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I/O Virtualization

Decoupling a logical device from its physical implementation offers many compelling advantages.

Mendel Rosenblum, Carl Waldspurger

The term virtual is heavily overloaded, evoking everything from virtual machines running in the 
cloud to avatars running across virtual worlds. Even within the narrowfigureer context of computer 
I/O, virtualization has a long, diverse history, exemplified by logical devices that are deliberately 
separate from their physical instantiations.

For example, in computer storage, a LUN (logical unit number) represents a logical disk that 
may be backed by anything from a partition on a local physical drive to a multidisk RAID volume 
exported by a networked storage array. In computer networking, a VPN (virtual private network) 
represents a logically isolated private network, where the isolation is provided using cryptographic 
methods to secure data that may in fact traverse the public Internet. In computer architecture, an 
IOMMU (I/O memory-management unit) translates I/O virtual memory addresses to corresponding 
physical memory addresses, making direct memory access by devices safe and efficient. Other 
examples of virtualization include VLAN (virtual LAN), NPIV (N_Port ID virtualization), VT-d (Intel 
Virtualization Technology for Directed I/O), and MR-IOV (Multiroot I/O Virtualization).  

The common theme is decoupling the logical from the physical, introducing a level of indirection 
between the abstract and the concrete. Such indirection has proven to be remarkably powerful and 
versatile. Modern virtualization platforms exploit indirection and abstraction in numerous ways. 
A VM (virtual machine) is a software abstraction that behaves as a complete hardware computer, 
including virtualized CPUs, RAM, and I/O devices. A virtualization software layer, known as a 
hypervisor, provides the level of indirection that decouples an operating system and its applications 
from physical hardware. The term guest is commonly used to distinguish the layer of software 
running within a VM; a guest operating system manages applications and virtual hardware, while a 
hypervisor manages VMs and physical host hardware. 

Although IBM invented and commercialized mainframe VMs many decades ago, virtual machines 
didn’t make the leap to commodity hardware until the late 1990s, when VMware pioneered efficient 
virtualization on x86 platforms. Since then, virtualization has experienced a resurgence of interest in 
both industry and academia. Today, VMs are commonplace in many computing environments and 
nearly ubiquitous in enterprise data centers and cloud-computing infrastructures.

Since virtualization is a broad topic, and the universe of I/O devices is large and diverse, this 
article focuses on some representative I/O systems issues in VM-based systems, primarily in the 
context of a single physical host. After highlighting key benefits and challenges, we explore various 
implementation approaches and techniques that have been leveraged to enable flexible, high-
performance I/O virtualization.

BENEFITS
Many of the benefits of virtualized systems depend on the decoupling of a VM’s logical I/O devices 
from its physical implementation. Examples range from the ability to multiplex many VMs on the 
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same hardware to advanced virtualization features such as live migration and enhanced security. 
At the most basic level, decoupling enables time- and space-multiplexing of I/O devices, allowing 

multiple logical devices to be implemented by a smaller number of physical devices. Applications of 
virtualization such as server consolidation or running heterogeneous operating system environments 
on the same machine rely on this feature. As inexorable trends create ever more powerful hardware, 
it’s not surprising that much of it remains seriously underutilized. The ability to multiplex logical 
I/O devices onto physical ones allows both administrators and automated systems to drive I/O 
devices at higher utilization and achieve better hardware efficiency. Much of virtualization’s rapid 
adoption over the past decade can be attributed to the significant cost savings resulting from such 
basic partitioning and server consolidation.

Decoupling provides for flexible mappings between logical and physical devices, facilitating 
seamless portability. By supporting mappings of logical I/O devices to physical devices with 
different yet semantically compatible interfaces, virtualization makes VMs portable, even across 
heterogeneous systems. The same VM image can be run on computers with different I/O devices and 
configurations, with the I/O virtualization layer providing the necessary conversion. 

Decoupling also enables popular VM features such as the ability to suspend and resume a virtual 
machine and the ability to move a running virtual machine between physical machines, known as 
live migration. In both of these applications, active logical devices must be decoupled from physical 
devices and recoupled when the VM resumes after being saved or moved. 

This virtualization layer may also change mappings to physical devices, even when the VM itself 
does not move. For example, by changing mappings while copying storage contents, a VM’s virtual 
disks can be migrated transparently between network storage units, even while remaining in active 
use by the VM. The same capability can be used to improve availability or balance load across 
different I/O channels. For example, in a storage system with multiple paths between the machines 
and storage, the virtualization layer can rebind mappings to mask failures or avoid delays that might 
occur because of contention on paths. 

I/O virtualization provides a foothold for many innovative and beneficial enhancements of the 
logical I/O devices. The ability to interpose on the I/O stream in and out of a VM has been widely 
exploited in both research papers and commercial virtualization systems. 

One useful capability enabled by I/O virtualization is device aggregation, where multiple physical 
devices can be combined into a single more capable logical device that is exported to the VM. 
Examples include combining multiple disk storage devices exported as a single larger disk, and 
network channel bonding where multiple network interfaces can be combined to appear as a single 
faster network interface.  

New features can be added to existing systems by interposing and transforming virtual I/O 
requests, transparently enhancing unmodified software with new capabilities. For example, a disk 
write can be transformed into replicated writes to multiple disks, so that the system can tolerate 
disk-device failures. Similarly, by logging and tracking the changes made to a virtual disk, the 
virtualization layer can offer a time-travel feature, making it possible to move a VM’s file system 
backward to an earlier point in time. This functionality is a key ingredient of the snapshot and undo 
features found in many desktop virtualization systems. 

Many I/O virtualization enhancements are designed to improve system security. A simple example 
is running an encryption function over the I/O to and from a disk to implement transparent disk 
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encryption. Interposing on network traffic allows virtualization layers to implement advanced 
networking security, such as firewalls and intrusion-detection systems employing deep packet 
inspection.

 
CHALLENGES
While virtualization offers many benefits, it also introduces significant challenges. One is achieving 
good I/O performance despite the potential overhead associated with flexible indirection and 
interposition. Complex resource-management issues such as scheduling and prioritization are 
introduced by multiplexing physical devices across multiple VMs, further impacting performance. 
Another challenge is defining appropriate semantics for virtual devices and interfaces, especially 
when faced with complex physical I/O devices or system-level optimizations.

In many systems, a nontrivial performance penalty is associated with indirection. The same can 
be true for virtualized I/O, since I/O operations must conceptually traverse two separate I/O stacks: 
one in the guest managing the virtual hardware and one in the hypervisor managing the physical 
hardware. The longer I/O path affects both latency and throughput, and imposes additional CPU 
load. Indeed, I/O-intensive workloads on some early virtualization systems suffered a virtualization 
penalty larger than a factor of two. Since then, further research, optimizations, and hardware 
acceleration have reduced this penalty into the noise for an impressive set of demanding production 
workloads. Somewhat counterintuitively, virtualized systems have even outperformed native systems 
on the same physical hardware, overcoming native scaling limitations by instead running several 
smaller VM instances in a scale-out configuration.

Figure 1 depicts the flow of an I/O request in a virtualized system. When an application running 
within a VM issues an I/O request, typically by making a system call, it is initially processed by the 
I/O stack in the guest operating system, which is also running within the VM. A device driver in the 
guest issues the request to a virtual I/O device, which the hypervisor then intercepts. The hypervisor 
schedules requests from multiple VMs onto an underlying physical I/O device, usually via another 
device driver managed by the hypervisor or a privileged VM with direct access to physical hardware. 

When a physical device finishes processing an I/O request, the two I/O stacks must be traversed 
again, but in the reverse order. The actual device posts a physical completion interrupt, which is 
handled by the hypervisor. The hypervisor determines which VM is associated with the completion 
and notifies it by posting a virtual interrupt for the virtual device managed by the guest operating 
system. To reduce overhead, some hypervisors perform virtual interrupt coalescing in software, 
similar to the hardware batching optimizations found in physical cards, which delay interrupt 
delivery with the goal of posting only a single interrupt for multiple incoming events.

Interposition can incur additional overhead by manipulating I/O requests such as inspecting 
network packets to perform security checks or encrypting disk writes transparently. In some cases, 
the interposition costs are negligible, especially compared with high-latency operations such as I/O 
to traditional rotating media. In other cases, even making an extra in-memory copy of I/O data 
may be prohibitively expensive—for example, for fast networks with extremely high packet rates. 
To improve performance, some hypervisors parallelize portions of this processing, offloading work 
to additional processor cores. Of course, when there is contention for CPUs, this leaves fewer cores 
available for running VMs.

Managing resources in virtualized systems presents additional challenges. Although each VM is 
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presented with the illusion of having its own dedicated virtual hardware, in reality the hypervisor 
must multiplex limited physical hardware across multiple VMs of varying importance, mapping their 
virtual resources onto available physical resources. At the most basic level, contention for a physical 
device will result in scheduling delays for some VMs. At a minimum, the hypervisor must prevent 
VMs from monopolizing resources and denying service to others.

More generally, the hypervisor should provide some measure of performance isolation or 
quality-of-service controls to reflect the relative importance or absolute requirements of diverse 
VM workloads. The ability to express resource-management policies is especially important when 
physical resources are shared across multiple users or organizations, as is common in multitenant 
cloud-computing environments. Several hypervisors support a relative weight control, where a VM’s 
allocation is directly proportional to its weight. Some also provide absolute reservation and limit 
settings, which bound a VM’s minimum and maximum allocation, regardless of system load.

For I/O devices that can be accessed concurrently by VMs on different hosts, such as networked 
storage arrays, resource management requires distributed algorithms to schedule requests fairly 
and efficiently. Virtualization platforms have only recently started offering sophisticated solutions 
capable of providing end-to-end quality of service for VM I/O bandwidth and latency.
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Scheduling may also impact VM performance in subtler ways. For example, contention for 
CPU resources can cause problems for TCP networking performance. TCP connections rely on 
accurate RTT (round-trip time) estimates in order to perform flow control and adjust window sizes 
appropriately. A VM, however, may be descheduled for tens or even hundreds of milliseconds while 
a packet is pending. As a result, CPU time-multiplexing can distort a VM’s RTT values, causing its 
congestion windows to grow too slowly, which degrades throughput significantly. To solve this 
problem, some researchers have proposed offloading more TCP functionality to the hypervisor. 
Another option would be to present VMs with virtual NIC (network interface controller) hardware 
that supports optional TOE (TCP Offload Engine) functionality, as found in some physical NICs.

The very idea of adding TCP offload capabilities to a virtual NIC highlights the difficulty of 
choosing appropriate semantics for virtual hardware. This is especially true for devices with even 
more complex interfaces, such as modern graphics cards. At one extreme, virtual hardware can 
have an interface identical to a physical device. This approach has the compelling advantage 
of compatibility with all software that already supports (or will support) the physical device. 
Unfortunately, such transparency usually comes at the cost of emulating a fairly complex virtual 
device interface that wasn’t designed to support virtualization efficiently. At the other extreme, 
virtual hardware can have a completely new hypervisor-specific interface, designed explicitly to be 
simple and efficient.

A related challenge is ensuring that virtualization faithfully preserves the semantics that software 
expects of physical devices. For example, some virtualization systems boost I/O performance by 
leveraging a hypervisor-level buffer cache between the VM and physical storage. While caching 
reads doesn’t introduce any problems, caching writes would violate the durability semantics relied 
upon by guest file systems, databases, and other software. In a native, unvirtualized system, an 
I/O completion indicates that a write has been committed.  Hypervisors must use a write-through 
cache to preserve this property, although some provide an explicit option to trade off safety for 
performance by relaxing this constraint.

DMA (direct memory access) illustrates additional safety and performance issues. It enables an 
I/O device to read and write host RAM directly without involving the CPU, which is critical for 
achieving high-performance I/O rates. Unfortunately, giving devices the ability to use DMA to reach 
arbitrary physical memory locations is risky, especially since the majority of operating system bugs 
result from misbehaving device drivers. As discussed in the next section, virtualization systems can 
ensure strict isolation between VMs by employing various approaches, such as leveraging hardware 
IOMMU functionality at both the guest and hypervisor levels. 

APPROACHES
The classic way of implementing I/O virtualization is to structure the software in two parts: an 
emulated virtual device that is exported to the VM and a back-end implementation that is used 
by the virtual-device emulation code to provide the semantics of the device. Modern hypervisors 
support an I/O virtualization architecture with a split implementation, as shown in figure 2, where 
a virtual machine can select among different virtual device interface emulation front-ends as well as 
multiple different back-end implementations of the device.  For example, the virtual machine can be 
configured with IDE, SCSI, or a paravirtualized disk device that is implemented either as a file, local 
disk, or SAN (storage area network). This section describes the way these are implemented in modern 
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virtualization systems and discusses some of the available optimization options. 
To achieve the classic virtualization capability of running in a VM the same software 

environment that ran on a physical machine, the abstractions exported to the VM must be similar 
enough to the physical machine that the software will run. This can be surprisingly complex. For 
example, consider the commodity PC architecture that VMware inherited for legacy VMs. Ensuring 
compatibility meant exporting several PC device abstractions, including architecturally-defined 
abstractions such as x86 IN and OUT instructions, uncached load and store accesses to I/O device 
addresses, DMA, and interrupts. The virtualization layer and the virtual-device emulation code must 
support the architectural and device semantics faithfully enough for the code in the VM to execute 
correctly.

As a concrete example, consider a legacy PC I/O device such as an IDE disk. The operating system 
in the VM would call a device driver to launch disk read or write requests. The device driver would 
include OUT instructions that program the operation type, device number, disk-sector number, 
length, and buffer-memory location for the operation. The driver assumes that the device will use 
DMA to transfer the contents between memory and the disk device and then raise an interrupt 
when it is done. For the emulated device to work correctly, the emulation software must catch and 
interpret the OUT instructions to determine the correct operation and its arguments; perform an 
emulation of the operation by storing or fetching the requested block of storage, using the emulation 
of the architecture’s DMA capability to read or write memory; and finally raise the proper interrupt 
signal on the VM to notify the driver that the request is finished. 

While the device emulation code is specific to the particular device being emulated (e.g., an 
IDE disk), the semantics of the operations being performed are general and frequently constructed 
so that the same device emulation can access multiple different back-end implementations. For 
example, with virtual disks, the back-end implementation could be as simple as forwarding the 
request untransformed to a native physical IDE controller or as complex as implementing the storage 
for the virtual disk as a file in a host operating system file system, as in many desktop virtualization 
products. In the latter case, the back-end must generate host operating system file-system read and 
write operations for the file containing the virtual disk contents in order to perform emulated virtual 
disk-sector read and write operations. 
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A pluggable structure for back-end implementations makes it easy to generate new capabilities 
for virtual devices. A disk-storage back-end can implement an emulated CDROM device for a VM 
simply by accessing a file containing its ISO (International Organization for Standardization) image. 
Similarly, the snapshot and undo capabilities in modern virtualization systems can be implemented 
by logging rather than overwriting a virtual-disk file, enabling the virtualization layer to control 
which version of the disk is visible to the VM. 

Along with flexibility and innovative features come potential performance penalties, which can 
vary greatly. A back-end optimized for a server machine that efficiently shuttles emulated reads 
and writes to a portion of a local disk may have very low virtualization overheads. In contrast, the 
penalty may be relatively large for a desktop-virtualization back-end where the data is stored in an 
encrypted file on a network file system used by the host operating system. Not only would every read 
and write request traverse the file system and networking code of the host operating system and the 
network file system, but additional encryption and decryption overhead would also be incurred for 
each sector.  

Much current research in I/O virtualization is focused on either new interposition functionality 
that solves some problem or optimizations for reducing the overheads associated with the 
virtualization. Optimization has been an especially important goal in server virtualization and 
consolidation, where overheads directly impact metrics such as the number of VMs supported per 
server. Beyond back-end optimizations, reducing I/O-virtualization overhead requires decreasing 
virtual-device emulation costs. Several recent optimizations have tried exactly this using either 
software or modifications to the I/O device hardware. 

One of the software techniques for lowering emulation costs is to reduce the number of trap-and-
emulate operations the hypervisor is required to do to perform an I/O operation.  For example, the 
legacy PC IDE interface uses eight-bit OUT instructions to communicate with the disk controller. 
Communicating the sector number, buffer address, and length requires multiple such instructions, 
causing repeated traps into the hypervisor to run the device emulation code. Using the driver for an 
alternative disk device such as a SCSI disk can achieve the same functionality with far fewer traps, 
greatly reducing the emulation overheads. 

Even further reduction can be achieved by optimizing the communication between the VM 
software and the device emulation. In modern operating system environments such as Windows 
and Linux, it is possible to install device drivers that communicate the request’s arguments to the 
hypervisor’s device emulation code directly, with minimal overhead. This approach of using virtual 
hardware optimized for the virtualization layer rather than matching any particular real device 
is referred to as paravirtualization. In practice, most modern virtualization platforms support an 
emulated legacy device for compatibility, as well as providing an optional paravirtual device for 
higher performance.

As an example, a paravirtualized disk interface could have the device emulation code accept 
commands via a memory segment shared between the driver and the emulation, allowing 
communication of commands with practically zero overhead. The emulation code simply passes the 
command to the optimized back-end implementation. Examples include Xen’s virtual block-device 
front-end driver and VMware’s PVSCSI guest disk driver.

For an I/O device used by only a single VM, where the back-end implementation is mostly passing 
through the driver commands from the VM to the device, it is tempting to pass through the device 
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directly, assigning it to the VM exclusively. Consider the example of a high-performance NIC that 
is used by only one of the VMs running on a computer. It is relatively easy to configure the CPU 
virtualization so the x86 instructions that talk to the device can be connected directly to the device 
and incur zero I/O virtualization overheads. This pass-through mode can eliminate both the device 
emulation and back-end implementation overheads. 

Although pass-through mode can remove I/O virtualization overheads, it introduces several 
limitations and implementation challenges that have slowed its deployment. Aside from the 
obvious limitation that each pass-through device can be used by only a single VM, pass-through 
forms a coupling between the hardware and the VM. As a result, many of the portability benefits of 
virtualization are lost, along with key benefits such as live migration and features that depend on the 
ability to interpose on I/O. 

One of the biggest challenges of pass-through mode affects devices that use DMA. The 
fundamental problem is that the driver in the VM will program device DMA using the guest’s 
notion of memory addresses, which differ from the real memory addresses in which the VM’s 
memory resides. This is not only incorrect, but also a large safety and security problem since the 
device could read and write memory potentially belonging to the hypervisor or some other VM. To 
make this work, the VM’s driver must translate memory addresses to use the correct real memory 
before programming them into the device. This exposes the driver to the details of hypervisor 
memory virtualization and still has safety problems since bugs in the driver can result in incorrect 
translations. 

To eliminate both the limitations and the challenges of pass-through, device builders have 
modified their hardware to be aware of the virtualization layer. To handle the limitation of exclusive 
pass-through-only devices, such virtualization-aware hardware exports multiple interfaces, each of 
which can be attached to a different VM. As a result, each VM is given its own directly accessible 
pass-through copy of the device. For example, a virtualization-aware NIC could have many 
personalities that look and act as if many separate NICs had been directly mapped into different 
VMs. 

Additional hardware support is needed to address the challenges of performing DMA operations 
directly involving VM memory. A memory management unit is employed to map the DMA 
operation’s memory addresses into the correct locations in the VM’s memory. This mapping 
hardware—the IOMMU—is programmed for each VM attached to a device with the mappings of 
where the VM resides in memory. Each DMA request is run through the IOMMU, which routes 
the request to or from the correct location in the real machine memory or generates an error if the 
request is not valid. The IOMMU allows the driver in the VM to program device DMA using its 
virtualized notion of memory addresses, while still allowing the hypervisor to decide where VM 
memory is actually located in physical machine memory. The IOMMU also provides a level of safety, 
ensuring that even buggy driver software in the guest cannot generate DMA accesses to locations 
outside the VM. 

Although IOMMUs can safely and efficiently allow virtualization-aware I/O devices to access the 
memory of a virtual machine directly, there are implications for some of the more sophisticated 
memory virtualization operations in modern hypervisors that rely upon dynamic page remapping. 
Consider features such as overcommitting memory, where the hypervisor can reclaim RAM via 
techniques such as demand-paging VM memory to secondary storage; memory compression; or 
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transparent memory sharing where identical pages can be de-duplicated by sharing them read-only 
between multiple virtual machines. These features require that certain accesses to VM memory 
take faults and invoke hypervisor actions before they are allowed to proceed. DMA devices need 
to respect this, and hence the devices need to support something similar to page faults on DMA 
operations where the hypervisor is invoked before the DMA is permitted to finish. The ability to 
tolerate arbitrary delays on DMA operations can have a much deeper impact on the changes needed 
to make an I/O device virtualization-aware. 

While production hypervisors employ hardware IOMMUs and other hardware-enforced memory-
mapping techniques to guarantee isolation between VMs, they have not yet included IOMMUs in 
the virtual hardware presented to VMs. A vIOMMU (virtual IOMMU) would allow a guest operating 
system to defend against its own buggy device drivers, as in a native system. 

Recently, researchers have developed new IOMMU emulation techniques for efficiently providing 
vIOMMUs to guests. Even more significantly, the same approach facilitates a more flexible form of 
device pass-through, where a VM is allowed to interact with a directly-assigned I/O device without 
hypervisor intervention. Since the guest exposes which regions of its memory are currently involved 
in DMA operations to the vIOMMU, the hypervisor is able to modify mappings for other memory 
regions safely. By interposing only on vIOMMU operations, it is possible to achieve near-native I/O 
performance while preserving the hypervisor’s ability to manage, remap, and overcommit memory. 

 
CONCLUSIONS
Decoupling a logical device from its physical implementation offers many compelling advantages. 
A single physical device can be multiplexed, allowing it to act as many virtual devices, improving 
hardware utilization. Abstracting away details about specific hardware and physical location makes 
seamless migration possible. The level of indirection between virtual and physical also provides a 
convenient hook for interposing on I/O operations transparently, enabling new capabilities such as 
replication, load balancing, encryption, and security checks.

A key challenge in I/O virtualization is achieving these benefits with minimal overhead. A 
number of clever software and hardware approaches have been devised to achieve high-performance 
indirection and interposition, including paravirtualization and virtualization-aware devices. 
Resource-management issues, such as scheduling and prioritization, become important when device 
multiplexing is used to consolidate different workloads onto the same physical hardware. Defining 
clean interfaces and appropriate semantics for virtual devices is also challenging.

I/O virtualization remains an active area of research and development in both academia and 
industry. Although we focused here on systems issues from the perspective of an individual 
physical machine, the broader context of I/O virtualization includes an enormous range of work 
on distributed systems and the fabrics that connect their virtual and physical components. The 
increasing prevalence and commercial success of systems based on virtual machines is certain to fuel 
demand for new virtualization optimizations and I/O capabilities. 
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