
Lecture 17: Mobile Computing
Platforms: Android

Lecture 17: Mobile Computing
Platforms: Android

Mythili Vutukuru
CS 653 Spring 2014
March 24, Monday

Mobile applications vs. traditional
applications

 Traditional model of computing: an OS (Linux /
Windows), libraries, user-space applications.
 Then came the move to web-based or cloud-based

applications. Application hosted remotely, accessed by
your desktop via browser / some other client.
 Initially, mobile applications followed the same

principles as traditional desktop principles, except that
the OS and applications were customized to run on
different (resource-challenged) platforms. E.g.,
embedded linux.
 Now, with the advent of the smartphone, the model of

mobile applications is changing.

 Traditional model of computing: an OS (Linux /
Windows), libraries, user-space applications.
 Then came the move to web-based or cloud-based

applications. Application hosted remotely, accessed by
your desktop via browser / some other client.
 Initially, mobile applications followed the same

principles as traditional desktop principles, except that
the OS and applications were customized to run on
different (resource-challenged) platforms. E.g.,
embedded linux.
 Now, with the advent of the smartphone, the model of

mobile applications is changing.

Mobile applications today

 Mobile operating system: Android and iOS are the
main players. We will focus on Android in this lecture.
 Android ecosystem is basically Linux + some extra

libraries + Android runtime virtual machine (Dalvik VM)
+ application development framework + applications.
 Anyone can develop an “app” using the framework and

any of the Linux libraries.
 Applications are written in Java and run on a Dalvik

Virtual Machine (think of it as an optimized java virtual
machine)

 Mobile operating system: Android and iOS are the
main players. We will focus on Android in this lecture.
 Android ecosystem is basically Linux + some extra

libraries + Android runtime virtual machine (Dalvik VM)
+ application development framework + applications.
 Anyone can develop an “app” using the framework and

any of the Linux libraries.
 Applications are written in Java and run on a Dalvik

Virtual Machine (think of it as an optimized java virtual
machine)

Android design principles (1)

 Traditional environment: users are the main
entities by which permissions are assigned.
Each user has a unique UID. In Android, each
app has a unique UID, and runs in its own
separate VM. This enforces isolation, and
allows us to run untrusted third party
applications.

 Traditional environment: users are the main
entities by which permissions are assigned.
Each user has a unique UID. In Android, each
app has a unique UID, and runs in its own
separate VM. This enforces isolation, and
allows us to run untrusted third party
applications.

Android design principles (2)

 Android enforces a fixed structure on
applications. An application is composed of one
of the following components:
 Activity (user interface)
 Service (background processing)
 Content provider (data store)
 Broadcast receiver (mailbox to receive notifications)

 The fixed structure results is easy development of
apps, and helps monitor the apps for security.

 Android enforces a fixed structure on
applications. An application is composed of one
of the following components:
 Activity (user interface)
 Service (background processing)
 Content provider (data store)
 Broadcast receiver (mailbox to receive notifications)

 The fixed structure results is easy development of
apps, and helps monitor the apps for security.

Android design principles (3)
 Traditionally, many mechanisms for IPC (inter-process

communication), like shared memory, pipes, sockets etc.
 Android restricts IPC to passing “intents” between components of

applications.
 An intent is a message that specifies a target component and some

arguments (action etc.). A component that receives an intent does a
specific action in response to it.
 Start activity or service
 Bind to a service
 Query content provider

 Intends can be explicit (identify target) or implicit (Android
identifies suitable target)

 All intents pass through Android reference monitor that can
monitor them for security.

 External communication via network sockets or Java libraries, much
like in Linux.

 Traditionally, many mechanisms for IPC (inter-process
communication), like shared memory, pipes, sockets etc.

 Android restricts IPC to passing “intents” between components of
applications.

 An intent is a message that specifies a target component and some
arguments (action etc.). A component that receives an intent does a
specific action in response to it.
 Start activity or service
 Bind to a service
 Query content provider

 Intends can be explicit (identify target) or implicit (Android
identifies suitable target)

 All intents pass through Android reference monitor that can
monitor them for security.

 External communication via network sockets or Java libraries, much
like in Linux.

Android design principles (4)
 Access control in Linux is by setting permissions based on

users and groups.
 In Android, every component is protected by a permission

label. Labels can be defined by system or app developers.
 Another component that wants to access it must have the

required permissions.
 Permission may be needed to send intent and start activity
 Permission may be needed to receive intents from certain

components.
 All these checks enforced by reference monitor.
 In addition to checking intents, permissions enforced by

special Linux groups for access to network, camera etc.

 Access control in Linux is by setting permissions based on
users and groups.

 In Android, every component is protected by a permission
label. Labels can be defined by system or app developers.

 Another component that wants to access it must have the
required permissions.
 Permission may be needed to send intent and start activity
 Permission may be needed to receive intents from certain

components.
 All these checks enforced by reference monitor.
 In addition to checking intents, permissions enforced by

special Linux groups for access to network, camera etc.

Android design principles (5)

 Permissions are of many types:
 Normal: harmless, given to any app that requests.
 Dangerous: user must approve
 System: only for system apps

 A manifest file declares all components,
permissions etc. Permissions can be granted
only at install time.
 User is required to grant permissions

judiciously.

 Permissions are of many types:
 Normal: harmless, given to any app that requests.
 Dangerous: user must approve
 System: only for system apps

 A manifest file declares all components,
permissions etc. Permissions can be granted
only at install time.
 User is required to grant permissions

judiciously.

Android Security

 Security is a first principle in Android design,
so fairly secure system.
 Some malicious activity still happens due to:
 Linux bugs
 User carelessness in granting permissions
 Applications misuse permissions

 Tools to catch malicious activity
 Static analysis of code
 Dynamic analysis of application behavior

 Security is a first principle in Android design,
so fairly secure system.
 Some malicious activity still happens due to:
 Linux bugs
 User carelessness in granting permissions
 Applications misuse permissions

 Tools to catch malicious activity
 Static analysis of code
 Dynamic analysis of application behavior

For more information..

 Please see the references on the class website
for more details on Android architecture and
security.

