
Lecture 19: Energy efficiency in
mobile applications

Lecture 19: Energy efficiency in
mobile applications

Mythili Vutukuru
CS 653 Spring 2014

April 3, Monday



Energy savings at various layers
 PHY / MAC – put radio to sleep to avoid idle

listening (e.g., 802.11 power save mode)
 Routing layer – routing and forwarding protocols

can be made energy aware and pick paths /
forwarding nodes that save energy
 TCP layer – TCP interactions with 802.11 power

save mode can lead to increased delay in getting
ACKs (due to radio sleeping) in the slow start
phase, and negatively impact energy savings
 This lecture – energy consumption at the

application layer, and ideas to save power.

 PHY / MAC – put radio to sleep to avoid idle
listening (e.g., 802.11 power save mode)
 Routing layer – routing and forwarding protocols

can be made energy aware and pick paths /
forwarding nodes that save energy
 TCP layer – TCP interactions with 802.11 power

save mode can lead to increased delay in getting
ACKs (due to radio sleeping) in the slow start
phase, and negatively impact energy savings
 This lecture – energy consumption at the

application layer, and ideas to save power.



Profiling energy usage of apps
 How to profile energy usage?
 Log app activity at process, thread, routine, system call granularity.
 Log energy usage with a power meter.
 Correlate the two to get an energy profile of an app.

 Many complications: for example, some components (3G, GPS)
exhibit tail energy behavior. When one app turns on 3G radio, the
radio stays in the ON state for a certain “radio tail” duration after
the app finishes using it. It is not clear whom to assign this energy
usage to.
 One way is to attribute it to the last system call that triggered the tail.

 Such challenges make energy profiling non-trivial.
 See the paper “Fine grained energy accounting on smartphones

with Eprof” for more details.

 How to profile energy usage?
 Log app activity at process, thread, routine, system call granularity.
 Log energy usage with a power meter.
 Correlate the two to get an energy profile of an app.

 Many complications: for example, some components (3G, GPS)
exhibit tail energy behavior. When one app turns on 3G radio, the
radio stays in the ON state for a certain “radio tail” duration after
the app finishes using it. It is not clear whom to assign this energy
usage to.
 One way is to attribute it to the last system call that triggered the tail.

 Such challenges make energy profiling non-trivial.
 See the paper “Fine grained energy accounting on smartphones

with Eprof” for more details.



Energy usage in apps
 After profiling apps for energy usage, what are the main insights?
 Energy usage can be classified into two types
 Energy spent on I/O – radio, GPS, WiFi, screen
 Energy spent on computation – rendering web pages, computing

future moves in games, speech recognition
 Some examples of high power consumption in apps
 Google search or news apps spend a lot of time in data transfer and

hence in the 3G radio tail
 Browsers spend energy in parsing and rendering Javascript, CSS,

decompressing JPEG images
 Angrybirds or other gaming apps spend energy on computing gaming

moves
 Lot of free apps that depend on ads spend energy on GPS (and GPS

tail)
 The code that closes idle TCP connections incurs the penalty of

starting the radio for a short period of time (to send FIN) and incurs
the radio tail energy again.

 After profiling apps for energy usage, what are the main insights?
 Energy usage can be classified into two types
 Energy spent on I/O – radio, GPS, WiFi, screen
 Energy spent on computation – rendering web pages, computing

future moves in games, speech recognition
 Some examples of high power consumption in apps
 Google search or news apps spend a lot of time in data transfer and

hence in the 3G radio tail
 Browsers spend energy in parsing and rendering Javascript, CSS,

decompressing JPEG images
 Angrybirds or other gaming apps spend energy on computing gaming

moves
 Lot of free apps that depend on ads spend energy on GPS (and GPS

tail)
 The code that closes idle TCP connections incurs the penalty of

starting the radio for a short period of time (to send FIN) and incurs
the radio tail energy again.



How to save I/O energy usage

 I/O activities happens in “bundles”, with wait time
between bundles. Why the gap between bundles?
 User think time
 App spacing out I/O requests to rate limit bandwidth
 Closing TCP connections after a timeout

 The gap between bundles incurs wasteful radio tail
energy
 Network optimizations like TCP connection resue and

cleanup after a timeout hurt energy usage
 Energy saving by grouping together I/O activity is a

possible idea.

 I/O activities happens in “bundles”, with wait time
between bundles. Why the gap between bundles?
 User think time
 App spacing out I/O requests to rate limit bandwidth
 Closing TCP connections after a timeout

 The gap between bundles incurs wasteful radio tail
energy
 Network optimizations like TCP connection resue and

cleanup after a timeout hurt energy usage
 Energy saving by grouping together I/O activity is a

possible idea.



How to save energy spent on
computation?

 Browsers spend energy on
 Parsing and render Javascript and CSS
 Decompress images (e.g., JPEG) to BMP for display

 Other apps spend energy in computations such as speech
recognition or computing future moves of games

 Two ways to reduce computation in a browser
 Front-end proxy that optimizes the web page for mobile

rendering (e.g., low resolution images). Suitable for browsers.
 Offloading some computation to a remote server. More suitable

for voice recognition kind of apps.
 See the reference “Who Killed by Battery: Analyzing Mobile

Browser Energy Consumption” for more details on the two
approaches.

 Browsers spend energy on
 Parsing and render Javascript and CSS
 Decompress images (e.g., JPEG) to BMP for display

 Other apps spend energy in computations such as speech
recognition or computing future moves of games

 Two ways to reduce computation in a browser
 Front-end proxy that optimizes the web page for mobile

rendering (e.g., low resolution images). Suitable for browsers.
 Offloading some computation to a remote server. More suitable

for voice recognition kind of apps.
 See the reference “Who Killed by Battery: Analyzing Mobile

Browser Energy Consumption” for more details on the two
approaches.



Code offloading or remote
computation

 Example: Voice recognition feature “Siri” in the iPhone. Voice
sample from phone is analyzed and parsed on remote Apple
servers, in order not to consume resources on phone.

 Tradeoff
 Remote computation will save CPU cycles (hence energy) and

processing time
 Network transfer will consume energy (depends on how much code to

exchange) and may add to latency
 Also, only some code can be offloaded. Cannot offload code that

depends on I/O, camera etc.
 Code partitioning can be manual or automatic.
 See the reference “MAUI: Making smartphones last longer with

code offload” for more details. MAUI asks programmers to mark
code that can be remotely executed. At runtime, MAUI
automatically makes decisions on what to offload based on the
energy saved by offloading computation vs. the energy spent to
transfer state to remote server.

 Example: Voice recognition feature “Siri” in the iPhone. Voice
sample from phone is analyzed and parsed on remote Apple
servers, in order not to consume resources on phone.

 Tradeoff
 Remote computation will save CPU cycles (hence energy) and

processing time
 Network transfer will consume energy (depends on how much code to

exchange) and may add to latency
 Also, only some code can be offloaded. Cannot offload code that

depends on I/O, camera etc.
 Code partitioning can be manual or automatic.
 See the reference “MAUI: Making smartphones last longer with

code offload” for more details. MAUI asks programmers to mark
code that can be remotely executed. At runtime, MAUI
automatically makes decisions on what to offload based on the
energy saved by offloading computation vs. the energy spent to
transfer state to remote server.


