
Lecture 4: Wireless Physical
Layer: Channel Coding

Lecture 4: Wireless Physical
Layer: Channel Coding

Mythili Vutukuru
CS 653 Spring 2014

Jan 16, Thursday

Channel Coding
 Modulated waveforms disrupted by signal

propagation through wireless channel – leads to
errors when recovering bits from signal
 Channel coding – add redundancy in the

transmitted bits, so that you can detect and
correct errors
 Error detection – received coded bits indicate

that bit errors have occurred
 Error correction – received coded bits indicate

that bit errors have occurred, and help to identify
and correct the location of errors

 Modulated waveforms disrupted by signal
propagation through wireless channel – leads to
errors when recovering bits from signal
 Channel coding – add redundancy in the

transmitted bits, so that you can detect and
correct errors
 Error detection – received coded bits indicate

that bit errors have occurred
 Error correction – received coded bits indicate

that bit errors have occurred, and help to identify
and correct the location of errors

Modulation and Channel Coding
 The modulation and coding schemes decide the

bit rate of transmissions over the air.
 Wise choice of modulation and coding schemes

helps reach Shannon capacity
 Message bits are converted into coded bits

before modulation at transmitter
 At receiver, the received waveform is

demodulated into bits, then the channel code is
decoded to recover the original message bits

 The modulation and coding schemes decide the
bit rate of transmissions over the air.
 Wise choice of modulation and coding schemes

helps reach Shannon capacity
 Message bits are converted into coded bits

before modulation at transmitter
 At receiver, the received waveform is

demodulated into bits, then the channel code is
decoded to recover the original message bits

Message bits Coded bits Modulated wave forms

Channel coding Modulation

Simple example – repetition coding
 A very simple channel coding scheme is repetition coding – repeat

each bit multiple times, so that you can recover the message even if
some bits are in error

 For bit “0” – send “000”
 For bit “1” – send “111”
 “000” and “111” are called valid codewords
 Received codeword should ideally be 000 or 111. In reality, due to

errors, it can be any 3 bit string, say 001
 If we assume only 1-bit errors, we can detect and correct the error and

say that the transmitted code word was 000
 If we assume 1 or 2 bit errors, then we know there was an error, but

we can’t be sure what the transmitted codeword was (only error
detection, no correction)

 That is, this simple code can detect up to 2 bit errors, or correct
single bit errors

 A very simple channel coding scheme is repetition coding – repeat
each bit multiple times, so that you can recover the message even if
some bits are in error

 For bit “0” – send “000”
 For bit “1” – send “111”
 “000” and “111” are called valid codewords
 Received codeword should ideally be 000 or 111. In reality, due to

errors, it can be any 3 bit string, say 001
 If we assume only 1-bit errors, we can detect and correct the error and

say that the transmitted code word was 000
 If we assume 1 or 2 bit errors, then we know there was an error, but

we can’t be sure what the transmitted codeword was (only error
detection, no correction)

 That is, this simple code can detect up to 2 bit errors, or correct
single bit errors

Hamming distance
 Hamming distance of two bit strings is defined as the

number of bits that are different in the two strings
 Example, hamming distance between 000 and 101 is 2
 For a given code, take all possible codewords, find the

hamming distance between every pair. The minimum
distance between any two codes is also called the minimum
hamming distance of the code.

 If a code has min. hamming distance d
 It can detect d-1 errors, or
 correct floor{(d-1)/2} errors

 Example, the repetition code 000,111 has a minimum
hamming distance of 3, so detect 2 errors or correct 1 error.

 Hamming distance of two bit strings is defined as the
number of bits that are different in the two strings

 Example, hamming distance between 000 and 101 is 2
 For a given code, take all possible codewords, find the

hamming distance between every pair. The minimum
distance between any two codes is also called the minimum
hamming distance of the code.

 If a code has min. hamming distance d
 It can detect d-1 errors, or
 correct floor{(d-1)/2} errors

 Example, the repetition code 000,111 has a minimum
hamming distance of 3, so detect 2 errors or correct 1 error.

Common channel codes
 Usually physical layer designs use an error correcting code

on the message bits, try to recover as many errors as
possible.

 Types of error correcting codes
 Block codes: a block of message bits is mapped into a code word
 Convolutional codes: a stream of message bits is mapped into a

stream of coded bits continuously.
 More complicated: turbo codes, LDPC codes etc. We will not

cover these
 Most wireless physical layers use convolutional codes,

moving to turbo codes and other advanced codes recently
 This lecture will only provide a brief introduction to simple

block and convolutional codes

 Usually physical layer designs use an error correcting code
on the message bits, try to recover as many errors as
possible.

 Types of error correcting codes
 Block codes: a block of message bits is mapped into a code word
 Convolutional codes: a stream of message bits is mapped into a

stream of coded bits continuously.
 More complicated: turbo codes, LDPC codes etc. We will not

cover these
 Most wireless physical layers use convolutional codes,

moving to turbo codes and other advanced codes recently
 This lecture will only provide a brief introduction to simple

block and convolutional codes

Common channel codes (2)
 Still, some errors may be undetected after error correction (for example,

you assume single bit error and correct 001 to 000, whereas it was
actually a two bit error from 111)

 Physical layers also use an error detecting code over the entire packet to
catch these rare cases

 Simplest error detecting code – add a parity bit
 Parity bit is modulo 2 sum or exor of all bits. That is, if number of “1”s is even,

parity is 0, else it is 1
 Example, parity of “001110” is 1, parity of “001100” is 0

 Receiver recomputes parity. If parity doesn’t match, 1 error (or 3 or 5 or…)
has occurred. Parity cannot detect even number of errors.

 Better than parity – check sum (a better type of parity sum over bits).
Used to detect errors in packet headers etc.

 Most common error detection in wireless physical layers – CRC (cyclic
redundancy check). CRC is computed over entire packet and added to the
end of a packet while transmission. Receiver checks CRC. If check fails, it
means packet has some uncorrected bit errors (cannot point to where the
error is, and cannot correct it, only detect it)

 Still, some errors may be undetected after error correction (for example,
you assume single bit error and correct 001 to 000, whereas it was
actually a two bit error from 111)

 Physical layers also use an error detecting code over the entire packet to
catch these rare cases

 Simplest error detecting code – add a parity bit
 Parity bit is modulo 2 sum or exor of all bits. That is, if number of “1”s is even,

parity is 0, else it is 1
 Example, parity of “001110” is 1, parity of “001100” is 0

 Receiver recomputes parity. If parity doesn’t match, 1 error (or 3 or 5 or…)
has occurred. Parity cannot detect even number of errors.

 Better than parity – check sum (a better type of parity sum over bits).
Used to detect errors in packet headers etc.

 Most common error detection in wireless physical layers – CRC (cyclic
redundancy check). CRC is computed over entire packet and added to the
end of a packet while transmission. Receiver checks CRC. If check fails, it
means packet has some uncorrected bit errors (cannot point to where the
error is, and cannot correct it, only detect it)

Block codes
 The repetition code is a simple example of a block code.
 In a block code, if k message bits are mapped into an n-bit

code word, such that the minimum hamming distance of
the code is d, then the block code is denoted by (n,k,d)

 The rate of the code R = k/n, denotes how efficient the
code is in using the channel capacity

 Ideally, we want codes with large R (so that very little extra
bits are sent) but also large d (so that many errors are
corrected)

 Repetition code (repeated c times) is a (c,1,c) block code
 Block codes are not very common in wireless physical

layers. We will only cover a simple example next and move
on to convolutional codes.

 The repetition code is a simple example of a block code.
 In a block code, if k message bits are mapped into an n-bit

code word, such that the minimum hamming distance of
the code is d, then the block code is denoted by (n,k,d)

 The rate of the code R = k/n, denotes how efficient the
code is in using the channel capacity

 Ideally, we want codes with large R (so that very little extra
bits are sent) but also large d (so that many errors are
corrected)

 Repetition code (repeated c times) is a (c,1,c) block code
 Block codes are not very common in wireless physical

layers. We will only cover a simple example next and move
on to convolutional codes.

Hamming code
 The following is an example of a good block code.
 Hamming code (7,4,3)
 Consider data bits d1, d2, d3, d4
 Then we add three parity bits to the 4 bits to get a 7 bit code word.
 The parity bits are computed as follows, as depicted by the figure (all

additions are modulo 2, or exor operations)
 p1 = d1 + d2 + d4
 p2 = d1 + d3 + d4
 p3 = d2 + d3 + d4

 When the code word is received, the receiver recomputes the parity
bits, and corrects single bit errors in the 4 data bits as follows
 If p1 and p2 don’t match, d1 is in error, flip to correct
 If p1 and p3 don’t match, d2 is in error, flip to correct
 If p2 and p3 don’t match, d3 is in error, flip to correct
 If p1, p2, p3 don’t match, d4 is in error, flip to correct
 If only one of p1 or p2 or p3 is in error, the parity bit itself is in error, so

data bits are fine

d1

d4
d2 d3

p3

p1 p2

 The following is an example of a good block code.
 Hamming code (7,4,3)
 Consider data bits d1, d2, d3, d4
 Then we add three parity bits to the 4 bits to get a 7 bit code word.
 The parity bits are computed as follows, as depicted by the figure (all

additions are modulo 2, or exor operations)
 p1 = d1 + d2 + d4
 p2 = d1 + d3 + d4
 p3 = d2 + d3 + d4

 When the code word is received, the receiver recomputes the parity
bits, and corrects single bit errors in the 4 data bits as follows
 If p1 and p2 don’t match, d1 is in error, flip to correct
 If p1 and p3 don’t match, d2 is in error, flip to correct
 If p2 and p3 don’t match, d3 is in error, flip to correct
 If p1, p2, p3 don’t match, d4 is in error, flip to correct
 If only one of p1 or p2 or p3 is in error, the parity bit itself is in error, so

data bits are fine

Convolutional codes
 Convolutional codes operate on a stream of bits.
 In each step of the computation, k bits of the message are

consumed, and n coded bits are produced
 The coded bits are computed using not just the current set

of k bits, but the last l such sets of k bits
 The number l is called the constraint length of the code
 The rate of the code is R = k/n
 Intuitively, convolutional codes work by distributing the

load of error correction over the entire stream, instead of
over localized blocks (as in block codes). Therefore, codes
with larger constraint length lead to better error correction

 For example, most WiFi physical layers use a convolutional
code with rate ½ and constraint length 7.

 Convolutional codes operate on a stream of bits.
 In each step of the computation, k bits of the message are

consumed, and n coded bits are produced
 The coded bits are computed using not just the current set

of k bits, but the last l such sets of k bits
 The number l is called the constraint length of the code
 The rate of the code is R = k/n
 Intuitively, convolutional codes work by distributing the

load of error correction over the entire stream, instead of
over localized blocks (as in block codes). Therefore, codes
with larger constraint length lead to better error correction

 For example, most WiFi physical layers use a convolutional
code with rate ½ and constraint length 7.

Convolutional codes - example
 Consider the following code, k =1, n = 2, l = 3
 That is, in each step, one bit is read, a window of last 3 bits is considered (including

the current bit), and 2 coded bits are produced.
 Let the stream of bits be denoted by x[i] (index i goes over all bits in the message)
 When we read in each bit x[i], we compute two parity bits p[i] and q[i] as follows

(all additions are mod 2)
 p[i] = x[i] + x[i-1] + x[i-2]
 q[i] = x[i] + x[i-1]

 The parity bits can also be denoted by a simpler representation called generators.
The generator for p = 111, q =110
 Here the generators indicate which bits in the last 3 bit window are added to produce this

parity bit
 For the first bit (i=0), assume x[i-1] = x[i-2] = 0

 Usually the first l-1 bits of a convolutional code are hardcoded to a known value to start the
coding process from the first bit

 Let us walk through a simple encoding process with this code

 Consider the following code, k =1, n = 2, l = 3
 That is, in each step, one bit is read, a window of last 3 bits is considered (including

the current bit), and 2 coded bits are produced.
 Let the stream of bits be denoted by x[i] (index i goes over all bits in the message)
 When we read in each bit x[i], we compute two parity bits p[i] and q[i] as follows

(all additions are mod 2)
 p[i] = x[i] + x[i-1] + x[i-2]
 q[i] = x[i] + x[i-1]

 The parity bits can also be denoted by a simpler representation called generators.
The generator for p = 111, q =110
 Here the generators indicate which bits in the last 3 bit window are added to produce this

parity bit
 For the first bit (i=0), assume x[i-1] = x[i-2] = 0

 Usually the first l-1 bits of a convolutional code are hardcoded to a known value to start the
coding process from the first bit

 Let us walk through a simple encoding process with this code

Convolutional codes – Encoding by
example Message = 1001

 i=0. We read the first bit “1” of the
message (assume the last 2 bits are 0 to
bootstrap)
 p[0] = 1 + 0 + 0 = 1
 q[0] = 1 + 0 = 1

 i=1 We read the next bit “0”
 p[1] = 0 + 1 + 0 = 1
 q[1] = 0 + 1 = 1

 i=2 We read the next bit “0”
 p[2] = 0 + 0 + 1 = 1
 q[2] = 0 + 0 = 0

 i=3 We read the next bit “1”
 p[3] = 1 + 0 + 0 = 1
 q[3] = 1 + 0 = 1

 Finally, we send all parity bits 11111011
and discard the original bits

0 0 1 0 0 1

0 0 1 0 0 1

 Message = 1001
 i=0. We read the first bit “1” of the

message (assume the last 2 bits are 0 to
bootstrap)
 p[0] = 1 + 0 + 0 = 1
 q[0] = 1 + 0 = 1

 i=1 We read the next bit “0”
 p[1] = 0 + 1 + 0 = 1
 q[1] = 0 + 1 = 1

 i=2 We read the next bit “0”
 p[2] = 0 + 0 + 1 = 1
 q[2] = 0 + 0 = 0

 i=3 We read the next bit “1”
 p[3] = 1 + 0 + 0 = 1
 q[3] = 1 + 0 = 1

 Finally, we send all parity bits 11111011
and discard the original bits

0 0 1 0 0 1

0 0 1 0 0 1

0 0 1 0 0 1

Convolutional codes - decoding
 The receiver gets the encoded bits (presumably with bit errors). Must

recover the original message. How? Not so simple as block codes
 In the previous example, receiver gets 8 bit string. A naïve way to decode:
 Consider every possible 4 bit message string (16 of them)
 Encode it using the code to get a 8 bit coded string
 Compare these 16 coded strings to the received string. Find the one with the

minimum hamming distance
 Identify the message string corresponding to this minimum hamming distance

as the likely transmitted message
 Complexity of this algorithm is exponential in length of message
 In real life, a much more efficient algorithm called Viterbi algorithm is

used. It follows the same principle, but implements it in a much smarter
way, such that the complexity is only linear in terms of the message length

 We don’t have time to cover Viterbi algorithm in the course, you can look
it up online if you like

 The receiver gets the encoded bits (presumably with bit errors). Must
recover the original message. How? Not so simple as block codes

 In the previous example, receiver gets 8 bit string. A naïve way to decode:
 Consider every possible 4 bit message string (16 of them)
 Encode it using the code to get a 8 bit coded string
 Compare these 16 coded strings to the received string. Find the one with the

minimum hamming distance
 Identify the message string corresponding to this minimum hamming distance

as the likely transmitted message
 Complexity of this algorithm is exponential in length of message
 In real life, a much more efficient algorithm called Viterbi algorithm is

used. It follows the same principle, but implements it in a much smarter
way, such that the complexity is only linear in terms of the message length

 We don’t have time to cover Viterbi algorithm in the course, you can look
it up online if you like

Another technique: interleaving
 Channel codes work well with random errors, that is, bit errors are

distributed randomly across a packet (so that each codeword has a small
number of errors that can be corrected)

 However, wireless channels produce burst errors, that is, errors are
concentrated in one part of the packet where channel fading was high etc.

 Interleaving is a technique used to convert burst errors to somewhat
random errors

 Interleaving shuffles the bits in a packet after coding. That is, bits of one
codeword are not placed contiguously, but at different parts of a packet.
This way, a burst error is unlikely to effect all bits in a codeword, and error
correction can still work.

 A simple example of interleaving of 12 block-coded bits (4 codewords of 3
bits each) is shown below. All bits of the same color belong to the same
codeword.

 Channel codes work well with random errors, that is, bit errors are
distributed randomly across a packet (so that each codeword has a small
number of errors that can be corrected)

 However, wireless channels produce burst errors, that is, errors are
concentrated in one part of the packet where channel fading was high etc.

 Interleaving is a technique used to convert burst errors to somewhat
random errors

 Interleaving shuffles the bits in a packet after coding. That is, bits of one
codeword are not placed contiguously, but at different parts of a packet.
This way, a burst error is unlikely to effect all bits in a codeword, and error
correction can still work.

 A simple example of interleaving of 12 block-coded bits (4 codewords of 3
bits each) is shown below. All bits of the same color belong to the same
codeword.

