communicating with the server, we could not find high
accuracy rules. Another major drawback of this approach is that it
cannot be employed on applications that use encryption.

6.2 Temporal Rule Mining
Prior to using classification technique in RadioJockey, we em-

ployed temporal rule mining to learn application specific rules from
system call traces and network traces. The approach inferred rules
of the form A → B → ... → C where A, B and C are predi-
cates that frequently occur in a sequence in the traces, however not
necessarily next to each other. A predicate can either be a func-
tion name with optional return value parameter or an EOS event
(obtained from network trace). We inferred rules which have EOS
as one of the predicates. To limit the search space, we only find
rules where the first and last predicate occur within a certain time
duration. We selected a subset of rules that are able to capture most
of the EOS packets in the training set with minimal false positives.
In addition, we preferred rules which end with an EOS predicate.
At runtime, whenever a series of predicates in a rule are observed,
fast dormancy command is issued immediately after the last predi-
cate. As a result temporal rule based approach can potentially save
more energy compared to classification based approach that uses
system calls captured after the occurrence of a packet, thus taking
marginally longer time to invoke fast dormancy.

For most simple applications a small set of temporal rules with
at most 4 predicates is sufficient to predict EOS events with high
accuracy. However, inferring temporal rules for complex applica-
tions, which invoke a large number of system calls, turned out to
be time consuming as the search space blows up exponentially with
number of predicates. This is one of the reasons for using classifi-
cation technique in RadioJockey.

6.3 Foreground Applications
RadioJockey is currently designed to invoke fast dormancy only

for background applications during periods when there are no ac-
tive user interaction. Predicting EOS events for foreground applica-
tions turns out to be challenging since user interactions can trigger
network communications at any point in time. Accordingly, Ra-
dioJockey run-time employs a simple heuristic — enable run-time
only when the screen is idle. This ensures that fast dormancy calls
for background applications do not interfere with foreground ap-
plications. Although this approach may seem very conservative,
mobile phone usage is typically dominated by long periods of user
inactivity during which background syncing activities are carried
out. We plan to focus on foreground applications as a part of future
work.

7. RELATED WORK
Understanding cellular radio energy characteristics has received

increasing attention in recent years. In particular, the energy cost
of the “tail” [2, 18] of the 2G/3G cellular radio, where the radio
remains in a high power state for a large inactive duration (deter-
mined by the operator) after the end of each data communication
spurt, has received significant attention. We describe below related
work that has focused on this aspect of the cellular radio.

Measurements andModeling. Several papers [12, 11, 14] have
used active measurements to characterize the cellular radio state
transition parameters of different operators. These measurements
indicate that default parameter values for the cellular radio energy
tail can vary across operators and be as high as 20 seconds, result-
ing in significant energy drain on smartphones. Falaki et al. [3] ana-
lyze smartphone traffic from a large number of users and show that
95% of inter-packet arrival times lie within 4.5 seconds, thereby
arguing for a shorter idle timer value for 3G radios.

Analytic models have been proposed for computing the energy
consumption of 3G radios [10, 19]. Authors in [19] compute the
energy cost of using different inactive timers by modeling traffic
and 3G radio characteristics. Pathak et al. [10] use system call
tracing to perform fine-grained modeling of energy consumption,
including modeling the various states of the 3G radio, for accurate
energy accounting of applications on mobile smartphones.

Optimizing for a given tail. Several papers [2, 6, 8, 17, 18],
have leveraged pre-fetching and/or delayed scheduling in order to
amortize the energy cost of the cellular radio tail. Tailender [2] uses
a combination of delayed transfer and prefetching of search query
results in order to reduce energy. Cool-Tether [18] takes the energy
cost of the tail into account for deciding the number of phones to
be combined for tethering. Bartendr [17] prefetches data at good
signal strengths for streaming and background transfer applications
in order to save energy.

Optimizing the tail. Modern smart phones use idle timer values
that range from 3 to 10s for invoking fast dormancy [4], a con-
siderably smaller duration than the typical 12-20s of default tail
durations configured by operators [14]. However, these idle timer
values are currently chosen in an ad hoc manner, balancing opera-
tor sensitivities to signaling costs of low idle timer values with the
needs of reducing smartphone energy consumption. Several pa-
pers have also proposed to dynamically choose idle timer values
based on traffic characteristics instead of static idle timer values
used currently [7, 13, 19]. However, as we show in Section 2, it
is not always possible to choose an aggressive idle timer value that
accurately predicts the end of a communication spurt, given net-
work characteristics and user mobility can cause significant varia-
tion in inter-packet arrival times. Thus, these approaches can result
in large increases in signaling overhead.

ARO [16] is a tool that collects various profiling data when an
application is running (e.g., packet traces, user interacation, etc.)
and then analyzes the data offline in order to shed light on the im-
pact of various smartphone application features and their respec-
tive radio energy costs. Thus, ARO helps provide developer with
sufficient cross-layer information (TCP, radio states, etc.) and the
energy cost of different functions of the application, thereby allow-
ing the developer to redesign his code in a more energy efficient
manner.

Perhaps closest to RadioJockey is TOP [15] where applications
are modified to leverage fast dormancy in order to save energy. Ap-
plications in TOP actively inform the network when their commu-
nication spurt is finished. Thus, the cellular radio is able to quickly
go into a low energy state. However, TOP requires application de-
velopers to be aware of the cellular energy tail characteristics and



incorporate this into their code design. RadioJockey has the same
goal of invoking fast dormancy after the end of a communication
spurt but without requiring any support from the application devel-
oper. By mining program execution traces, RadioJockey is able to
infer rules for end of communication spurts and can thus automati-
cally invoke fast dormancy at the correct times without any change
to application code. The complexity of some of the rules that we
learn for identifying the end of a communication spurt argues for an
approach such as RadioJockey since an application developer may
not always be able to identify these rules, especially for large and
complex applications.

8. CONCLUSION
Many applications such as email clients, instant messenger, etc.

perform network activity while running in the background on a mo-
bile device. However, the energy cost of running these applications
in the background on a cellular interface can be significant enough
that many smartphone platforms prohibit background application
or severely restrict them. Recent smartphone models cut down the
energy cost by implementing a feature called Fast Dormancy (FD),
which forces the radio to go to a low energy state based on a short
inactivity timer. However, such idle timer-based approach face two
drawbacks: some applications have a large variance in their packet
inter-arrival distributioin and second variation in network condi-
tions due to mobility can also change the packet inter-arrival distri-
bution.

In contrast, our system called RadioJockey analyzes program ex-
ecution traces and mines rules for identifying end of communica-
tion spurts. We show that our approach is able to save 20-40%
energy savings compared to an idle timer approach for a large class
of applications, is much more robust to variations in network con-
ditions, and achieves savings with negligible increase in signaling
load for the network operator.
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