Lecture 17: Mobile Computing
Platforms: Android

Mythili Vutukuru
CS 653 Spring 2014
March 24, Monday



Mobile applications vs. traditional
applications

Traditional model of computing: an OS (Linux /
Windows), libraries, user-space applications.

Then came the move to web-based or cloud-based
applications. Application hosted remotely, accessed by
your desktop via browser / some other client.

Initially, mobile applications followed the same
principles as traditional desktop principles, except that
the OS and applications were customized to run on
different (resource-challenged) platforms. E.g.,
embedded linux.

Now, with the advent of the smartphone, the model of
mobile applications is changing.




Mobile applications today

Mobile operating system: Android and iOS are the
main players. We will focus on Android in this lecture.

Android ecosystem is basically Linux + some extra
libraries + Android runtime virtual machine (Dalvik VM)
+ application development framework + applications.

Anyone can develop an “app” using the framework and
any of the Linux libraries.

Applications are written in Java and run on a Dalvik
Virtual Machine (think of it as an optimized java virtual

machine)



Android design principles (1)

" Traditional environment: users are the main
entities by which permissions are assigned.
Each user has a unique UID. In Android, each
app has a unique UID, and runs in its own
separate VM. This enforces isolation, and
allows us to run untrusted third party
applications.



Android design principles (2)

= Android enforces a fixed structure on

applications. An application is composed of one
of the following components:

= Activity (user interface)

= Service (background processing)

= Content provider (data store)

" Broadcast receiver (mailbox to receive notifications)

" The fixed structure results is easy development of
apps, and helps monitor the apps for security.



Android design principles (3)

Traditionally, many mechanisms for IPC (inter-process
communication), like shared memory, pipes, sockets etc.

Android restricts IPC to passing “intents” between components of
applications.

An intent is a message that specifies a target component and some
arguments (action etc.). A component that receives an intent does a
specific action in response to it.

= Start activity or service
= Bind to a service
= Query content provider

Intends can be explicit (identify target) or implicit (Android
identifies suitable target)

All intents pass through Android reference monitor that can
monitor them for security.

External communication via network sockets or Java libraries, much
like in Linux.



Android design principles (4)

Access control in Linux is by setting permissions based on
users and groups.

In Android, every component is protected by a permission
label. Labels can be defined by system or app developers.

Another component that wants to access it must have the
required permissions.

= Permission may be needed to send intent and start activity

= Permission may be needed to receive intents from certain
components.

All these checks enforced by reference monitor.

In addition to checking intents, permissions enforced by
special Linux groups for access to network, camera etc.



Android design principles (5)

" Permissions are of many types:
= Normal: harmless, given to any app that requests.
" Dangerous: user must approve
= System: only for system apps

= A manifest file declares all components,

permissions etc. Permissions can be granted
only at install time.

= User is required to grant permissions
judiciously.



Android Security

= Security is a first principle in Android design,
so fairly secure system.
= Some malicious activity still happens due to:
" Linux bugs
= User carelessness in granting permissions
= Applications misuse permissions

" Tools to catch malicious activity
= Static analysis of code
* Dynamic analysis of application behavior



For more information..

m Pleagse see the references on the class website
for more details on Android architecture and
security.



