
Lecture 15: TCP over wireless
networks

Lecture 15: TCP over wireless
networks

Mythili Vutukuru
CS 653 Spring 2014
March 13, Thursday



TCP - recap
 Transport layer – TCP is the dominant protocol
 TCP provides in-order reliable byte stream abstraction

between end hosts
 TCP tries to fully exploit the available bandwidth in the

network, without causing congestion
 Basic idea – keep a window of packets (called congestion

window, or cwnd) outstanding to fill the “pipe” between
sender and receiver

 Pick cwnd in a way that does not over- or under-utilize the
network

 Different TCP algorithms have different ways of adjusting
cwnd in response to what is observed

 TCP also has other mechanisms like in-order reassembly
and retransmissions for reliability.

 Transport layer – TCP is the dominant protocol
 TCP provides in-order reliable byte stream abstraction

between end hosts
 TCP tries to fully exploit the available bandwidth in the

network, without causing congestion
 Basic idea – keep a window of packets (called congestion

window, or cwnd) outstanding to fill the “pipe” between
sender and receiver

 Pick cwnd in a way that does not over- or under-utilize the
network

 Different TCP algorithms have different ways of adjusting
cwnd in response to what is observed

 TCP also has other mechanisms like in-order reassembly
and retransmissions for reliability.



TCP cwnd and bandwidth delay
product

 Ideally, cwnd must be set to the bandwith delay product
(BDP), which is the product of
 The bottleneck bandwidth of the link
 The minimum RTT between sender and receiver (that includes

just transmission and propagation delays, without queueing
delays)

 Justification: once the sender sends BDP worth of packets
on the link, the ack for the first packet comes back.

 If cwnd is lower than BDP, the bottleneck may be
underutilized. If cwnd higher than BDP, leads to congestion

 Typically, the buffer size at the bottleneck link must be at
least BDP to ensure that a burst of up to BDP can be
accommodated without underflowing the bottleneck link

 Ideally, cwnd must be set to the bandwith delay product
(BDP), which is the product of
 The bottleneck bandwidth of the link
 The minimum RTT between sender and receiver (that includes

just transmission and propagation delays, without queueing
delays)

 Justification: once the sender sends BDP worth of packets
on the link, the ack for the first packet comes back.

 If cwnd is lower than BDP, the bottleneck may be
underutilized. If cwnd higher than BDP, leads to congestion

 Typically, the buffer size at the bottleneck link must be at
least BDP to ensure that a burst of up to BDP can be
accommodated without underflowing the bottleneck link



TCP cwnd and bandwidth delay
product (2)

 If cwnd is too high, the bottleneck buffer will overflow
and drop packets. Lost packets lead to duplicate
acknowledgments (dupacks) or no acks (timeouts),
depending on how many packets are lost
 TCP dynamically adjusts cwnd to approximate BDP

(since bottleneck bandwidth is a varying quantity)
 If all going well, increase cwnd to probe for a higher

bandwidth
 If some issue arises (packet loss, high RTT etc), decrease

cwnd
 Most TCP variants differ in their adjustment of cwnd in

response to observed network conditions (like losses,
RTT)

 If cwnd is too high, the bottleneck buffer will overflow
and drop packets. Lost packets lead to duplicate
acknowledgments (dupacks) or no acks (timeouts),
depending on how many packets are lost
 TCP dynamically adjusts cwnd to approximate BDP

(since bottleneck bandwidth is a varying quantity)
 If all going well, increase cwnd to probe for a higher

bandwidth
 If some issue arises (packet loss, high RTT etc), decrease

cwnd
 Most TCP variants differ in their adjustment of cwnd in

response to observed network conditions (like losses,
RTT)



TCP over wireless
 In the early days of wireless LANs (90s), the wireless access

link had high loss rates.
 Ideally, TCP should lower cwnd only when buffer drops

occur (indicating congestion), not when packets are lost
due to poor signal or interference

 So early fixes to TCP over wireless include several solutions
to mask the wireless losses from the TCP sender, so that
cwnd is not reduced in response to wireless losses
 End to end fixes like “explicit loss notification” to indicate

wireless losses explicitly
 Split TCP connection over wired and wireless parts
 Locally retransmit lost packets at link layer by snooping on TCP

duplicate acknowledgements
 See the reference ‘A comparison of mechanisms for Improving

TCP performance over wireless links’ on the class website for
more details. You can focus on the first couple of sections to get
a basic idea.

 In the early days of wireless LANs (90s), the wireless access
link had high loss rates.

 Ideally, TCP should lower cwnd only when buffer drops
occur (indicating congestion), not when packets are lost
due to poor signal or interference

 So early fixes to TCP over wireless include several solutions
to mask the wireless losses from the TCP sender, so that
cwnd is not reduced in response to wireless losses
 End to end fixes like “explicit loss notification” to indicate

wireless losses explicitly
 Split TCP connection over wired and wireless parts
 Locally retransmit lost packets at link layer by snooping on TCP

duplicate acknowledgements
 See the reference ‘A comparison of mechanisms for Improving

TCP performance over wireless links’ on the class website for
more details. You can focus on the first couple of sections to get
a basic idea.



TCP over wireless (2)
 Most wireless links have reasonably low loss rates these

days, masked mostly by effective retransmissions schemes.
As a result, wireless loss is not as serious a problem now.

 Current problem with wireless links is highly variable
bandwidth and delay. This leads to problems estimating the
bandwidth delay product, which in turn leads to difficulties
in correctly setting buffer sizes and cwnd values.

 Reasons for variable bandwidth and delay
 Retransmissions to cover losses
 Contention on channel and backoff
 Wide range of available bit rates to mask channel quality

changess
 Sharing channel with a low bit rate node

 Most wireless links have reasonably low loss rates these
days, masked mostly by effective retransmissions schemes.
As a result, wireless loss is not as serious a problem now.

 Current problem with wireless links is highly variable
bandwidth and delay. This leads to problems estimating the
bandwidth delay product, which in turn leads to difficulties
in correctly setting buffer sizes and cwnd values.

 Reasons for variable bandwidth and delay
 Retransmissions to cover losses
 Contention on channel and backoff
 Wide range of available bit rates to mask channel quality

changess
 Sharing channel with a low bit rate node



Buffer bloat
 Buffer size less than BDP leads to under utilization.
 Buffer size >> BDP leads to excessive queueing delay
 To deal with variable bandwidth, the accepted notion today

is to conservatively overestimate buffer space, and
provision large buffers in the last hop wireless routers (base
stations, access points)

 These large buffers ensure throughput is high and link is
utilized, however they cause excessive delays. This
phenomenon is called buffer bloat.

 Buffer bloat leads to excessive delay, especially for
interactive applications (like web browsing) sharing the
wireless link with a large TCP transfer (video download)

 See the reference “Bufferbloat: Dark buffers in the
Internet” on the class website for more details

 Buffer size less than BDP leads to under utilization.
 Buffer size >> BDP leads to excessive queueing delay
 To deal with variable bandwidth, the accepted notion today

is to conservatively overestimate buffer space, and
provision large buffers in the last hop wireless routers (base
stations, access points)

 These large buffers ensure throughput is high and link is
utilized, however they cause excessive delays. This
phenomenon is called buffer bloat.

 Buffer bloat leads to excessive delay, especially for
interactive applications (like web browsing) sharing the
wireless link with a large TCP transfer (video download)

 See the reference “Bufferbloat: Dark buffers in the
Internet” on the class website for more details



Buffer sizing
 Here is a brief explanation of why bottleneck buffer should be approximately equal

to the bandwidth delay product (BDP). For more detail, see section 2 in the
reference ‘Sizing Router Buffers’

 Suppose the sender has a cwnd W, bottleneck link has buffer size B, and
bandwidth delay product is BDP.

 Suppose the buffer fills up and drops packets when W = Wmax. Then, the number
of packets outstanding at this stage is those in flight (BDP) plus those in buffer. So
we have Wmax = BDP + B

 Most TCP variants reduce W to half when packet drop happens. So, sender
window goes to Wmax/2.

 Now the sender cannot send any packets until he gets Wmax/2 acks. In this time
when the sender is silent, a correctly sized buffer will have just enough packets to
send such that Wmax/2 acks are generated. So B >= Wmax/2.

 Putting these together, we get 2B = BDP + B, or B = BDP.
 So, when bottleneck buffer is equal to BDP, the buffer will just drain before sender

starts sending next packet.

 Here is a brief explanation of why bottleneck buffer should be approximately equal
to the bandwidth delay product (BDP). For more detail, see section 2 in the
reference ‘Sizing Router Buffers’

 Suppose the sender has a cwnd W, bottleneck link has buffer size B, and
bandwidth delay product is BDP.

 Suppose the buffer fills up and drops packets when W = Wmax. Then, the number
of packets outstanding at this stage is those in flight (BDP) plus those in buffer. So
we have Wmax = BDP + B

 Most TCP variants reduce W to half when packet drop happens. So, sender
window goes to Wmax/2.

 Now the sender cannot send any packets until he gets Wmax/2 acks. In this time
when the sender is silent, a correctly sized buffer will have just enough packets to
send such that Wmax/2 acks are generated. So B >= Wmax/2.

 Putting these together, we get 2B = BDP + B, or B = BDP.
 So, when bottleneck buffer is equal to BDP, the buffer will just drain before sender

starts sending next packet.


