
Lecture 16: Transport layer
mobility

Lecture 16: Transport layer
mobility

Mythili Vutukuru
CS 653 Spring 2014
March 20, Thursday

Transport Layer Mobility
 Mobile IP – deals with network mobility, i.e., the support

needed at the IP layer to enable mobility of end-hosts
(change in IP address).

 This lecture – transport layer mobility. Instead of changing
all the IP routers, can we just change the TCP end-points to
cope with changing IP addresses of end hosts?

 We look at two proposals for transport layer mobility –
Migrate and MSOCKS. Please see the references on the
class website for complete details.

 Main challenge: TCP identifies connections by (src-addr, src-
port, dst-addr, dst-port). Mobility changes this 4-tuple.

 Mobile IP – deals with network mobility, i.e., the support
needed at the IP layer to enable mobility of end-hosts
(change in IP address).

 This lecture – transport layer mobility. Instead of changing
all the IP routers, can we just change the TCP end-points to
cope with changing IP addresses of end hosts?

 We look at two proposals for transport layer mobility –
Migrate and MSOCKS. Please see the references on the
class website for complete details.

 Main challenge: TCP identifies connections by (src-addr, src-
port, dst-addr, dst-port). Mobility changes this 4-tuple.

The key ideas in “Migrate”
 Changes to TCP to handle end point IP address change

securely.
 Negotiate the migration support option during initial

connection establishment.
 Obtain a “token” that is used to identify a connection even

after changes in IP address change the TCP 4-tuple.
 Upon migration to a new address, send a new Migrate SYN

with the earlier token, so that the old connection can be
continued.

 When one end point does not hear from other, it waits in a
MIGRATE_WAIT state for possible migrations before timing
out and closing out the connection.

 Please refer to the paper for more details.

 Changes to TCP to handle end point IP address change
securely.

 Negotiate the migration support option during initial
connection establishment.

 Obtain a “token” that is used to identify a connection even
after changes in IP address change the TCP 4-tuple.

 Upon migration to a new address, send a new Migrate SYN
with the earlier token, so that the old connection can be
continued.

 When one end point does not hear from other, it waits in a
MIGRATE_WAIT state for possible migrations before timing
out and closing out the connection.

 Please refer to the paper for more details.

The key ideas in “Migrate” (2)
 End points share a secret key using a Diffie Helman style

key exchange algorithm.
 The connection identifier (“token”) is a hash of the secret

key and initial sequence numbers.
 However, other nodes also can learn of the token by

eavesdropping. So what prevents them from hijacking the
connection and issuing a new migrate SYN?
 For every migration, the mobile client generates a request

number, and creates a hash that includes this request number
(among other things). It sends the req. no and hash with every
migrate request.

 The server that receives the migrate SYN regenerates the hash
using the secret key and checks that it matches. This ensures
“freshness” of migrate SYN requests, and prevents malicious
nodes from replaying migrate SYN requests.

 End points share a secret key using a Diffie Helman style
key exchange algorithm.

 The connection identifier (“token”) is a hash of the secret
key and initial sequence numbers.

 However, other nodes also can learn of the token by
eavesdropping. So what prevents them from hijacking the
connection and issuing a new migrate SYN?
 For every migration, the mobile client generates a request

number, and creates a hash that includes this request number
(among other things). It sends the req. no and hash with every
migrate request.

 The server that receives the migrate SYN regenerates the hash
using the secret key and checks that it matches. This ensures
“freshness” of migrate SYN requests, and prevents malicious
nodes from replaying migrate SYN requests.

Key ideas in “MSOCKS”
 Use case: mobile hosts move within an organization
 Key idea: A TCP proxy at the edge of the organization handles the

TCP connections on behalf of mobile clients, and hides mobility
from the remote host.

 The idea of TCP splicing: use a proxy that acts as end point of
connections from mobile host, and opens another TCP connection
to server. These two connections are then joined to appear as one
connection to the end hosts.

 The mobile hosts get a connection identifier which they can show
the proxy when they move.

 Mobility is simply handled by opening a new connection on the
mobile side, unsplicing connection to old IP, and re-splicing new
connection to the connection to remote server.

 Socket system calls such as connect and accept are modified to
implement splicing. Please refer to the paper for more details.

 Use case: mobile hosts move within an organization
 Key idea: A TCP proxy at the edge of the organization handles the

TCP connections on behalf of mobile clients, and hides mobility
from the remote host.

 The idea of TCP splicing: use a proxy that acts as end point of
connections from mobile host, and opens another TCP connection
to server. These two connections are then joined to appear as one
connection to the end hosts.

 The mobile hosts get a connection identifier which they can show
the proxy when they move.

 Mobility is simply handled by opening a new connection on the
mobile side, unsplicing connection to old IP, and re-splicing new
connection to the connection to remote server.

 Socket system calls such as connect and accept are modified to
implement splicing. Please refer to the paper for more details.

