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Data transfer over multiple wireless
hops

 Many applications:
 TCP flow from a wireless node to a server on the internet.

Must transfer data over multiple wireless hops in unicast
fashion.
 Data collection from sensors to the “sink” node in the

sender network. Unicast transfer, with optional in-network
processing / aggregation of data.
 Multicast distribution of data (e.g., video stream) to a

subset of nodes in the multihop network.
 Flooding of information (e.g., code updates) to all nodes in

a sensor network.
 This lecture:
 Issues: intra-path, inter-path interference
 Fixes with traditional routing, opportunistic routing
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Intra-path interference
 Consider the following topology A – B – C – D
 Suppose the route “ABCD…” has been picked by the routing

protocol as the best path and forward data using this path.
What are the complications?

 A and B cannot send simultaneously because B can’t
receive and send at the same time. If A sends too fast, B
will always be receiving and will not send time to empty its
queue.

 A and C cannot send simultaneously because they interfere
at B (and could possibly even be hidden terminals, leading
to data loss).

 These issues are commonly classified as intra-path
interference. TCP performance over multiple hops suffers.
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Intra-path interference (2)
 Suppose every link in a path has a rate R. Suppose the path

is N hops long. Suppose a sender interferes with nodes up
to “I” hops from receiver. Then the effective throughput on
this path can only be R/min(N,2+I).

 See the paper “Flush: A Reliable Bulk Transport Protocol for
Multihop Wireless Networks” for a complete explanation of
this formula.

 In reality, you may not achieve this value because CSMA
does not ensure the perfect pipelining and spatial reuse
required to reach this value. In the earlier example, A and C
might end up sending together and lose packets. A might
send too fast and overflow buffer at B. The effective
throughput will be lower than the best possible value
indicated by the formula above.
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Intra-path interference (3)
 Some fixes proposed in research literature:
 Rate limit upstream nodes, so as to not overwhelm downstream

nodes. For example, after A sends a packet to B, it must wait for
enough time to ensure that the packet has passed from B to C
to other nodes beyond its interference range.  Implementing
this simple concept in a distributed setting requires some clever
thinking (the paper “Flush” in the references has a solution).

 Enforce some sort of a schedule over nodes to ensure optimal
pipelining (the paper “PIP” in the references explores this idea).

 Put in multiple radios / directional antennas on each node so
that transmissions along a path do not interfere.

 Find a way to decode concurrent transmissions (many creative
research proposals exist)
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Inter-path interference

 When multiple flows are active at the same
time, similar issues arise (tradeoff between
sending and receiving, hidden terminals etc.),
but on a bigger scale.
 One possible fix: change routing to make

paths interference-aware. That is, if one flow
has picked one path, another flow can try to
pick a non-overlapping path.
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Opportunistic routing

 Consider the topology A – B – C – D
 Suppose A sends and B, C both happen to receive the

packet. With current routing + forwarding paradigm, B
alone is next hop, so C will throw away its copy of the
packet, and wait for B to forward it again. Wasteful!
 Instead, it would be great if we can decide on the next

hop based on which one of B or C receive the packet.
 Traditional routing – route first, forward later.
 Opportunistic routing – forward first, see who got

which packet, decide on the route based on this info.
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Opportunistic routing (2)
 One idea: source sends packets. Nodes that will forward data to

destination (forwarders) are prioritized based on distance to
destination (highest priority closest to destination). After source
sends packets, nodes closest to destination forward the packets the
destination needs. Only if none of the closer nodes got the packet
will the source retransmit again.

 So, in effect, the next hop for a particular packet will be the node
that is as close to destination as possible.

 So nodes need to know who got which packet (a bitmap of some
kind), and also decide who sends when (CSMA by default does not
prioritize)

 Reference on class website (“ExOR”) solves these issues. It uses the
ideas of batching, and propagates information of who got which
packet at the level of batches (to reduce overhead). It also uses
some kind of scheduling to let high priority nodes send first.
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The idea of “network coding”
 Another idea that comes in useful in opportunistic routing,

and also in flooding over multihop is the notion of network
coding.

 Instead of keeping state of who got what packet, nodes can
simply send linear combinations of packets (along with the
coefficients used to create the linear combinations). The
receiver can solve a set of N linear equations to recover N
packets.

 This process of nodes in the network generating packets is
called network coding. In contrast, transformation of
application data into a form suitable for transmission at the
source is called source coding.

 Applying this idea of network coding to opportunistic
unicast and multicast transfers yields interesting results.
You can read more in the references
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