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Abstract
In this paper, we consider the goal of achieving high

throughput in a wireless sensor network. Our work is set
in the context of those wireless sensor network applications
which collect and transfer bulk data. We present PIP (Pack-
ets in Pipe), a MAC primitive for use by the transport module
to achieve high throughput. PIP has a unique set of features:
(a) it is a multi-hop connection oriented primitive, (b) it is
TDMA-based, (c) it uses multiple radio channels, and (d)
it is centrally controlled. This represents a significant shift
from prior MAC protocols for bulk data transfer.

PIP has several desirable properties: (a) its throughput
degrades only slightly with increasing number of hops, (b) it
is robust to variable wireless error rates, (c) it performs well
even without any flow control, and (d) requires only small
queue sizes to operate well. We substantiate these properties
with a prototype implementation of PIP on the Tmote-Sky
CC2420-based platform. PIP achieves about twelve times
better throughput than the state-of-the-art prior work, over a
network depth of ten nodes.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless

communication

General Terms
Design, Experimentation, Performance

Keywords
Bulk data transfer, throughput optimization, TDMA,

MAC, wireless sensor network applications, pipelining

1 Introduction
There have been several wireless sensor network deploy-

ments in the recent past. The modus operandi of most of
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these applications is to sense physical phenomena and com-
municate this data from individual sensor nodes to a common
sink, typically over multiple wireless hops. We focus our at-
tention on those applications which require bulk transfer of
large amounts of sensed data. Notable applications of this
kind are structural health monitoring [1, 2, 3], volcano activ-
ity monitoring [4], surveillance applications involving imag-
ing/acoustics, etc. For instance, structural health monitoring
applications collect vibration data at 200Hz [1, 2]. BriMon
estimates about 7KBytes of data per sensor per train pass [3],
and this data must be transferred to a sink as quickly as pos-
sible so that network nodes can sleep subsequently, to save
power. Volcano monitoring reports as much as 50KBytes of
1 minute data per sensor [5]. In fact, [5] reports data trans-
fer throughput as a bottleneck in the system design as the
data transfer latency hampers node’s ability to detect back-
to-back (seismic) events. The above class of applications
require reliable bulk data transfer and are throughput inten-
sive. In battery-operated situations, higher throughput is im-
portant from the perspective of power savings too, since a
node can sleep soon after transferring its collected data [3].

Accordingly, this paper considers the goal of achieving
high throughput for reliable bulk data transfer. There are
mainly three stumbling blocks that make this difficult in a
multi-hop wireless setting. The first and the foremost is in-
terference: inter-path, intra-path and external interference.
Inter-path interference is that which happens between multi-
ple flows, while intra-path interference is that which happens
between multiple hops of the same flow. The second limita-
tion is imposed by the hardware that is typically used in these
deployments: low processing speed, limited RAM/hardware
buffers. The third is the common culprit: wireless errors.
We carefully design our solution to effectively handle each
of these problems.

We first simplify the problem by considering only one
flow at a time, thus eliminating the issue of inter-path inter-
ference much like in [5],[6]. Our framework easily extends
to supporting two flows at a time; we shall show that this
achieves close to optimal throughput, thus avoiding the need
to support an arbitrary number of simultaneous flows which
can come at considerable complexity.



We are thus faced with the challenge of extracting the
maximum possible throughput along a path of nodes, with
a single radio per-node. We have to achieve this while keep-
ing the functionality simple enough to permit easy and robust
implementation. Our solution is termed PIP, which stands for
“Packets in Pipeline”, and indicates that we seek to employ
pipelining through spatial reuse for high throughput.

PIP uses a radically different approach from current solu-
tions. Four features characterize the design of PIP. (1) PIP
is part of the MAC module, and it provides a connection-
oriented multi-hop MAC primitive, for use by the transport
module. (2) PIP is TDMA-based, and nodes use synchro-
nized time-slots. (3) PIP uses multiple channels for better
spatial reuse and high throughput. (4) Finally, the above fea-
tures of PIP are tied together with the use of central control.
In the application space of our interest, the sink node is an
ideal place for incorporating the centralized control.

While each of the above features themselves are by no
means unique, we argue that the combination is unique
to PIP and it is this combination which enables PIP to
effectively address the earlier-mentioned three challenges,
achieve high throughput, as well as have other useful fea-
tures.

Since we consider one flow at a time, there is no inter-
path interference. Features (2) and (3) eliminate intra-path
interference. For our considered applications, external in-
terference is not much of an issue (in remote locations like
volcanoes, habitats, bridges, etc.), but we show how fea-
ture (3) can be adapted to do dynamic channel hopping to
overcome external interference effectively. The centralized
control coupled with modular design, make the protocol ex-
tremely simple that it can be implemented on limited capabil-
ity hardware. Further, PIP is robust to wireless errors. Even
when different links on the path have different error rates,
PIP performs well without any dynamic flow control (unlike
Flush [6]). And PIP can operate well with only moderate
queue sizes.

We have implemented PIP on the Tmote-Sky platform,
which uses the 802.15.4-compliant CC2420 radio chip. Our
evaluation shows that PIP is effective in achieving high
throughput; the throughput degrades only marginally with
increasing number of hops.

Our prototype of PIP also includes a TinyOS-based im-
plementation of the hardware pipelining suggested in [7].
The prototype is able to achieve about 60 Kbps throughput
over a path of 10 nodes (9 hops). This represents over a
twelve-fold improvement over the throughput achieved by
current state-of-the-art [6] under similar conditions. We ac-
count for the various overheads in PIP and identify that PIP
itself adds only minimal overhead.

The rest of the paper is organized as follows. The next
section (Sec. 2) describes prior work and how PIP differs
from these. Sec. 3 presents the detailed design of PIP. Subse-
quently, Sec. 4 presents an extensive evaluation of PIP using
our prototype. Sec. 5 presents a few points of discussion and
Sec. 6 concludes the paper.

Table 1. Summary of related MAC protocols

2 Related Work

Efficient data transfer in a multi-hop mesh network has re-
ceived considerable attention. Below we compare our work
with prior transport layer solutions, MAC layer solutions,
and specifically with Flush [6].

Transport layer solutions: RMST [8] is a transport
layer solution that outlines the architectural choices for bulk
transfer. We employ some of the RMST’s techniques in
our work: such as hop-by-hop retransmissions and end-end
SNACKs. These techniques are routinely applied for effi-
cient data transfer (e.g. see Flush [6]). ESRT [9] is another
transport layer protocol that seeks to achieve the required re-
liability at minimum congestion. The definition of reliability
as applied to ESRT is very different from ours: ESRT seeks
to transfer ‘high percentage’ of messages from a set of sen-
sors to the sink, for accurate detection of events. PSFQ [10]
is a transport protocol that looks at reliable programming of
sensor nodes. PSFQ is basically a dissemination problem
while ours is a collection problem.

In comparison to the above, our main contribution is care-
ful design of a cross-layer framework that achieves maximal
bulk transfer throughput. ∇

MAC layer solutions: Tab. 1 succinctly compares PIP
with other MAC protocols [11, 12, 13, 14, 15, 16, 17, 18,
19]. As can be seen, PIP differs from most prior MAC in
terms of its combination of four design choices: connection-
oriented, TDMA-based, multi-channel, centralized. We wish
to stress that although each of the four aspects by themselves
are not unique, the set of design choices constitutes a non-
obvious design point; this is what enables PIP to achieve high
throughput. The fact that the combination of design choices
is non-obvious is borne out clearly in Tab. 1: despite the
variety in MAC layer solutions, only a few have chosen this
combination for use in sensor network applications.

PIP is akin to TSMP [20] and Wimax [21] in its combi-
nation of design choices. While multi-hop Wimax is yet to
be implemented or evaluated, TSMP has been. In compari-



son to TSMP, PIP’s contribution is in terms of the design and
optimization for bulk data transfer applications.

PIP is also unique in terms of its use of built-in time-
synchronization, and its goal of high throughput bulk data
transfer. Further, we have demonstrated the feasibility of our
ideas via implementation. An implementation-based valida-
tion is of great significance since in any TDMA system, since
the practicality of the time synchronization assumption is al-
ways in question unless shown otherwise. Tab. 1 shows in
bold italics, the few protocols which have an implementa-
tion.

The time-sync in PIP is similar to that in TSMP [20]
and FPS [22], in that we use simple per-hop synchronization
rather than sophisticated beaconing (such as RBS/FTSP) for
synchronization or drift computation. An important differ-
ence from TSMP & FPS though is the fact that we use the
data packets themselves for synchronization along the path!

As pointed out in Table 1, there are several single chan-
nel as well as multi-channel MAC protocols in the literature
(e.g. [19, 17, 22, 23]). But unlike PIP, none have been de-
signed or optimized for bulk data transfer. (AppSleep [23]
recognizes that a path of nodes can be made ’awake’ during
bulk transfer, but does not deal with bulk transfer itself). ∇

Flush: The closest that comes to our work is Flush [6],
a cross-layer protocol that works under the same premise as
ours i.e. one flow at a time. Flush uses a dynamic rate control
algorithm that avoids intra-path interference. This bottleneck
bandwidth is determined without any extra control packets
but by snooping control information. The underlying MAC
that flush employs is however CSMA.

The first major difference between Flush and our solution
stems from the fact that we use time synchronized slots to
clock out our packets. Here we leverage the well known fact
that deterministic scheduling rather than stochastic schedul-
ing is better for the saturated case [24]. The second dif-
ference stems from the fact that we use multiple channels
to increase spatial reuse. We note that the very design of
Flush cannot support multi-channel operation since the de-
sign depends on snooping to decide when to send packets.
Apart from this, a third difference is that we also employ a
hardware-specific optimization as suggested in [7]. This op-
timization moves packet copying off the critical path, and is
specific to the hardware platform. This optimization does not
apply to Flush since packet copying is not the bottleneck in
Flush.

These three differences put together permit us to achieve
significant performance improvement over Flush: a factor
of over twelve (1200%) for a path of ten nodes. Further-
more, we evaluate PIP’s robustness under varying channel
error rates. ∇

802.11 TDMA implementations: In another domain,
namely 802.11, there has been recent work on TDMA im-
plementations: [25, 26]. Most of the measurements in [25]
are on a single hop, while [26] too evaluates only two hops
at most. The work in both [25, 26] has focused on time
synchronization. In contrast, PIP is a cross-layer design to
achieve high throughput, and its design has been validated
over 802.15.4, an impoverished radio, over up to 9 hops.

3 The Design of PIP

We now present the design of PIP. In the explanation be-
low, we consider only a single flow at a time. At the end
of the section, we show how PIP can be extended to support
two flows at a time and how this achieves close to optimal
throughput.

3.1 Design choices

There are four important choices wemade in PIP’s design.

(1) TDMA versus CSMA: While CSMA allows for an
easy distributed implementation, it is known to suffer from
poor performance, especially for bulk data transfer, due to
intra-path interference. PIP chooses a TDMA-based ap-
proach. The common knowledge about TDMA is that time
synchronization is a difficult practical issue. PIP breaks this
myth and shows that it is possible to clock packets efficiently
using a simple piggy-backed time-synchronization mecha-
nism. ∇

(2) Multi-channel versus single-channel: A TDMA-
based approach also allows us to use multiple channels for
further throughput enhancement. If we use a technology like
802.15.4, as we have in our prototype, we have several chan-
nels: 802.15.4 has 16 different channels in the 2.4GHz ISM
band (although 4-5 are sufficient to achieve spatial reuse).
The same slotting structure used by the TDMAmechanism is
also used as the granularity of any channel switching. Chan-
nel switching does add a small but noticeable overhead, but
the benefits of multi-channel operation far outweigh this, as
we show in our prototype implementation. ∇

(3) Centralized versus distributed: While distributed
protocols can potentially be simple, seeking to optimize per-
formance generally introduces complexity. For instance, dis-
tributed TDMA or distributed multi-channel protocols are
necessarily more complex than their single-channel counter-
parts. Centralized approaches are generally frowned upon
for two reasons: lack of fault tolerance, and lack of scala-
bility. However, as mentioned in [27], most sensor network
deployments have a central sink node anyway, which collects
the sensed data. The central sink in most cases also has bet-
ter resources (battery, memory, CPU, etc.). This becomes a
natural point of central coordination. We thus choose a cen-
tralized approach for the PIP MAC. ∇

(4) Connection-oriented versus connection-less: A
connection-oriented MAC means that a higher layer can use
it only after a connection formation phase. Most MAC pro-
tocols are connection-less, with the notable exceptions of
Bluetooth and WiMAX [21], although the implementations
of both these wireless standards have only a single-hop con-
nection formation. In PIP, the MAC layer provides a multi-
hop connection-oriented primitive to the transport layer. This
fits in well with our choice of using a TDMA-based multi-
channel approach. With central control, the connection for-
mation phase is used to specify the time-slot and channel of
operation of each node in a data flow path. ∇

The above combination of design choices drives the de-
sign details below. The design below involves details as well
as several subtle aspects, which we point out as we describe.



Figure 1. Transport protocol: timing and state diagrams

3.2 Transport protocol

In a system using the PIP MACmodule, the transport pro-
tocol has one simple role: to handle end-to-end reliability.
There are however some subtleties and implications for the
PIP MAC, which we point out below.

The operation of the transport protocol is shown in
Fig. 1(a). The transport protocol itself is connection oriented,
and starts with a connection setup phase. Subsequently we
have one or more data transfer phases. Each transfer phase
ends with the source explicitly requesting a SNACK (Selec-
tive Negative Acknowledgment), by sending an EOF (End-
of-File) packet1. Depending on which data packets were
(negatively) acknowledged by the sink, the source retrans-
mits packets end-to-end. This cycle repeats as often as is
necessary, and finally, the source sends a TearDown which
closes the connection.

There are three subtle points to note. First, the connection
request originates from the data sink. Second, the source ex-
plicitly requests a SNACK packet by sending an EOF. That is,
the sink does not send a SNACK packet on its own. Third, the
TearDown originates from the source. Although the transport
protocol could have been designed differently with respect to
these three aspects, we have made the above choices for spe-
cific reasons, which we shall explain when we describe the
PIP MAC protocol (Sec. 3.4).

Fig. 1(b) shows the transport protocol state diagram at the
source as well as the sink. There are exactly two timers in
the transport protocol: one at the source node and one at the
sink. The source node timer is started after sending an EOF

packet, expecting a SNACK packet. So this timer handles
EOF packet losses as well as SNACK packet losses. The sink
node timer is used to detect loss of a ConnReq packet. When
the timer goes off, the transport module may decide to either
report failure of connection establishment to the application
module. Or it may resend the ConnReq packet.

1Although we are calling this the EOF packet, the transport pro-
tocol as well the PIP MACwould work just as fine if the source sent
an EOF in the middle of its data transfer, to trigger a SNACK.

Figure 2. PIP MAC, transport, routing, time-sync mod-
ules

3.3 PIP: Functionalities and Interfaces
We now discuss how PIP interfaces with other mod-

ules. Specifically, we discuss four functionalities: PIP MAC,
time-synchronization, routing, and transport. The cross-
layer design and the interfacing between the four function-
alities is best illustrated by means of a diagram: Fig. 2.

In our system, the transport module interacts directly with
the PIP MAC module. And the PIP MAC module provides
a multi-hop, connection-oriented primitive for use by the
transport module. At the same time, the PIP MAC module
provides a separate connection-less, single-hop interface for
use by the routing module. The connection-less interface is
based on regular CSMA/CA. The routing module may use
it to send any message, depending on the routing protocol
used.

Our MAC module thus provides two different kinds of in-
terfaces, for the transport and routing modules respectively.
It also encompasses a time synchronization module within
itself. We do not rely on any additional time synchroniza-
tion mechanism, than what is possible using the data flow
itself. The time synchronization module is active only dur-
ing an ongoing data transfer. We explain this further when
we discuss the MAC protocol (Sec. 3.4).

The interface between the transport module and the PIP
MAC module is depicted in Fig. 2. It consists of four calls:
one of these is a command from the transport module, and
the remaining three are signals (or events) from the PIPMAC
module to the transport module. The calls are parameterized
with the packet type. The possible packet types are exactly
the same as the five used by the transport protocol: ConnReq,
Data, EOF, SNACK, TearDown.

Thus the transport module (sink) initiates a PIPMAC con-
nection by calling send with the ConnReq packet type. At
the other end (the source), the PIP module signals a recv

with the ConnReq packet type. The exchange of Data, EOF,
SNACK, and TearDown packets happens similarly.

The PIP module may abort an existing connection by us-
ing the abort signal. Note that this is different from a normal
termination using a recv with the TearDown packet type.

As part of its interface to the transport module, PIP pro-
vides only unidirectional data transfer at a given time. Some
details of this interface are not shown in Fig. 2. First, the
transport module conveys the data source for the connection
as part of the connection request, as part of the extra param-



eters in the send(ConnReq, ...) call. Second, the transport
module gets information about the number of hops in the
path, from the PIP module (which in turn gets this informa-
tion from the routing module). This hop information is used
to set the transport timer values. Third, as part of the PIP-
transport interface, PIP guarantees that packets will not be
delivered out of order.

The interface between the routing module and the PIP
MAC module is depicted in Fig. 2. Apart from the usual
send and recv calls, we have a getPath routine which is used
by PIP MAC only at the central sink node. This routine re-
turns the sequence of nodes in the path from the sink to the
given source node in the network. This information is used
by PIP in determining the schedule and in turn establishing
the multi-hop MAC connection to/from the source node.

Here we have assumed that the routing module at the cen-
tral node is indeed capable of returning the path to/from a
given (source) node. This is possible for example, with a
link state or a path vector style routing algorithm, or even
with centrally controlled routing protocols like the one in
BriMon [3]. The operation of PIP is dependent on the rout-
ing protocol to this extent, but is otherwise independent of
it.

3.4 PIP MAC protocol
The PIP MAC module provides three main functionali-

ties: (1) the connection-oriented interface to the transport
module, (2) the embedded time-synchronization mechanism,
and (3) the connection-less interface to the routing module.

The three modes of operation: In implementing the
connection-less and the connection-oriented interfaces, PIP
switches between three overall modes of operation. (1) An
unsynchronized, single-channel mode, abbreviated as U1C,
is used while providing the connection-less interface. (2)
A time-synchronized, multi-channel mode, abbreviated as
SMC, is used while providing the connection-oriented inter-
face. In addition, while transitioning from U1C to SMC, PIP
uses an intermediate unsynchronized multi-channel mode
UMC.

The U1Cmode is used when there is no ongoing flow. By
design, all the nodes in the network will be in the same chan-
nel. In fact, we reserve one of the radio channels for the U1C
mode, and call it the U1C channel. This channel is not used
in the SMC or UMC modes in any of the nodes in the net-
work. The SMC mode is used during data transfer, for high
throughput. Notably, SMC is used only during data transfer.
We now outline PIP’s operation to effect a data transfer. ∇

Connection setup phase: PIP recognizes the same five
kinds of packets as is used by the transport module: Con-

nReq, Data, EOF, SNACK, and TearDown. Fig. 3 shows the
PIP MAC protocol in operation across a path of five nodes.
The transport module at the sink E starts proceedings by
making a connection request to the PIP module. This re-
quest specifies the data source as A. The PIP module at E
then queries the routing module at E for the path to the data
source A.

The central sink node then decides two important things.
First, for every node in the path, it assigns a designated re-
ceiving channel, for use in the UMC and SMC modes. We
also term this the SMC channel of a node. In the example,

Figure 3. PIP MAC operation: an example

Figure 4. Illustrating frame, schedule

A...E are assigned SMC channels 12...16 respectively (11 is
the U1C channel). If a node X has to transmit any packet to
its neighbour Y , it switches to Y ’s SMC (or receiving) chan-
nel and transmits.

The second important thing decided by the sink node is
the schedule. While describing this, we need some termi-
nology related to TDMA systems. For this paper, we shall
term a slot as a time span which represents the unit of re-
ception (or transmission, by a neighbouring node). A frame
is a sequence of slots; this same sequence of slots repeats
over time. A schedule is a specification of which nodes will
receive in which of the slots in the frame.

The schedule as well as the SMC channel for each node is
determined centrally, by the sink node. As an example, the
schedule and SMC channel for each of the nodes in Fig. 3 is
shown in Fig. 4. The sink node then conveys this information
in the PIP header of the ConnReq packet, as this packet is
forwarded toward A.

Note that the algorithm for computation of the schedule
and the set of SMC channels is itself independent of PIP’s
operation. We have used a particular simple yet efficient al-
gorithm for this, but any other mechanism can be used as
well.

An important point to note is that the MACmodules at the
intermediate nodes along the path maintain state about the
connection. Specifically, each node learns the time-slot and
channel information from the ConnReq packet as they for-
ward it along. Each node also learns its neighbouring nodes
and their time-slot and SMC channel information. These de-
tails are used during the data transfer.

After forwarding the ConnReq, a node changes fromU1C
mode to UMC mode. Once the ConnReq reaches the PIP
module at A, the module strips off the PIP header and gives
the packet to the transport module. The transport module



then uses the transport level information in the request to de-
cide which data to transmit. It then starts to transmit Data

packets. At this juncture it is useful to discuss our time syn-
chronization scheme. ∇

Time synchronization: Now, we have the UMC mode
for a specific reason. Although the sink is the one which
centrally computes the schedule, this schedule is only log-
ical (i.e. with respect to a certain starting time). The ac-
tual clocking for the schedule is provided by the data source.
That is, every Data packet carries embedded time synchro-
nization information (Fig. 3).

Every data packet uses a timestamp field (4 bytes) which
is used to synchronize neighbouring nodes. In implementa-
tion, the timestamp is inserted by an interrupt triggered by
the Start of Frame Delimiter (SFD). This is the same mech-
anism used in [3, 28]. Thus, on reception of the first Data

packet, a node changes from UMC mode to SMC mode. An
exception to this rule is the source node, which skips the
UMC mode and enters SMC mode directly on reception of a
ConnReq.

Note that no transmission can happen in UMC mode,
since the node does not yet have clocking information. As
a Data packet is received and forwarded, a node embeds (its
knowledge of) the global clock so that its downstream neigh-
bour can synchronize with it. And as data packets are handed
from the source’s transport module to the source’s PIP mod-
ule, they keep flowing from A to E, and nodes maintain syn-
chronization.

Thus the data source node is also the source of the clock
for the entire path. Note specifically that, unlike [29, 30], we
do not have any clock drift estimation. This is a conscious
choice; our mechanism is sufficient and efficient, as we show
in Sec. 4.4. ∇

EOF, SNACK exchange: Like the Data packets, the EOF

and SNACK packets are also forwarded faithfully by PIP,
with all nodes operating in SMC mode. PIP passes these
packets onto the transport layer only at the source or the sink,
not in the intermediate nodes.

There is a subtle aspect in the specification of the schedule
and the SMC channels. These specifications are based on
reception rather than node transmission. This is so that the
same schedule and SMC channel information can be used
easily for the forward direction (Data, EOF, and TearDown)
packets as well as the reverse direction (SNACK) packets.
This however does not introduce any “collision” at any node
(where transmissions can come from either neighbour at the
same time). This is because, by design, we have packets
only in one direction at a time. This is the case unless we
have scenarios of premature SNACK timeout at the source,
which we expect to be rare.

The above reason also explains why the data sink does not
send SNACK packets on its own, and only when triggered by
an EOF from the source. After it sends an EOF, the transport
module at the source is expected to wait for the receipt of
a SNACK packet; specifically, it does not continue sending
data packets. In this scheme, the SNACK packet faces no
contention from packets in the opposite direction. The EOF

clears out the Data packet queue at intermediate nodes, and
hence the SNACK faces no packets in the opposite direction

when going from sink to source.
Data and EOF packets carry synchronization information.

But SNACK packets, since they travel in the opposite direc-
tion, do not. So for a period of time, after the EOF is for-
warded and before getting the next Data packet, every node
does not get updated synchronization information. This can
potentially lead to a loss of synchrony due to clock drift.
However, as our measurements show, the maximum drift is
small, and the drift in one round trip time is not significant.
∇

Connection tear-down: When the source’s transport
module determines that all data packets have been acknowl-
edged, it initiates connection termination by using a Tear-

Down. As the TearDown travels from A to E, the PIP mod-
ules in the intermediate nodes change themselves from SMC
mode to U1C mode. The connection is deemed to have
ended. ∇

It appears on the surface that there is no reason for the
EOF packet to be recognized specifically by the PIP MAC
modules. However, there is a subtle reason for this. The
PIP MAC modules maintain the queues at all of the network
nodes. They treat EOF as a special packet, and do not allow
it to be dropped due to queue overflow. This reduces the
chances of a transport module timeout waiting for a SNACK

packet.
In our design, we initially considered the possibility of

having the TearDown sent by the sink node itself, instead
of sending the final SNACK acknowledging all packets. But
such an approach does not handle TearDown packet losses
well, due to the following reason. Recall that the PIP module
changes from SMC to U1C mode after forwarding a Tear-

Down packet. An inconsistent state can result, as follows.
Say, when C is sending a TearDown to B, all the transmis-
sions get lost. Now, no end-to-end retransmissions are possi-
ble since E andD have already changed toU1Cmode and are
in their U1C channel. So we now have the sink thinking that
the transfer is complete, while the source thinks otherwise.
To avoid this inconsistency, we have the TearDown packet
sent by the source node, toward the sink. In such a scenario,
even if all the retransmissions of the TearDown packet get
lost on a particular hop, it is alright. The transport modules
at both the source and the sink are aware that all data packets
have indeed been received. ∇

Handling wireless errors, hop-by-hop ACKs: For all
packets, the PIP module implements hop-by-hop ACKs for
efficiency. The time-slots are long enough to accommodate
an ACK packet. There is a maximum number of retries after
which the PIP module gives up retransmission of a particular
packet. An important point to note is that retransmissions
happen only during the next transmission opportunity of that
node (as defined by the time-slot schedule). ∇

PIP state diagram, timers: Fig. 5 shows the PIP MAC
state diagram. There are three states shown on the top row,
and two on the bottom row. The top three states correspond
to U1C mode. And the bottom two states, drawn with thick
border, correspond to SMC mode (after reception of the first
data packet).

In PIP, a ConnReq packet is sent using the U1C channel
in an uncoordinated fashion. And a loss of the ConnReq



Figure 5. PIP MAC state diagram

packet leads to a connection failure at the transport module.
To avoid this, three copies of the ConnReq packet are sent
(an intermediate node may receive only one copy, but still it
will forward three copies).

The RxRad and TxRad are the coordinated data transfer
states in the SMC channels, as per the schedule received from
the sink node in the ConnReq packet.

Some state transitions are not shown in Fig. 5, for clar-
ity. For instance, the sink node skips the RxConnReq state,
while the source node skips the TxConnReq state. Similarly,
the sink node transitions directly from RxRad to Default on
receipt of a TearDown. Also, timeout-based state transitions
are not shown in the state diagram.

The PIP MAC module has only two timers, and both are
for entering the U1C mode from the UMC or SMC modes.
These are safe-guards against unexpected and rare situations
such as node failures or repeated wireless errors (beyond
what can be handled by the hop-by-hop and end-to-end re-
transmissions).

One of the two timers waits on data packets from the
source to the sink, and another on hop-by-hop ACKs from
the next-hop toward the sink. For instance, C has a timeout
for expecting packets from B and another timeout expecting
ACKs from D. If either of these timers fire, C aborts the
ongoing connection and enters U1C mode. If the timeout
had been caused due to, say, failure of B or D, the routing
mechanism can then kick-in for appropriate repair. This then
allows the possibility of the transport module, or the appli-
cation module, issuing a fresh connection request after the
repair.

In summary, though there are many approaches possi-
ble in the identified design space, considerable attention was
paid in PIP to keep the underlying modules simple, yet ro-
bust to permit easy implementation. ∇

3.5 PIP Prototype Implementation
We have implemented a prototype of PIP using the

Tmote-Sky hardware platform, which is based on the
802.15.4-compliant CC2420 radio. The software platform
we have used is TinyOS.

SPI bottleneck and pipelining
In the platform we used (Tmotes), there happens to be a

system bottleneck in data transfer, as identified in [7].
The Tmote-Sky platform has a SPI (Serial Peripheral In-

terface) between the MCU (Micro Controller Unit) and the
radio. Each packet has to be copied from/to the radio to/from
theMCU at each forwarding node. In such a case, the SPI be-
comes the bottleneck. This problem is identified and solved
in [7]. The solution is to parallelize radio and SPI operations

Figure 6. Pipelining SPI and radio opns. in the Tmote-
Sky

at intermediate nodes. Packet i’s transfer from the radio to
the MCU is done in parallel with packet i− 1’s radio trans-
mission. And, packet i’s transfer from MCU to the radio is
done in parallel with packet i+ 1’s radio reception. This is
shown in Fig. 6.

It is evident from the diagram that the throughput is dou-
bled as compared to normal transfer throughput. Note that
this optimization is possible because the speeds over SPI and
radio are comparable (in fact, the SPI is slightly faster than
the radio). We have implemented this pipelining optimiza-
tion in TinyOS.

Time-slot and channel allocation
In 802.15.4, we have 16 channels (numbered 11 to 26)

in the 2.4GHz band2. In our implementation, we choose
channel 11 to be the U1C channel. The SMC channel for a
node is determined by its hop count from the sink. The sink
uses channel 12 as its non-default reception channel, the next
node is assigned channel 13, and so on.

For the time-slot schedule, we simply have a two-slot
schedule in implementation: slot-1 and slot-2. The source
node, and all nodes at even hop-count from it, have slot-1
as their reception slot (and slot-2 as their transmission slot).
And all nodes at odd hop-count from the source have slot-2
as their reception slot (and slot-1 as their transmission slot).
Such a simple scheme works so long as there is no interfer-
ence for a node beyond k hops, where k is the number of data
channels in use. In our experience, k= 4 or k= 5 usually suf-
fices to avoid intra-path interference, but this could depend
on the environment; in any case we have as many as 15 data
channels with 802.15.4 in 2.4GHz. The SMC channel al-
location and time-slot scheduling in our implementation are
illustrated in Fig. 4.

Time synchronization requirement
In the above two-slot schedule with multiple chan-

nels, we now explain how PIP’s operation needs to worry
only about the synchronization error between neighbour-
ing nodes. Fig. 7 shows the global clock, and also the
slot/frame boundaries as interpreted by different nodes.
These slot/frame boundaries are different from the ideal
slot/frame boundary due to synchronization errors. The in-
terpretation of guard time is: (a) a node does not transmit

2Channels 1-10 are not in the 2.4GHz band [11].



Figure 7. Illustrating PIP’s time sync. requirement

into the guard time, as per its notion of slot boundaries, and
(b) a node potentially continues reception into the guard time
following its RX slot

Suppose we assume that a channel is reused only after so
many hops that the reusing node is anyway out of interfer-
ence range, as explained earlier. It is then easy to see from
the diagram that as long as neighbouring nodes’ synchro-
nization errors are accounted for in the guard time calcula-
tion, we do not really need to worry about synchronization
errors adding up with increasing number of hops3.

3.6 PIP and Throughput Optimality
50% of optimal throughput: We start with the claim that

the throughput achieved in this system is close to optimal as
long as the sink is kept continuously busy. We justify this
claim in Sec. 5 after presenting the performance results.

So far, we have considered only one flow active at a time.
In the data path of this flow, all nodes except the source and
the sink are busy all the time (either transmitting or receiving
a packet in each slot). However, the sink is busy only half
the time since it is only receiving. So in a system where all
data has to be finally transferred to the sink, we have so far
achieved close to 50% of the optimal throughput.

Extending PIP to achieve optimal throughput: It is
conceivable that the sink can be involved in two different
connections simultaneously, thus fully utilizing its radio. In
such a setting, we would achieve optimal throughput. There
are two requirements for this. (1) First, all nodes must be
synchronized to the sink, instead of to the source (as was the
case for the single flow). (2) Further, we also need to ensure
that the two flows do not cause inter-path interference.

The first requirement is easy to achieve. PIP can provide
a periodic back-channel to convey synchronization informa-
tion. As we shall see in our evaluation, the clock drift is
a negligible component of synchronization error. So if the
back-channel can be as infrequent as once in several hun-
dreds of frames.

The second requirement, that of ensuring that the data
transmissions of the two flows do not interfere with each
other, would ideally need an interference map of the topol-
ogy to do appropriate channel allocation. But constructing
and maintaining such a map comes at considerable complex-
ity. A simple alternative, if sufficient channels are available,
would be to use a disjoint set of channels for both the flows.
As discussed earlier, if we assume that k = 5 channels per
flow is enough to provide sufficient spatial reuse, thus requir-
ing at most 11 independent channels (2∗5 + 1 control chan-

3It is worth observing that in a general setting, what matters is
the synchronization error between nodes N+1 hops away, where N
is the interference range.

nel) for two flows. This is feasible in 802.15.4 in 2.4GHz
since it has 16 independent channels.

4 PIP: Performance Evaluation
While most of our evaluation is prototype-based, for com-

parison, we have also used a Markov-model based theoreti-
cal analysis, as well as a simulator. We describe the setup
for these here, and subsequently present the prototype per-
formance results. The comparison of the prototype results
with analysis and simulation convinces us that the TDMA
implementation is indeed robust.

4.1 PIP: Markov Analysis
It is interesting and always useful to evaluate the merit of

a protocol through appropriate theoretical analysis. In PIP,
we model the buffer occupancy at each node as a discrete
time Markov chain. The analysis assumes that the input pro-
cess to each node is i.i.d Bernoulli process. The output from
one node, e.g. throughput value, is the input to the next node
in the path. We omit the details of Markov-chain analysis
due to lack of space. The analysis gives us (1) the utilization
(throughput) of the system for given number of hops, queue
size limit and error rate (2) the probability of queue drops
for given queue size limit and error rate (3) the probability
of slot being idle. In particular, we use the analysis to set the
queue size limit considering tolerable probability of queue
drops for a given error rate. The analysis also gives us the
theoretical upper bounds to compare and verify the through-
put achieved in our prototype implementation.

4.2 Simulation-based evaluation setup
We have built our own hand-crafted simulator to quickly

evaluate the performance of PIP through a range of param-
eters and design choices. Specifically, we make use of the
simulator to study the (lack of) need for flow control in PIP.
The simulator captures all the relevant design aspects of PIP.
In comparison to the analysis, the simulator does not ap-
proximate the input process of intermediate nodes as being
Bernoulli i.i.d. It also implements a maximum retry limit for
hop-by-hop retransmissions, not modeled in our analysis.

4.3 Prototype implementation setup
We evaluate the performance of our prototype on a 10-

node, 9-hop setup, unless mentioned otherwise. Our pro-
totype includes an integration with the C2P routing proto-
col [3]. However, for the evaluation results below, we have
shunted out routing in the evaluation (i.e. each node has
a pre-determined forwarding table). This gives us better
control over the number of hops, and the presence/absence
of routing does not affect the data transfer throughput any-
way. The channel and schedule allocation are as explained
in Sec. 3.5.

For most of the experiments presented, all the nodes are
placed on a table near one another, for ease of setup. This
does not matter since PIP uses different channels for adja-
cent links. Indeed, we have verified that we get similar be-
haviour even when the nodes are several metres away from
one another.

To carefully study PIP’s behaviour under various loss con-
ditions, we optionally emulate wireless channel losses. We
do this by making a node, probabilistically drop packets
(original or retransmitted) that are ready for transmission.



Figure 8. Slot operations in the PIP prototype

For the various experiments based on the implementation,
we transfer 1000 packets overall. The MAC payload is set
to 103 bytes, to which 12 bytes of 802.15.4 header, 3 bytes
of PIP header, 4 bytes of time-stamp (tailer) and 2 bytes of
CRC are added. This gives us an overall packet size of 124
bytes and leaves space for 4 more bytes in the CC2420 RX-
FIFO (whose size is 128 bytes), which is necessary for ac-
commodating the hardware ACK. Thus we make full use of
the available buffer space in the radio.

In presenting many our results below, we use the Tmote-
Sky clock tick as one of the units of time. 1tick =
1/32KHz≃ 30.5µs.

4.4 Slot duration and guard time
The performance of a TDMA system is related to two im-

portant parameters: the slot duration and the guard time. In
the PIP prototype, we have used a slot duration which is suf-
ficient to accommodate one full size packet (128 bytes, in-
cluding ACK, in the CC2420). And we use a guard time as
small as possible, for maximum efficiency. We now deter-
mine what PIP’s slot duration and guard time should be.

Fig. 8 shows the various operations which happen in our
implementation, in the two slots of our schedule. The figure
shows radio operations with a (R) and SPI operations with
a (S). The radio operations are shown on top, while the SPI
operations are shown at the bottom. The sequence numbers
i−1, i, i+1 correspond to different packet numbers. As ex-
plained in Sec. 3.5, packet i’s RX(S) is done in parallel with
packet i− 1’s TX(R). And in the very next slot, packet i’s
TX(S) is done in parallel with packet i+ 1’s RX(R). In the
figure, the S SFD and E SFD events correspond to the start
of frame delimiter and end of frame delimiter, both of which
are delivered using the same interrupt called SFD.

Clearly, we can see that the slot duration is defined by the
maximum of the four operations: transmission over radio, re-
ception over radio, transmission over SPI, and reception over
SPI. In our implementation, with the use of DMA, the SPI
operations are significantly faster than the radio operations.
Our slot duration is determined by the transmission duration
and related processing overheads, which we account below.

In our implementation, we have measured the time be-
tween start of the timer for the start of the transmission slot,
and the start of switching to the receiving SMC channel. That
is, events (1) and (6) respectively in Fig. 8. This time dura-
tion is about 200 ticks. In this, about 175 ticks are spent un-
til the time we receive the ACK’s E SFD interrupt indicating

that the ACK has been fully received.

Component Measured value

Inaccuracy in timer fire 1-2 ticks
Time-sync error mostly under 1 tick
Processing jitter 1-2 ticks

Channel switching time ≃ 10 ticks
Table 2. Components of guard time

Of the 175 ticks, about 138 ticks corresponds to the on-air
time of the 128-byte data packet and the 4-byte ACK packet.
And the CC2420 chip specifies that the ACK transmission
will begin 12 symbols (6 bytes) after reception of the data
packet. This adds a further 6 ticks which we can account for.
We attribute the rest of the time to various software over-
heads such as interrupts; our processor is only an 8 MHz
processor. Our current implementation also includes various
logging statements and sanity checks included for easy test-
ing and debugging.

Accordingly, we set the slot duration to be 200 ticks. This
is about 1.5 times the ideal value of just the 128-byte trans-
mission time, which is 134 ticks.

In any TDMA system, we need a guard time for each
slot. In PIP, we define guard time as the duration to be given
as leeway prior to each slot. There are several components
which contribute to the guard time. (1) Inaccuracy in timer
fire: we may set a timer to fire at time t, but it fires at t± δ.
(2) Time synchronization error between neighbouring nodes
(as explained in Sec. 3.5). (3) Processing jitter: we expect an
operation to complete within a certain time, but it could take
longer. (4) Finally, the channel switching time.

Table. 2 summarizes the above four values, as measured
on our prototype. We accordingly set the guard time to be 15
ticks.

In PIP, between the time a node forwards an EOF packet,
and the time it receives the next Data packet, it takes one
round trip time, which is proportional to the number of
hops4. During this time, there is no time-sync correction
available and the node’s clock may drift. However, this drift
is negligible: only about 20-40 µs per second [3, 29], or
about 1-2 ticks per second. Hence any such drift too is ac-
commodated by the above guard time easily.

A frame consists of two slots, along with their corre-
sponding guard times. Thus the frame duration is (200+
15)×2= 430 ticks.

4.5 Queue size requirement
Another important parameter that influences PIP’s perfor-

mance is the queue size limit at a node. The purpose of a
queue in an intermediate node in PIP is to account for tem-
porary variations in error rates of the incoming versus the
outgoing wireless hop. We stress “temporary”, since any
long-term imbalance makes the queue useless. If in the long-
term, the incoming error probability exceeds the outgoing

4On a path, the latency for a single packet is 3 slot durations,
or 1.5 frame durations, per hop. This is because, of the four phase:
RX(R), RX(S), TX(S), and TX(R), only one overlaps with the four
phases of the neighbouring node.
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Figure 11. Throughput in PIP proto-
type implementation

error probability, there will not be any queue build-up. Vice-
versa, if the error probability on the outgoing link is higher
in the long-term, then even a large queue size will result in
consistent losses.

Hence we consider an analysis of the situation where the
wireless error rates of all the links are uniform since this is
when queue size limit matters most. A point worth noting
here is that, in such a path, the performance of the first inter-
mediate node is always the worst. This is intuitive since the
output rate of the source is 100%, whereas the output rate of
any intermediate node is less than 100%.

Fig. 9 shows the performance of system calculated from
our Markov analysis from the perspective of the first inter-
mediate node. The left-side y-axis shows the probability of
queue drops, while the right-side y-axis shows the utilization
of the outgoing link. We see that even for error rates as high
as 20%, beyond a queue size of 10, the performance flattens
out. We thus use a queue size of 10 in our implementation.

4.6 Comparison of analysis, simulation, and
implementation

Fig. 10 plots the throughput achieved in our prototype, as
a function of the number of nodes in the path, for different
error rates. We show the plots for 0% error rate5, 10% error
rate, as well as a variable error rate scenario. In the variable
error rate scenario, all the links of the path have 5% error
rate, while the last hop has a 20% error rate. For comparison,
Fig. 10 also plots the corresponding numbers from analysis
as well as simulation.

The y-axis (left and right) shows both the throughput ef-
ficiency and the actual throughput in Kbps. We measure ef-
ficiency as follows. The source transmits a packet in every
frame (which consists of two slots). Thus ideally we should
receive one packet per frame duration at the receiver. Effi-
ciency is defined as the ratio of the number of packets re-
ceived at the sink to the number of frame durations. For
the implementation, only the transfer phase throughput is
shown: discounting the connection-setup, SNACK round-
trip, and tear-down phases. The throughput as shown on the
right y-axis is computed for a 103-byte payload supported by
PIP for the transport module (Sec. 4.3), and a 430-tick frame
duration (Sec. 4.4).

5In implementation, when we say 0% error rate, this means that
we did not emulate any wireless losses; of course we cannot control
any wireless losses which do happen.

We note that the results from the analysis, simulation, and
implementation match very well. And all of these match
closely with what we expect ideally: close to 100% utiliza-
tion for 0% error rate, and close to 90% utilization for 10%
error rate. We also observe that the utilization goes down
only slightly with increasing number of hops.

The match between analysis, simulation, and implemen-
tation is the closest for the variable error rate scenario, where
the last hop is the bottleneck bandwidth with 20% error rate.
The reason for this is that in this scenario, the losses are
dominated by queue drops at the penultimate node. In other
words, the system behaves as if there is a single link with
20% error rate.

4.7 Throughput as a function of error rate
We further present the throughput performance of our

prototype implementation. Fig. 11 shows the throughput
from our prototype as a function of the number of nodes in
the path. Node-1 is the source of data packets. The differ-
ent plots show the performance at various (emulated) error
rates. We also show the variable error rate scenario from ear-
lier, where all the links of the path have 5% error rate, except
the last hop which has a 20% error rate.

We make various observations. The throughput drops
only slightly with increasing number of hops; only the 20%
error rate case shows a noticeable drop. Also, the throughput
in each case matches closely with what we expect ideally for
that error rate. That is, efficiency loss is almost always due
to the underlying wireless error rate, not due to the protocol.

PIP’s throughput of about 60 Kbps for a 10-node (9-hop)
case represents more than a twelve-fold improvement over
the 6-hop throughput of about 600 bytes/sec reported by
Flush (Fig. 12 in [6]), under similar test conditions.

Now, 802.15.4 has a PHY data rate of 250 Kbps. Ide-
ally, a single radio per node system should be able to achieve
125 Kbps (since a radio of an intermediate node cannot both
transmit and receive simultaneously). So PIP’s throughput
of 60 Kbps is close to half this idea value. The above cal-
culation discounts the header overhead. If we factor in the
headers (total bits on air) the throughput achieved is about
78 Kbps, which is about 2/3rd of the maximum of 125 Kbps.
We believe that it is possible to further optimize various as-
pects of our implementation by paying careful attention to
interrupt processing. This in turn can cut down on the slot
duration, thereby giving even better throughput.
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4.8 Details of an experimental run
We now present statistics from a complete run of PIP for a

10-node path, with 10% emulated wireless loss rate on each
link. Table 3 shows the time-line for such a run. As we can
see, there are two transfer phases, in addition to the connec-
tion setup and tear-down phases.

The overall throughput, including the connection setup
time, SNACK exchange time, and tear-down, is thus (1000×
103×8)/(589734×30.5) = 45.8Kbps.

For a similar experimental run, the packet drop statistics
at each of the intermediate nodes is shown in Fig. 12. This
is shown as a percentage of the 1000 packets sent from the
source. We see that queue drops as well as drops due to
maximum retry limit being exceeded, are minimal.

For a specific experimental run, a snapshot6 of the queue
length variation is shown in Fig. 13, for nodes 2 and 9, which
are one hop away from the source and sink respectively.

4.9 External interference and channel hop-
ping

PIP’s design directly takes care of inter and intra-path
interference but what about external interference? Our en-
visioned usage is in environments that will likely not have
external interference: on top of volcanoes, remote habitats,
free-way bridges etc. However it is interesting to evaluate
how TDMA-based PIP performs in the presence of external
interference, if any. Thus to tolerate and mitigate the level
of interference, we modify PIP to support frequency hop-
ping (much like how Bluetooth does) as follows. Once data
transmission begins, in every RX half frame, each node in
PIP hops to a new frequency or channel, given by a hopping
sequence. Such a frequency hopping sequence can be con-
veyed as the part of the schedule dissemination from the sink
to the source. The schedule dissemination also ensures that a
transmitter node knows the hopping sequence of a next hop
receiver.

We now evaluate the efficacy of a simple frequency hop-
ping scheme where a node follows a frequency sequence of
{k, k+1, . . . , n, 1, . . . } in circular fashion. For evaluation,
we setup a linear topology of 10-nodes using channel 12
(2.410 GHz) to channel 21 (2.455 Ghz) of 802.15.4 channel
spectrum. To introduce interference, we use a WiFi source
operating on channel 6 (most prevalent channel used in de-
ployments operating at a center frequency of 2.426 Ghz).
Note that this 20 MHz WiFi channel causes interference on

6Since we collect the log of queue length in memory, we run out
of the available 10 KB memory beyond a certain log size.

5 different 5 MHz 802.15.4 channels. The WiFi source gen-
erates 1777 byte packets at 6 Mbps (channel occupancy of
≃ 2.3ms) every ‘x’ ms. Apart from this, to introduce realis-
tic WiFi interference, we use WiFi traces from [31]. We ex-
tract the packet size and inter-packet time from these traces
to generate the required WiFi interference. The PIP source
transmits 1000 packets of data and the end-to-end transfer
lasts for around 15 seconds.

Fig. 14 shows the performance of PIP in terms of through-
put, with and without frequency hopping, for varying inten-
sity of interference. For inter-packet time of 4ms which is a
“very intense level” of interference, throughput without fre-
quency hopping dips to 1.3 Kbps from 60 Kbps whereas fre-
quency hopping achieves a throughput of 16.9 Kbps. Even
for the extreme case where we send back-to-back WiFi pack-
ets (with only the minimal DIFS, configured to 40µsec), we
get a throughput of 14.5 Kbps with frequency hopping, while
the throughput without frequency hopping drops to 0.

This shows that frequency hopping is indeed effective in
mitigating the effect of interference. When interference is
introduced using real WiFi traces, PIP with frequency hop-
ping shows x1.6 throughput improvement compared to PIP
without frequency hopping. Also, the throughput is reduced
by only≃ 10 Kbps to≃ 50 Kbps from 60 Kbps as compared
to by ≃ 30 Kbps without frequency hopping. Thus PIP with
a simple frequency hopping mechanism works quite effec-
tively even in intense interfering environments.

4.10 Comparing PIP, Flush, Fetch for the Vol-
cano Monitoring application

Sec. 4.6 & 4.7 examined PIP’s performance and com-
pared it with the ideal, or maximum possible. We showed
that PIP as a protocol achieves close to ideal utilization.
We now examine how PIP compares with Flush [6] and
Fetch [5]: two prominent transport protocols intended for
bulk transfer applications.

For this, we undertake a thought experiment based on
various experimental numbers: how would it have helped
had PIP been used for the Volcano Monitoring application?
While only a real deployment can answer the question in a
true sense, the numbers we present are meant to be instruc-
tive. We consider the 16-node topology deployed to detect
seismic activities for Volcano Monitoring as described in [5].
This topology has 1, 6, 5, 2, 1, and 1 node(s) at distance 1, 2,
3, 4, 5, 6 hop(s) from the sink node respectively. [5] reports
that 52736 bytes of data are downloaded from each node, one
at a time, after each seismic event.

The first column under PIP, in Tab. 4, shows the through-
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put that would have been achieved at each hop, had PIP been
used. For this, we have used numbers from Fig. 11, for
the 20% error case. That is, assuming that each link has a
20% wireless error rate ([5] does not report the per link error
statistics). The next column computes the latency for data

transfer for each node, as 52736
throughput

. The last row summa-

rizes the total latency for downloading all the data per seis-
mic event.

For comparison, the table also shows similar numbers
for Flush and Fetch. For Flush, we use the transfer-phase
throughput numbers approximated from Fig-12 in [6]. And
for Fetch, we directly use the latency numbers reported in
Sec 6.2 of [5] (94 sec for 1-hop, 409 sec for 6-hops, 63 sec
per additional hop). Now, reducing data transfer time is im-
portant for the Volcano Monitoring application, since as [5]
observes, during the period of transfer, nodes had to stop
sampling so as to ensure that the data being transferred was
not overwritten. Thus the latency of the data transfer affected
the node’s ability to record back-to-back events.

The last line of Tab. 4 shows the total time that would re-
quire to collect the data from all the 16 sensor nodes using a
particular transport protocol. For e.g for PIP it is (9.0∗1)+
(9.2∗6)+(9.4∗5)+(9.5∗2)+(9.6∗1)+(9.8∗1) = 149.6
seconds. We see that Fetch requires almost 1 hour to collect
data which, as [5] observes, is due to the delay required to
ping each node and the intra-path interference during data
transfer. Flush requires much less time, 15 minutes, due to
it’s rate-control mechanism to deal with intra-path interfer-
ence. PIP requires the least time, 150 seconds, to collect the
52736 bytes of data from all nodes. This is 6 times less than
Flush and 23 times less than Fetch7 This shows the effective-
ness of the multi-channel TDMA operation over multiple-
hops. The individual time required for a node to transfer the
data is under 10 seconds irrespective of it’s hop, which im-
plies that PIP minimally affects the node’s ability to sense
the volcanic events, in this particular application.

Before we explain the results in the table, we point out
few important observation as mentioned in [5]. In [5], dur-
ing the period of transfer, nodes had to stop sampling so as

7Note that in the above comparison, we have assumed 20% em-
ulated error rate for PIP, but no emulated error rate for Flush. If we
assume healthy links, i.e. 0% emulated error rate, then PIP takes
only 107 sec to complete the transfer: 8 times and 32 times better
than Fetch and Flush respectively.

to ensure that the data being transferred was not overwrit-
ten. Thus the latency of the data transfer affected the node’s
ability to record back-to-back events. Further, this latency
varied with the depth of the node in the routing tree. This,
authors observed, was due to the increased delay for prop-
agating Fetch command messages and the increasing packet
loss and retransmission overheads as the data flows over mul-
tiple hops to the base. In this regard, we now compare PIP
with Flush and Fetch.

4.11 PIP versus Flush: simulation based com-
parison

We now present a simulation-based comparison of PIP
with Flush [6]. For this, we have extended our simula-
tor to simulate Flush in addition to PIP. Fig. 15 compares
the transfer-phase throughput achieved using PIP versus that
achieved using Flush. The various plots in the graph show
the cases of 0%, 10%, and 20% error rate for all links. We
have used a 112-byte payload for Flush, counting out only
the 12-byte 802.15.4 header and the 4-byte timestamp from
the 128-byte maximum possible with CC2420. Whereas we
have assumed a 103-byte payload for PIP, as per the calcula-
tions in Sec. 4.3.
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Figure 15. PIP vs Flush: simulation comparison

The right-side and left-side y-axes show the throughput
and the efficiency, as explained earlier. The x-axis is shown
until a maximum of 48 nodes, as in Fig-21 in [6]. We observe
that under most conditions, PIP outperforms Flush by a huge
margin. For the 10% error rate case, for a 48-node path, PIP
gives a throughput of 49.3 Kbps while Flush gives 8.7 Kbps.
This represents a factor of 5.6 improvement over Flush. The
similar numbers for the 20% error rate case represent a factor
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Figure 16. PIP performance with and without flow con-
trol

of 4.5 improvement over Flush.

In our simulation, Flush’s throughput over a 48-node path
is 10.7 Kbps; this is higher than that reported in Fig-21 of [6]
primarily due to our use of a larger payload in each packet.
To confirm this, we ran the simulation for Flush, using a 35-
byte payload, as in Fig-21 of [6], and obtained a through-
put of ≃ 700 bytes/sec, which roughly matches the ≃ 600
bytes/sec reported in Fig-21 of [6]. This also serves as a con-
sistency check that our Flush simulator is indeed behaving
right. As a further consistency check, note that the shape of
the throughput-versus-hops plot using our simulator roughly
matches Fig-21 of [6].

4.12 Non-requirement of flow-control
It is tempting to consider having flow-control in the de-

sign of PIP to accommodate various wireless errors, much
like Flush [6] has considered. However, providing such a
back channel is not simple in the hardware platform we use
while maintaining pipelining. A different platform which
permits piggybacking flow control information on the link-
level ACKs could easily achieve this. However, as we show
in this section, not having flow control does not affect PIP
performance much.

To show that PIP performs well despite no flow control,
we take the help of the simulator. Flow control is imple-
mented in the simulator in a rather optimistic fashion; a node
“magically” knows whenever its downstream node’s queue
is full, and does not transmit during that frame Fig. 16 shows
the overall throughput (including exchange of SNACK/EOF)
as a function of the queue size for various error rates. In
this figure, NFC stands for no-flow-control and FC stands
for flow-control. We present four scenarios. In the first case
(ALL), all the links have the same error rate of 10%. In the
second case (LLB), the last hop of the path is the bottleneck
with 20% error rate, other links have uniform 1% loss rates.
In the third and fourth case (RND), we randomly choose for
each link an error rate from the set {0,1,5,10,20}.

We see in the graphs that in all cases, there is very lit-
tle benefit to flow control, especially with a queue size of
10. The reason for this is that in PIP, having no flow con-
trol results in queue losses. But with flow control, there is
an equivalent slow-down at the source. The dropped packets
due to queue overflow no doubt would have to be retransmit-
ted all the way from source to the sink. For most considered
error profiles, this results in an extra round or two of EOF-
SNACK exchange for the NFC case. Given the pipelined

slotted mode of operation, this overhead turns out to be quite
small in PIP.

We have tested various other similar scenarios too, with
other error profiles, with the same overall result. We have
also verified the same overall result using the Markov analy-
sis (not presented here for lack of space).

5 Discussion
One active flow vs multiple active flows: In the solu-

tion approach to the problem involving bulk transfer of data,
one could consider multiple simultaneous flows. Such an
approach would mean a considerably complex MAC (much
like IEEE 802.16) including mechanisms for (a) gathering
information from all nodes to construct interference maps (b)
scheduling algorithm to compute link transmission sched-
ules (c) dissemination of the computed schedule to all nodes,
apart from (d) global time synchronization.

Such an approach would be worth the effort if the per-
formance gains are substantial. What is indeed the perfor-
mance gain of having multiple flows, over the extended PIP
case (Sec. 3.6) where two flows are active? When two flows
are active, the sink is always busy. So even if more flows
are supported, at best, these additional flows may be able to
bring their data one-hop away from the sink. So the perfor-
mance gain experienced by these additional flows, would at
best be the performance gain of a single-hop data transfer
as opposed to a multi-hop transfer. Now, Figure. 11 shows
that for the no error case, the throughput improvement over
one hop as opposed to 9 hops is only 1%. For the 20% error
case, the improvement is about 10% (i.e gain of 6Kbps over
the base 44Kbps). We feel that this performance improve-
ment is too small, to warrant a complex MAC supporting an
arbitrary number of simultaneous flows.

Time synchronization requirement: The literature on
multi-hop time-synchronization is quite elaborate. TDMA-
based MAC approaches have in the past been rejected since
synchronization is difficult to achieve. While in the generic
sense it may be hard to achieve, we have still been able to ef-
fectively use a TDMA-based system for two reasons. First,
we require synchronization only during data transfer and
not always. Second, only the synchronization error between
neighbouring nodes matters. If we can achieve a bound on
this, that is good enough to set a small guard time. In fact,
in our implementation, the guard time is dominated by the
channel switching time rather than the synchronization error.

Generic MAC design: We have designed the PIP MAC
to provide a connection-oriented primitive explicitly for
high throughput unidirectional data transfer, which applies
for a class of sensor network applications. After build-
ing the prototype and our evaluation on it, we believe that
a generic MAC can be designed along the same lines, to
support generic data flows. The reusable components of
our working system would potentially be: the centralized
connection-oriented architecture, multi-hop synchronization
piggybacked on periodic packets, and multi-channel opera-
tion. While our focus has been on sensor network applica-
tions involving 802.15.4 nodes, the MAC design is applica-
ble with other technology choices available in the 900MHz
band or even with 802.11.



6 Conclusion
In this paper, we considered the goal of achieving high

throughput bulk data transfer. To this end, we have pre-
sented a novel multi-hop connection oriented MAC primi-
tive (PIP) and built on top of this primitive a highly efficient
centralized multi-channel TDMA system. In general, multi-
hop time-synchronization is considered hard to achieve. But
PIP uses synchronized time-slots effectively by (a) requir-
ing synchronization only during data transfer, (b) embedding
synchronization information in each data packet, and (c) by
designing to be concerned only about synchronization error
between neighbours.

We demonstrated the feasibility of our ideas via an actual
implementation and effectiveness of our solution through ex-
tensive evaluation on a network with up to 9 hops. Our
results show over twelve times better throughput than the
current state-of-the-art approach. Apart from good perfor-
mance, PIP also has several nice properties, such as being
simple, easy to analyze or implement. Importantly, it does
not require flow control to accommodate variable wireless
error rates.

We believe that our contribution also lies in showing the
practicality of a multi-hop TDMA wireless system, which
we hope will have implications beyond the specific applica-
tion environment considered in this paper.
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