
12
Bringing Virtualization to the x86 Architecture with the Original
VMware Workstation

EDOUARD BUGNION, Stanford University
SCOTT DEVINE, VMware Inc.
MENDEL ROSENBLUM, Stanford University
JEREMY SUGERMAN, Talaria Technologies, Inc.
EDWARD Y. WANG, Cumulus Networks, Inc.

This article describes the historical context, technical challenges, and main implementation techniques used
by VMware Workstation to bring virtualization to the x86 architecture in 1999. Although virtual machine
monitors (VMMs) had been around for decades, they were traditionally designed as part of monolithic,
single-vendor architectures with explicit support for virtualization. In contrast, the x86 architecture lacked
virtualization support, and the industry around it had disaggregated into an ecosystem, with different ven-
dors controlling the computers, CPUs, peripherals, operating systems, and applications, none of them asking
for virtualization. We chose to build our solution independently of these vendors.

As a result, VMware Workstation had to deal with new challenges associated with (i) the lack of virtual-
ization support in the x86 architecture, (ii) the daunting complexity of the architecture itself, (iii) the need
to support a broad combination of peripherals, and (iv) the need to offer a simple user experience within
existing environments. These new challenges led us to a novel combination of well-known virtualization
techniques, techniques from other domains, and new techniques.

VMware Workstation combined a hosted architecture with a VMM. The hosted architecture enabled a
simple user experience and offered broad hardware compatibility. Rather than exposing I/O diversity to
the virtual machines, VMware Workstation also relied on software emulation of I/O devices. The VMM
combined a trap-and-emulate direct execution engine with a system-level dynamic binary translator to ef-
ficiently virtualize the x86 architecture and support most commodity operating systems. By relying on x86
hardware segmentation as a protection mechanism, the binary translator could execute translated code at
near hardware speeds. The binary translator also relied on partial evaluation and adaptive retranslation to
reduce the overall overheads of virtualization.

Written with the benefit of hindsight, this article shares the key lessons we learned from building the
original system and from its later evolution.

Categories and Subject Descriptors: C.0 [General]: Hardware/software interface, virtualization; C.1.0
[Processor Architectures]: General; D.4.6 [Operating Systems]: Security and Protection; D.4.7
[Operating Systems]: Organization and Design

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Virtualization, virtual machine monitors, VMM, hypervisors, dynamic
binary translation, x86

Together with Diane Greene, the authors co-founded VMware, Inc. in 1998.
Authors’ addresses: E. Bugnion, School of Computer and Communication Sciences, EPFL, CH-1015
Lausanne, Switzerland; S. Devine, VMware, Inc., 3401 Hillview Avenue, Palo Alto, CA 94304; M.
Rosenblum, Computer Science Department, Stanford University, Stanford, CA 94305; J. Sugerman, Talaria
Technologies, Inc.; E. Y. Wang, Cumulus Networks, Inc.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0734-2071/2012/11-ART12 $15.00

DOI 10.1145/2382553.2382554 http://doi.acm.org/10.1145/2382553.2382554

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:2 E. Bugnion et al.

ACM Reference Format:
Bugnion, E., Devine, S., Rosenblum, M., Sugerman, J., and Wang, E. Y. 2012. Bringing virtualization to
the x86 architecture with the original VMware Workstation. ACM Trans. Comput. Syst. 30, 4, Article 12
(November 2012), 51 pages.
DOI = 10.1145/2382553.2382554 http://doi.acm.org/10.1145/2382553.2382554

1. INTRODUCTION
We started VMware in 1998 with the goal of bringing virtualization to the x86
architecture and the personal computer industry. VMware’s first product—VMware
Workstation—was the first virtualization solution available for 32-bit, x86-based
platforms. The subsequent adoption of virtualization had a profound impact on the
industry. In 2009, the ACM awarded the authors the ACM Software System Award
for VMware Workstation 1.0 for Linux. Receiving that award prompted us to step
back and revisit, with the benefit of hindsight, the technical challenges in bringing
virtualization to the x86 architecture.1

The concept of using virtual machines was popular in the 1960s and 1970s in
both the computing industry and academic research. In these early days of comput-
ing, virtual machine monitors (VMMs) allowed multiple users, each running their
own single-user operating system instance, to share the same costly mainframe
hardware [Goldberg 1974]. Virtual machines lost popularity with the increased
sophistication of multi-user operating systems, the rapid drop in hardware cost, and
the corresponding proliferation of computers. By the 1980s, the industry had lost
interest in virtualization and new computer architectures developed in the 1980s and
1990s did not include the necessary architectural support for virtualization.

In our research work on system software for scalable multiprocessors, we discov-
ered that using virtual machine monitors could solve, simply and elegantly, a number
of hard system software problems by innovating in a layer below existing operating
systems. The key observation from our Disco work [Bugnion et al. 1997] was that,
while the high complexity of modern operating systems made innovation difficult, the
relative simplicity of a virtual machine monitor and its position in the software stack
provided a powerful foothold to address limitations of operating systems.

In starting VMware, our vision was that a virtualization layer could be useful on
commodity platforms built from x86 CPUs and primarily running the Microsoft Win-
dows operating systems (a.k.a. the WinTel platform). The benefits of virtualization
could help address some of the known limitations of the WinTel platform, such as
application interoperability, operating system migration, reliability, and security. In
addition, virtualization could easily enable the co-existence of operating system alter-
natives, in particular Linux.

Although there existed decades’ worth of research and commercial development of
virtualization technology on mainframes, the x86 computing environment was suffi-
ciently different that new approaches were necessary. Unlike the vertical integration
of mainframes where the processor, platform, VMM, operating systems, and often the
key applications were all developed by the same vendor as part of a single architec-
ture [Creasy 1981], the x86 industry had a disaggregated structure. Different com-
panies independently developed x86 processors, computers, operating systems, and
applications. For the x86 platform, virtualization would need to be inserted without
changing either the existing hardware or the existing software of the platform.

1In this article, the term x86 refers to the 32-bit architecture and corresponding products from Intel and
AMD that existed in that era. It specifically does not encompass the later extensions that provided 64-bit
support (Intel IA32-E and AMD x86-64) or hardware support for virtualization (Intel VT-x and AMD-v).

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:3

As a result, VMware Workstation differed from classic virtual machine monitors
that were designed as part of monolithic, single-vendor architectures with explicit sup-
port for virtualization. Instead, VMware Workstation was designed for the x86 archi-
tecture and the industry built around it. VMware Workstation addressed these new
challenges by combining well-known virtualization techniques, techniques from other
domains, and new techniques into a single solution.

To allow virtualization to be inserted into existing systems, VMware Workstation
combined a hosted architecture with a virtual machine monitor (VMM). The hosted
architecture enabled a simple user experience and offered broad hardware compatibil-
ity. The architecture enabled, with minimal interference, the system-level co-residency
of a host operating system and a VMM. Rather than exposing the x86 platform’s I/O
diversity to the virtual machines, VMware Workstation relied on software emulation
of canonically chosen I/O devices, thereby also enabling the hardware-independent en-
capsulation of virtual machines.

The VMware VMM compensated for the lack of architectural support for virtual-
ization by combining a trap-and-emulate direct execution engine with a system-level
binary translator to efficiently virtualize the x86 architecture and support most com-
modity operating systems. The VMM used segmentation as a protection mechanism,
allowing its binary translated code to execute at near hardware speeds. The VMM also
employed adaptive binary translation to greatly reduce the overhead of virtualizing in-
memory x86 data structures.

The rest of this article is organized as follows: we start with the statement of the
problem and associated challenges in Section 2, followed by an overview of the solution
and key contributions in Section 3. After a brief technical primer on the x86 architec-
ture in Section 4, we then describe the key technical challenges of that architecture in
Section 5. Section 6 covers the design and implementation of VMware Workstation,
with a focus on the hosted architecture (Section 6.1), the VMM (Section 6.2), and its
dynamic binary translator (Section 6.3). In Section 7, we evaluate the system, includ-
ing its level of compatibility and performance. In Section 8, we discuss lessons learned
during the development process. In Section 9, we describe briefly how the system has
evolved from its original version, in particular as the result of hardware trends. We
discuss related approaches and systems in Section 10 and conclude in Section 11.

2. CHALLENGES IN BRINGING VIRTUALIZATION TO THE X86 ARCHITECTURE
Virtual machine monitors (VMMs) apply the well-known principle of adding a level of
indirection to the domain of computer hardware. VMMs operate directly on the real
(physical) hardware, interposing between it and a guest operating system. They pro-
vide the abstraction of virtual machines: multiple copies of the underlying hardware,
each running an independent operating system instance [Popek and Goldberg 1974].

A virtual machine is taken to be an efficient, isolated duplicate of the real
machine. We explain these notions through the idea of a virtual machine
monitor (VMM). As a piece of software a VMM has three essential char-
acteristics. First, the VMM provides an environment for programs that is
essentially identical with the original machine; second, programs run in
this environment show at worst only minor decreases in speed; and last, the
VMM is in complete control of system resources.

At VMware, we adapted these three core attributes of a virtual machine to x86-based
target platform as the following.

— Compatibility. The notion of an essentially identical environment meant that any
x86 operating system, and all of its applications, would be able to run without

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:4 E. Bugnion et al.

modifications as a virtual machine. A VMM needed to provide sufficient compati-
bility at the hardware level such that users could run whichever operating system,
down to the update and patch version, they wished to install within a particular
virtual machine, without restrictions.

— Performance. We believed that minor decreases in speed meant sufficiently low
VMM overheads that users could use a virtual machine as their primary work
environment. As a design goal, we aimed to run relevant workloads at near native
speeds, and in the worst case to run them on then-current processor with the same
performance as if they were running natively on the immediately prior generation
of processors. This was based on the observation that most x86 software wasn’t
designed to only run on the latest generation of CPUs.

— Isolation. A VMM had to guarantee the isolation of the virtual machine without
making any assumptions about the software running inside. That is, a VMM needed
to be in complete control of resources. Software running inside virtual machines
had to be prevented from any access that would allow it to modify or subvert its
VMM. Similarly, a VMM had to ensure the privacy of all data not belonging to the
virtual machine. A VMM had to assume that the guest operating system could be
infected with unknown, malicious code (a much bigger concern today than during
the mainframe era).

There was an inevitable tension between these three requirements. For example,
total compatibility in certain areas might lead to a prohibitive impact on performance,
in which case we would compromise. However, we ruled out any tradeoffs that might
compromise isolation or expose the VMM to attacks by a malicious guest. Overall, we
identified four major challenges to building a VMM for the x86 architecture.

(1) The x86 architecture was not virtualizable. It contained virtualization-sensitive,
unprivileged instructions, which violated the Popek and Goldberg [1974] criteria
for strict virtualization. This ruled out the traditional trap-and-emulate approach
to virtualization. Indeed, engineers from Intel Corporation were convinced their
processors could not be virtualized in any practical sense [Gelsinger 1998].

(2) The x86 architecture was of daunting complexity. The x86 architecture was a no-
toriously big CISC architecture, including legacy support for multiple decades of
backwards compatibility. Over the years, it had introduced four main modes of
operations (real, protected, v8086, and system management), each of which en-
abled in different ways the hardware’s segmentation model, paging mechanisms,
protection rings, and security features (such as call gates).

(3) x86 machines had diverse peripherals. Although there were only two major x86 pro-
cessor vendors, the personal computers of the time could contain an enormous vari-
ety of add-in cards and devices, each with their own vendor-specific device drivers.
Virtualizing all these peripherals was intractable. This had dual implications: it
applied to both the front-end (the virtual hardware exposed in the virtual ma-
chines) and the back-end (the real hardware the VMM needed to be able to control)
of peripherals.

(4) Need for a simple user experience. Classic VMMs were installed in the factory. We
needed to add our VMM to existing systems, which forced us to consider software
delivery options and a user experience that encouraged simple user adoption.

3. SOLUTION OVERVIEW
This section describes at a high level how VMware Workstation addressed the chal-
lenges mentioned in the previous section. Section 3.1 covers the nonvirtualizability of
the x86 architecture. Section 3.2 describes the guest operating system-strategy used

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:5

throughout the development phase, which was instrumental in helping mitigate the
deep complexity of the architecture. Section 3.3 describes the virtual hardware plat-
form, which addresses one half of the peripheral diversity challenge. Section 3.4 de-
scribes the role of the host operating system in VMware Workstation, which addresses
the second half of peripheral diversity, as well as the user experience challenge.

3.1. Virtualizing the x86 Architecture
A VMM built for a virtualizable architecture uses a technique known as trap-and-
emulate to execute the virtual machine’s instruction sequence directly, but safely, on
the hardware. When this is not possible, one approach, which we used in Disco, is
to specify a virtualizable subset of the processor architecture, and port the guest op-
erating systems to that newly defined platform. This technique is known as paravir-
tualization [Barham et al. 2003; Whitaker et al. 2002] and requires source-code level
modifications of the operating system. Paravirtualization was infeasible at VMware
because of the compatibility requirement, and the need to run operating systems that
we could not modify.

An alternative would have been to employ an all emulation approach. Our expe-
rience with the SimOS [Rosenblum et al. 1997] machine simulator showed that the
use of techniques such as dynamic binary translation running in a user-level program
could limit overheads of complete emulation to a factor of 5 slowdown. While that was
fast for a machine simulation environment, it was clearly inadequate for our perfor-
mance requirements.

Our solution to this problem combined two key insights. First, although trap-and-
emulate direct execution could not be used to virtualize the entire x86 architecture, it
could actually be used some of the time. And in particular, it could be used during the
execution of application programs, which accounted for most of the execution time on
relevant workloads. As a fallback, dynamic binary translation would be used to exe-
cute just the system software. The second key insight was that by properly configuring
the hardware, particularly using the x86 segment protection mechanisms carefully,
system code under dynamic binary translation could also run at near-native speeds.

Section 6.2 describes the detailed design and implementation of this hybrid direct
execution and binary translation solution, including an algorithm that determines
when dynamic binary translation is necessary, and when direct execution is possible.
Section 6.3 describes the design and implementation of the dynamic binary translator.

3.2. A Guest Operating System-Centric Strategy
The idea behind virtualization is to make the virtual machine interface identical to the
hardware interface so that all software that runs on the hardware will also run in a
virtual machine. Unfortunately, the description of the x86 architecture, publicly avail-
able as the Intel Architecture Manual [Intel Corporation 2010], was at once baroquely
detailed and woefully imprecise for our purpose. For example, the formal specifica-
tion of a single instruction could easily exceed 8 pages of pseudocode while omitting
crucial details necessary for correct virtualization. We quickly realized that attempt-
ing to implement the entire processor manual was not the appropriate bootstrapping
strategy.

Instead, we chose a list of key guest operating systems to support and worked
through them, initially one at a time. We started with a minimal set of features and
progressively enhanced the completeness of the solution, while always preserving the
correctness of the supported feature set. Practically speaking, we made very restrictive
assumptions on how the processor’s privileged state could be configured by the guest

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:6 E. Bugnion et al.

operating system. Any attempt to enter into an unsupported combination of privileged
state would cause the virtual machine to stop executing.

We started with Linux for our first guest operating system. This turned out to be
mostly straightforward as Linux was designed for portability across multiple proces-
sors, we were familiar with its internals, and of course had access to the source code.
At that point, the system, although early in development, already could run Linux effi-
cient in an isolated virtual machine. Of course, we had only encountered, and therefore
implemented, a tiny fraction of the possible architectural combinations.

After Linux, we tackled Windows 95, the most popular desktop operating system of
the time. That turned out to be much more difficult. Windows 95 makes extensive use
of a combination of 16-bit and 32-bit protected mode, can run MS-DOS applications
using the processor’s v8086 mode, occasionally drops into real mode, makes numer-
ous BIOS calls, and makes extensive and complex use of segmentation, and manip-
ulates segment descriptor tables extensively [King 1995]. Unlike Linux, we had no
access to the Windows 95 source code and, quite frankly, did not fully understand
its overall design. Building support for Windows 95 forced us to greatly expand the
scope of our efforts, including developing an extensive debugging and logging frame-
work and diving into numerous arcane elements of technology. For the first time,
we also had to deal with ambiguous or undocumented features of the x86 architec-
ture, upon whose correct emulation Windows 95 depended. Along the way, we also
ensured that MS-DOS and its various extensions could run effectively in a virtual
machine.

Next, we focused on Windows NT [Custer 1993], an operating system aimed at en-
terprise customers. Once again, this new operating system configured the hardware
differently, in particular in the layout of its linear address space. We had to further
increase our coverage of the architecture to get Windows NT to boot, and develop new
mechanisms to get acceptable performance.

This illustrates the critical importance of prioritizing the guest operating systems
to support. Although our VMM did not depend on any internal semantics or inter-
faces of its guest operating systems, it depended heavily on understanding the ways
they configured the hardware. Case-in-point: we considered supporting OS/2, a legacy
operating system from IBM. However, OS/2 made extensive use of many features of
the x86 architecture that we never encountered with other guest operating systems.
Furthermore, the way in which these features were used made it particularly hard
to virtualize. Ultimately, although we invested a significant amount of time in OS/2-
specific optimizations, we ended up abandoning the effort.

3.3. The Virtual Hardware Platform
The diversity of I/O peripherals in x86 personal computers made it impossible to
match the virtual hardware to the real, underlying hardware. Whereas there were
only a handful of x86 processor models in the market, with only minor variations in
instruction-set level capabilities, there were hundreds of I/O devices most of which had
no publically available documentation of their interface or functionality. Our key in-
sight was to not attempt to have the virtual hardware match the specific underlying
hardware, but instead have it always match some configuration composed of selected,
canonical I/O devices. Guest operating systems then used their own existing, built-in
mechanisms to detect and operate these (virtual) devices.

The virtualization platform consisted of a combination of multiplexed and emulated
components. Multiplexing meant configuring the hardware so it can be directly used
by the virtual machine, and shared (in space or time) across multiple virtual machines.
Emulation meant exporting a software simulation of the selected, canonical hardware

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:7

Table I. Virtual Hardware Configuration Options of VMware Workstation 2.0

Virtual Hardware (front-end) Back-end
M

ul
ti

pl
ex

ed 1 virtual x86 CPU, with the same
instruction set extensions as the underlying
hardware CPU

Scheduled by the host operating system on either a
uniprocessor or multiprocessor host

Up to 512MB of contiguous DRAM (user
configurable)

Allocated and managed by the host OS
(page-by-page)

E
m

ul
at

ed

PCI Bus Fully emulated compliant PCI bus with B/D/F
addressing for all virtual motherboard and slot
devices

4x 4IDE disks Virtual disks (stored as files) or direct access to a
given raw device7x Buslogic SCSI Disks

1x IDE CD-ROM ISO image or emulated access to the real CD-ROM
2x 1.44MB floppy drives Physical floppy or floppy image
1x VMware graphics card with VGA and
SVGA support

Ran in a window and in full-screen mode. SVGA
required VMware SVGA guest driver

2x serial ports COM1 and COM2 Connect to Host serial port or a file
1x printer (LPT) Can connect to host LPT port
1x keyboard (104-key) Fully emulated; keycode events are generated when

they are received by the VMware application
1x PS-2 mouse Same as keyboard
3x AMD PCnet Ethernet cards (Lance
Am79C970A)

Bridge mode and host-only modes

1x Soundblaster 16b Fully emulated

component to the virtual machine. Table I shows that we used multiplexing for pro-
cessor and memory and emulation for everything else.

For the multiplexed hardware, each virtual machine had the illusion of having one
dedicated CPU2 and a fixed amount of contiguous RAM starting at physical address 0.
The amount was configurable, up to 512MB in VMware Workstation 2.

Architecturally, the emulation of each virtual device was split between a front-end
component, which was visible to the virtual machine, and a backend component, which
interacted with the host operating system [Waldspurger and Rosenblum 2012]. The
front-end was essentially a software model of the hardware device that could be con-
trolled by unmodified device drivers running inside the virtual machine. Regardless of
the specific corresponding physical hardware on the host, the front-end always exposed
the same device model.

This approach provided VMware virtual machines with an additional key attribute:
hardware-independent encapsulation. Since devices were emulated and the processor
was under the full control of the VMM, the VMM could at all times enumerate the
entire state of the virtual machine, and resume execution even on a machine with
a totally different set of hardware peripherals. This enabled subsequent innovations
such as suspend/resume, checkpointing, and the transparent migration of live virtual
machines across physical boundaries [Nelson et al. 2005].

For example, the first Ethernet device front-end was the AMD PCnet “lance”, once
a popular 10Mbit NIC [AMD Corporation 1998], and the backend provided network
connectivity at layer-2 to either the host’s physical network (with the host acting as
a bridge), or to a software network connected to only the host and other VMs on the
same host. Ironically, VMware kept supporting the PCnet device long after physical

2Throughout the article, the term CPU always refers to a (32-bit) hardware thread of control, and never to
a distinct core or socket of silicon.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:8 E. Bugnion et al.

PCnet NICs had been obsoleted, and actually achieved I/O that was orders of mag-
nitude faster than 10Mbit [Sugerman et al. 2001]. For storage devices, the original
front-ends were an IDE controller and a Buslogic Controller, and the backend was
typically either a file in the host filesystem, such as a virtual disk or an ISO 9660 im-
age [International Standards Organization 1988], or a raw resource such as a drive
partition or the physical CD-ROM.

We chose the various emulated devices for the platform as follows: first, many
devices were mandatory to run the BIOS, and then install and boot the commercial
operating systems of the time. This was the case for the various software-visible
components on a computer motherboard of the time, such as PS/2 keyboard and
mouse, VGA graphics card, IDE disks and PCI root complex, for which the operating
systems of the era had built in, non-modular device drivers.

For more advanced devices, often found on PCI expansion cards such as network
interfaces or disk controllers, we tried to chooses one representative device within its
class that had broad operating system support with existing drivers, and for which we
had access to acceptable documentation. We took that approach to initially support one
SCSI disk controller (Buslogic), one Ethernet NIC (PCnet), and a sound card (Creative
Labs’ 16-bit Soundblaster card).

In a few cases, we invented our own devices when necessary, which also required us
to write and ship the corresponding device driver to run within the guest. For example,
graphics adapters tended to be very proprietary, lacking in any public programming
documentation, and highly complex. Instead, we designed our own virtual SVGA card.
Later, VMware engineers applied the same approach to improve networking and stor-
age performance, and implemented higher-performance paravirtualized devices, plus
custom drivers, as an alternative to the fully emulated devices (driven by drivers in-
cluded in the guest operating system).

New device classes were added in subsequent versions of the product, most notably
broad support for USB. With time, we also added new emulated devices of the existing
classes as PC hardware evolved, for example, the Intel e1000 NIC, es1371 PCI sound
card, LSIlogic SCSI disk controller, etc.

Finally, every computer needs some platform-specific firmware to first initialize the
hardware, then load system software from the hard disk, CDROM, floppy, or the net-
work. On x86 platforms, the BIOS [Compaq, Phoenix, Intel 1996] performs this role, as
well as substantial run-time support, for example, to print on the screen, to read from
disk, to discover hardware, or to configure the platform via ACPI. When a VMware
virtual machine was first initialized, the VMM loaded into the virtual machine’s ROM
a copy of the VMware BIOS.

Rather than writing our own BIOS, VMware Inc. licensed a proven one from
Phoenix Technologies, and acted as if it were a motherboard manufacturer: we cus-
tomized the BIOS for the particular combination of chipset components emulated by
VMware Workstation. This full-featured BIOS played a critical role in allowing the
broadest support of guest operating systems, including legacy operating systems such
as MS-DOS and Windows 95/98 that relied heavily on the BIOS.

3.4. The Role of the Host Operating System
We developed the VMware Hosted Architecture to allow virtualization to be inserted
into existing systems. It consisted of packaging VMware Workstation to feel like a nor-
mal application to a user, and yet still have direct access to the hardware to multiplex
CPU and memory resources.

Like any application, the VMware Workstation installer simply writes its com-
ponent files onto an existing host file system, without perturbing the hardware

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:9

configuration (no reformatting of a disk, creating of a disk partition, or changing of
BIOS settings). In fact, VMware Workstation could be installed and start running
virtual machines without requiring even rebooting the host operating system, at least
on Linux hosts.

Running on top of a host operating system provided a key solution to the back-end
aspect of the I/O device diversity challenge. Whereas there was no practical way to
build a VMM that could talk to every I/O devices in a system, an existing host operat-
ing system could already, using its own device drivers. Rather than accessing physical
devices directly, VMware Workstation backed its emulated devices with standard sys-
tem calls to the host operating system. For example, it would read or write a file in the
host file system to emulate a virtual disk device, or draw in a window of the host’s desk-
top to emulate a video card. As long as the host operating system had the appropriate
drivers, VMware Workstation could run virtual machines on top of it.

However, a normal application does not have the necessary hooks and APIs for a
VMM to multiplex the CPU and memory resources. As a result, VMware Workstation
only appears to run on top of an existing operating system when in fact its VMM can
operate at system level, in full control of the hardware. Section 6.1 describes how the
architecture enabled (i) both host operating system and the VMM to coexist simultane-
ously at system level without interfering with each other, and (ii) VMware Workstation
to use the host operating system for the backend I/O emulation.

Running as a normal application had a number of user experience advantages.
VMware Workstation relied on the host graphical user interface so that the content of
each virtual machine’s screen would naturally appear within a distinct window. Each
virtual machine instance ran as a process on the host operating system, which could
be independently started, monitored, controlled, and terminated. The host operating
system managed the global resources of the system: CPU, memory and I/O. By sep-
arating the virtualization layer from the global resource management layer, VMware
Workstation follows the type II model of virtualization [Goldberg 1972].

4. A PRIMER ON THE X86 PERSONAL COMPUTER ARCHITECTURE
This section provides some background on the x86 architecture necessary to appreci-
ate the technical challenges associated with its virtualization. Readers familiar with
the architecture can skip to Section 5. For a complete reference on the x86 system
architecture, see the ISA reference and OS writer’s guide manuals from AMD or In-
tel [Intel Corporation 2010]. As in the rest of the article, we refer to x86 architecture
as Intel and AMD defined it before the introduction of 64-bit extensions or of hardware
virtualization support.3

The x86 architecture is a complex instruction set computing (CISC) architecture
with six 32-bit, general-purpose registers (%eax, %ebx, %ecx, %edx, %esp, %ebp).
Each register can also be used as a 16-bit register (e.g., %ax), or even as an 8-bit regis-
ter (e.g., %ah). In addition, the architecture has six segment registers (%cs, %ss, %ds,
%es, %fs, %gs). Each segment register has a visible portion, the selector, and a hid-
den portion. The visible portion can be read or written to by software running at any
privilege level. As the name implies, the hidden portion is not directly accessible by
software. Instead, writing to a segment register via its selector populates the corre-
sponding hidden portion, with specific and distinct semantics depending on the mode
of the processor.

3As the 32-bit x86 is still available today in shipping processors, we use the present tense when describing
elements of the x86 architecture, and the past tense when describing the original VMware Workstation.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:10 E. Bugnion et al.

Fig. 1. Segmentation and paging in x86 protected mode, with two illustrative examples: (i) the assignment
of %ds with the value idx updates both the segment selector (with idx) and the hidden portion of the segment
(with the parameters loaded from the descriptor table at index idx); and (ii) the relocation of a virtual
address that consists of %ds and an effective address into a linear address (through segmentation) and then
a physical address (through paging).

The six segment registers each define a distinct virtual address space, which maps
onto a single, 32-bit linear address space. Each virtual address space can use ei-
ther 16-bit or 32-bit addresses, has a base linear address, a length, and additional
attributes.

Instructions nearly always use virtual addresses that are a combination of a seg-
ment and an effective address (e.g., %ds:Effective Address in Figure 1). By default,
the six segments are used implicitly as follows: the instruction pointer %eip is an ad-
dress within the code segment %cs. Stack operations such as push and pop, as well
as memory references using the stack pointer %esp or base pointer register %ebp, use
the stack segment %ss. Other memory references use the data segment %ds. String
operations additionally use the extra segment %es. An instruction prefix can override
the default segment with any of the other segments, including %fs and %gs.

4.1. Segmentation in Protected Mode
In protected mode (the native mode of the CPU), the x86 architecture supports the
atypical combination of segmentation and paging mechanisms, each programmed into
the hardware via data structures stored in memory. Figure 1 illustrates these con-
trolling structures as well as the address spaces that they define. When a selector
of a segment register is assigned in protected mode (e.g., mov idx→ %ds in Figure 1)
the CPU additionally interprets the segment selector idx as an index into one of the
two segment descriptor tables (the global and the local descriptor table), whose loca-
tions are stored in privileged registers of the CPU. The CPU automatically copies the
descriptor entry into the corresponding hidden registers.

Although applications can freely assign segments during their execution, system
software can use segmentation as a protection mechanism as long as it can prevent
applications from directly modifying the content of the global and local descriptor ta-
bles, typically by using page-based protection to prevent applications from modifying
the tables. In addition, the hardware contains a useful mechanism to restrict segment
assignment: each descriptor has a privilege level field (dpl), which restricts whether
assignment is even possible based on the current privilege level of the CPU.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:11

4.2. Paging
At any given time, each x86 CPU has a single linear address space, which spans the
full addressable 32-bit range. Paging controls the mapping from linear addresses onto
physical memory on a page-by-page basis.

The x86 architecture supports hardware page tables. The control register %cr3
determines the root of a 2-level page table structure for a standard 32-bit physical ad-
dress space (shown in Figure 1) or a 3-level page table structure for a 36-bit extended
physical address space (PAE mode, not shown in the figure). The first-level page
contains page descriptor entries (pde) and the second-level page contains page table
entries (pte). The format of the page table structure is defined by the architecture,
and accessed directly by the CPU. Page table accesses occur when a linear address
reference triggers a miss in the translation-lookaside buffer (TLB) of the CPU.

4.3. Modes, Rings, and Flags
In addition to paging and segmentation, the 32-bit x86 architecture has a rich complex-
ity resulting from its multi-decade legacy. For example, the system state of the CPU
is distributed in a combination of control registers (%cr0..%cr4), privileged registers
(%idtr, %gdtr) and privileged parts of the %eflags register such as %eflags.v8086,
%eflags.if, and %eflags.iopl.

The x86 CPU has four formal operating modes: protected mode, v8086 mode, real
mode, and system management mode. The CPU is in protected mode when %cr0.pe=1.
Only protected mode uses the segment descriptor tables; the other modes are also
segmented, but directly convert the selector into the base, by multiplying it by 16.
As for the non-native modes: v8086 mode (when %cr0.pe=1 and %eflags.v8086=1) is
a 16-bit mode that can virtualize the 16-bit Intel 8086 architecture. It uses paging to
convert linear addresses into physical addresses. Real mode is used by the BIOS at
reset and by some operating systems, and runs directly from physical memory (i.e., it
is not paged). In real mode, segment limits remain unmodified even in the presence
of segment assignments; real mode can run with segment limits larger than 64KB,
which is sometimes referred to as big real mode or unreal mode. System management
is similar to real mode, but has unbounded segment limits. The BIOS uses system
management mode to deliver features such as ACPI.

In protected mode, the architecture defines four protection rings (or levels): the
bottom two bits of %cs defines the current privilege level of the CPU (%cs.cpl,
shortened to %cpl). Privileged instructions are only allowed at %cpl=0. Instructions
at %cpl=3 can only access pages in the linear address space whose page tables entries
specify pte.us=1 (i.e., userspace access is allowed). Instructions at %cpl=0 through
%cpl=2 can access the entire linear address space permitted by segmentation (as long
as the page table mapping is valid).

The architecture has a single register (%eflags) that contains both condition codes
and control flags, and can be assigned by instructions such as popf. However, some
of the flags can be set only on certain conditions. For example, the interrupt flag
(%eflags.if) changes only when %cpl≤%eflags.iopl.

4.4. I/O and Interrupts
The architecture has one interrupt descriptor table. This table contains the entry
points of all exception and interrupt handlers, that is, it specifies the code segment,
instruction pointer, stack segment, and stack pointer for each handler. The same inter-
rupt table is used for both processor faults (e.g., a page fault) and external interrupts.

The processor interacts with I/O devices through a combination of programmed I/O
and DMA. I/O ports may be memory mapped or mapped into a separate 16-bit I/O

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:12 E. Bugnion et al.

Table II. List of Sensitive, Unprivileged x86 Instructions

Group Instructions
Access to interrupt flag pushf, popf, iret

Visibility into segment descriptors lar, verr, verw, lsl
Segment manipulation instructions pop <seg>, push <seg>, mov <seg>
Read-only access to privileged state sgdt, sldt, sidt, smsw

Interrupt and gate instructions fcall, longjump, retfar, str, int <n>

address space accessible by special instructions. Device interrupts, also called IRQs,
are routed to the processor by either of two mechanisms in the chipset (motherboard),
depending on OS configuration: a legacy interrupt controller called a PIC, or an
advanced controller called an I/O APIC in conjunction with a local APIC resident on
the CPU. IRQs can be delivered in two styles: edge or level. When edge-triggered,
the PIC/APIC raises a single interrupt as a device raises its interrupt line. When
level-triggered, the PIC/APIC may repeatedly reraise an interrupt until the initiating
device lowers its interrupt line.

5. SPECIFIC TECHNICAL CHALLENGES
This section provides technical details on the main challenges faced in the development
of VMware Workstation. We first present in Section 5.1 the well-known challenge of
x86’s sensitive, unprivileged instructions, which ruled out the possibility of building
a VMM using a trap-and-emulate approach. We then describe four other challenges
associated with the x86 architecture, each of which critically influenced our design.
Section 5.2 describes address space compression (and associated isolation), which re-
sulted from having a VMM (and in particular one with a dynamic binary translator)
and a virtual machine share the same linear address space. Given the x86 paging
and segmented architecture, virtualizing physical memory required us to find an ef-
ficient way to track changes in the memory of a virtual machine (Section 5.3). The
segmented nature of the x86 architecture forced us to face the specific challenge of vir-
tualizing segment descriptor tables (Section 5.4). The need to handle workloads that
made nontrivial use of the legacy modes of the CPU forced us to also consider how to
handle these modes of the CPU (Section 5.5). Finally, Section 5.6 describes a distinct
challenge largely orthogonal to the instruction set architecture: how to build a system
that combined the benefit of having a host operating system without the constraints of
that host operating system.

5.1. Handling Sensitive, Unprivileged Instructions
Popek and Goldberg [1974] demonstrated that a simple VMM based on trap-
and-emulate (direct execution) could be built only for architectures in which all
virtualization-sensitive instructions are also all privileged instructions. For architec-
tures that meet their criteria, a VMM simply runs virtual machine instructions in
de-privileged mode (i.e., never in the most privileged mode) and handles the traps that
result from the execution of privileged instructions. Table II lists the instructions of
the x86 architecture that unfortunately violated Popek and Goldberg’s rule and hence
made the x86 non-virtualizable [Robin and Irvine 2000].

The first group of instructions manipulates the interrupt flag (%eflags.if) when
executed in a privileged mode (%cpl≤%eflags.iopl) but leave the flag unchanged oth-
erwise. Unfortunately, operating systems used these instructions to alter the inter-
rupt state, and silently disregarding the interrupt flag would prevent a VMM using a
trap-and-emulate approach from correctly tracking the interrupt state of the virtual
machine.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:13

The second group of instructions provides visibility into segment descriptors in the
global or local descriptor table. For de-privileging and protection reasons, the VMM
needs to control the actual hardware segment descriptor tables. When running directly
in the virtual machine, these instructions would access the VMM’s tables (rather than
the ones managed by the operating system), thereby confusing the software.

The third group of instructions manipulates segment registers. This is problematic
since the privilege level of the processor is visible in the code segment register. For ex-
ample, push %cs copies the %cpl as the lower 2 bits of the word pushed onto the stack.
Software in a virtual machine that expected to run at %cpl=0 could have unexpected
behavior if push %cs were to be issued directly on the CPU.

The fourth group of instructions provides read-only access to privileged registers
such as %idtr. If executed directly, such instructions return the address of the VMM
structures, and not those specified by the virtual machine’s operating system. Intel
classifies these instructions as “only useful in operating-system software; however,
they can be used in application programs without causing an exception to be gen-
erated” [Intel Corporation 2010], an unfortunate design choice when considering
virtualization.

Finally, the x86 architecture has extensive support to allow controlled transitions
between various protection rings using interrupts or call gates. These instructions are
also subject to different behavior when de-privileging.

5.2. Address Space Compression
A VMM needs to be co-resident in memory with the virtual machine. For the x86, this
means that some portion of the linear address space of the CPU must be reserved for
the VMM. That reserved space must at a minimum include the required hardware data
structures such as the interrupt descriptor table and the global descriptor table, and
the corresponding software exception handlers. The term address space compression
refers to the challenges of a virtual machine and a VMM co-existing in the single linear
address space of the CPU.

Although modern operating system environment do not actively use the entire 32-
bit address space at any moment in time, the isolation criteria requires that the VMM
be protected from any accesses by the virtual machine (accidental or malicious) to
VMM memory. At the same time, the compatibility criteria means that accesses from
the virtual machine to addresses in this range must be emulated in some way.

The use of a dynamic binary translator adds another element to the problem: the
code running via dynamic binary translation will be executing a mix of virtual ma-
chine instructions (and their memory references) and additional instructions that in-
teract with the binary translator’s run-time environment itself (within the VMM). The
VMM must both enforce the isolation of the sandbox for virtual machine instructions,
and yet provide the additional instructions with a low-overhead access to the VMM
memory.

5.3. Tracking Changes in Virtual Machine Memory
When virtualizing memory, the classic VMM implementation technique is for the VMM
to keep “shadow” copies of the hardware memory-management data structures stored
in memory. The VMM must detect changes to these structures and apply them to the
shadow copy. Although this technique has long been used in classic VMMs, the x86
architecture, with its segment descriptor tables and multi-level page tables, presented
particular challenges because of the size of these structures and the way they were
used by modern operating systems.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:14 E. Bugnion et al.

In the x86 architecture, privileged hardware registers contain the address of seg-
ment descriptor tables (%gdtr) and page tables (%cr3), but regular load and store in-
structions can access these structures in memory. To correctly maintain the shadow
copy, a VMM must intercept and track changes made by these instructions. To make
matters more challenging, modern operating systems do not partition the memory
used for these structures from the rest of the memory.

These challenge led us to build a mechanism called memory tracing, described in
Section 6.2.2. As we will show, the implementation tradeoffs associated with memory
tracing turned out to be surprisingly complex; as a matter of fact, memory tracing
itself had a significant impact on the performance of later processors with built-in
virtualization support.

5.4. Virtualizing Segmentation
The specific semantics of x86 segments require a VMM to handle conditions outside
the scope of the standard shadowing approach. The architecture explicitly defines the
precise semantics on when to update the segment registers of a CPU [Intel Corporation
2010]: when a memory reference modifies an in-memory segment descriptor entry in
either the global or the local descriptor table the contents of the hidden portions are
not updated. Rather, the hidden portion is only refreshed when the (visible) segment
selector is written to, either by an instruction or as part of a fault. As a consequence of
this, the content of the hidden registers can only be inferred if the value in memory of
the corresponding entry has not been modified. We define a segment to be nonreversible
if the in-memory descriptor entry has changed as the hidden state of that segment can
no longer be determined by software.

This is not an esoteric issue. Rather, a number of legacy operating systems rely on
nonreversible semantics for their correct execution. These operating systems typically
run with nonreversible segments in portions of its code that do not cause traps and
run with interrupts disabled. They can therefore run indefinitely in that mode, and
rightfully assume that the hidden segment state is preserved. Unfortunately, addi-
tional traps and interrupts caused by a VMM breaks this assumption. Section 6.2.3
describes our solution to this challenge.

5.5. Virtualizing Non-Native Modes of the Processor
The many different execution modes of the x86 such as real mode and system manage-
ment mode presented a challenge for the virtualization layer, as they alter the execu-
tion semantics of the processor. For example, real mode is used by the BIOS firmware,
legacy environments such as DOS and Windows 3.1, as well as by the boot code and
installer programs of modern operating systems.

In addition, Intel introduced v8086 mode with the 80386 to run legacy 8086 code.
v8086 mode is used by systems such as MS-DOS (through EMM386), Windows 95/98
and Windows NT to run MS-DOS applications. Ironically, while v8086 mode actually
meets all of Goldberg and Popek’s criteria for strict virtualizeability (i.e., programs in
v8086 mode are virtualizable), it cannot be used to virtualize any real mode program
that takes advantage of 32-bit extensions, and/or interleaves real mode and protected
mode instruction sequences, patterns that are commonly used by the BIOS and MS-
DOS extenders such as XMS’s HIMEM.SYS [Chappell 1994]. Often, the purpose of the
protected mode sequence is to load segments in the CPU in big real mode.

Since v8086 mode is ruled out as a mechanism to virtualize either real mode or
system management mode, the challenge is to virtualize these legacy modes with the
hardware CPU in protected mode.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:15

5.6. Interference from the Host Operating System
VMware Workstation’s reliance on a host operating system solved many problems
stemming from I/O device diversity, but created another challenge: it was not possible
to run a VMM inside the process abstraction offered to applications by modern
operating systems such as Linux and Windows NT/2000. Both constrained application
programs to a small subset of the address space, and obviously prevented applications
from executing privileged instructions or directly manipulating hardware-defined
structures such as descriptor tables and page tables.

On the flip side, the host operating system expects to manage all I/O devices, for
example, by programming the interrupt controller and by handling all external inter-
rupts generated by I/O devices. Here as well, the VMM must cooperate to ensure that
the host operating system can perform its role, even though its device drivers might
not be in the VMM address space.

6. DESIGN AND IMPLEMENTATION
We now demonstrate that the x86 architecture, despite the challenges described in the
previous section, is actually virtualizable. VMware Workstation provides the existence
proof for our claim as it allowed unmodified commodity operating systems to run in
virtual machines with the necessary compatibility, efficiency and isolation.

We describe here three major technical contributions of VMware Workstation:
Section 6.1 describes the VMware hosted architecture and the world switch mech-
anism that allowed a VMM to run free of any interference from the host operating
system, and yet on top of that host operating system. Section 6.2 describes the VMM
itself. One critical aspect of our solution was the decision to combine the classic direct
execution subsystem with a low-overhead dynamic binary translator that could run
most instruction sequences at near-native hardware speeds. Specifically, the VMM
could automatically determine, at any point in time, whether the virtual machine
was in a state that allowed direct execution subsystem, or whether it required
dynamic binary translation. Section 6.3 describes the internals of the dynamic binary
translator, and in particular the design options that enabled it to run most virtual
machine instruction sequences at hardware speeds.

6.1. The VMware Hosted Architecture
From the user’s perspective, VMware Workstation ran like any regular application,
on top of an existing host operating system, with all of the benefits that this implies.
The first challenge was to build a virtual machine monitor that was invoked within an
operating system but could operate without any interference from it.

The VMware Hosted Architecture, first disclosed in Bugnion et al. [1998], allows
the co-existence of two independent system-level entities – the host operating system
and the VMM. It was introduced with VMware Workstation in 1999. Today, although
significant aspects of the implementation have evolved, the architecture is still the
fundamental building block of all of VMware’s hosted products.

In this approach, the host operating system rightfully assumes that it is in control
of the hardware resources at all times. However, the VMM actually does take control
of the hardware for some bounded amount of time during which the host operating
system is temporarily removed from virtual and linear memory. Our design allowed
for a single CPU to switch dynamically and efficiently between these two modes of
operation.

6.1.1. System Components. Figure 2 illustrates the concept of system-level co-
residency of the hosted architecture, as well as the key building blocks that imple-
mented it. At any point in time, each CPU could be either in the host operating system

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:16 E. Bugnion et al.

Fig. 2. The VMware Hosted Architecture. VMware Workstation consists of the three shaded components.
The figure is split vertically between host operating system context and VMM context, and horizontally
between system-level and user-level execution. The steps labeled (i)–(v) correspond to the execution that
follows an external interrupt that occurs while the CPU is executing in VMM context.

context – in which case the host operating system was fully in control – or in the VMM
context – where the VMM was fully in control. The transition between these two con-
texts was called the world switch.

The two contexts operated independently of each other, each with their own address
spaces, segment and interrupt descriptor tables, stacks, and execution contexts. For
example, the %idtr register defined a different set of interrupt handlers for each con-
text (as illustrated in the figure).

Each context ran both trusted code in its system space and untrusted code in user
space. In the operating system context, the classic separation of kernel vs. application
applied. In the VMM context, however, the VMM was part of the trusted code base, but
the entire virtual machine (including the guest operating system) is actually treated
as an untrusted piece of software.

Figure 2 illustrates other aspects of the design. Each virtual machine was controlled
by a distinct VMM instance and a distinct instance of a process of the host operating
system, labeled the VMX. This multi-instance design simplified the implementation
while supporting multiple concurrent virtual machines. As a consequence, the host
operating system was responsible for globally managing and scheduling resources be-
tween the various virtual machines and native applications.

Figure 2 also shows a kernel-resident driver. The driver implemented a set of opera-
tions, including locking physical memory pages, forwarding interrupts, and calling the
world switch primitive. As far as the host operating system was concerned, the device
driver was a standard loadable kernel module. But instead of driving some hardware
device, it drove the VMM and hid it entirely from the host operating system.

At virtual machine startup, the VMX opened the device node managed by the
kernel-resident driver. The resulting file descriptor was used in all subsequent interac-
tions between the VMX and the kernel-resident driver to specify the virtual machine.
In particular, the main loop of the VMX’s primary thread repeatedly issued ioctl(run)
to trigger a world switch to the VMM context and run the virtual machine. As a result,

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:17

the VMM and the VMX’s primary thread, despite operating in distinct contexts and
address spaces, jointly execute as co-routines within a single thread of control.

6.1.2. I/O and Interrupts. As a key principle of the co-resident design, the host operating
system needed to remain oblivious to the existence of the VMM, including in situations
where a device raises an interrupt. Since external physical interrupts were generated
by actual physical devices such as disks and NICs, they could interrupt the CPU while
it was running in either the host operating system context or the VMM context of
some virtual machine. The VMware software was totally oblivious to the handling of
external interrupts in the first case: the CPU transferred control to the handler as
specified by the host operating system via the interrupt descriptor table.

The second case was more complex. The interrupt could occur in any VMM context,
not necessarily for a virtual machine with pending I/O requests. Figure 2 illustrates
specifically the steps involved through the labels (i)–(v). In step (i), the CPU inter-
rupted the VMM and started the execution of the VMM’s external interrupt handler.
The handler did not interact with the virtual machine state, the hardware device or
even the interrupt controller. Rather, that interrupt handler immediately triggered a
world switch transition back to the host operating system context (ii). As part of the
world switch, the %idtr was restored back to point to the host operating system’s inter-
rupt table (iii). Then, the kernel-resident driver transitioned control to the interrupt
handler specified by the host operating system (iv). This was actually implemented
by simply issuing an int <vector> instruction, with <vector> corresponding to the
original external interrupt. The host operating system’s interrupt handler then ran
normally, as if the external I/O interrupt had occurred while the VMM driver were
processing an ioctl in the VMX process. The VMM driver then returned control back
to the VMX process at userlevel, thereby providing the host operating system with the
opportunity to make preemptive scheduling decisions (v).

Finally, in addition to illustrating the handling of physical interrupts, Figure 2 also
shows how the VMware Workstation issued I/O requests on behalf of virtual machines.
All such virtual I/O requests were performed using remote procedure calls [Birrell and
Nelson 1984] between the VMM and the VMX, which then made normal system calls
to the host operating system. To allow for overlapped execution of the virtual machine
with its own pending I/O requests, the VMX was organized as a collection of threads
(or processes depending on the implementation): the Emulator thread was dedicated
solely to the main loop that executed the virtual machine and emulated the device
front-ends as part of the processing of remote procedure calls. The other threads (AIO)
were responsible for the execution of all potentially blocking operations.

For example, in the case of a disk write, the Emulator thread decoded the SCSI or
IDE write command, selected an AIO thread for processing, and resumed execution of
the virtual machine without waiting for I/O completion. The AIO thread in turn issued
the necessary system calls to write to the virtual disk. After the operation completed,
the Emulator raised the virtual machine’s virtual interrupt line. That last step en-
sured that the VMM would next emulate an I/O interrupt within the virtual machine,
causing the guest operating system’s corresponding interrupt handler to execute to
process the completion of the disk write.

6.1.3. The World Switch. The world switch depicted in Figure 2 is the low-level
mechanism that frees the VMM from any interference from the host operating system,
and vice-versa. Similar to a traditional context switch, which provides the low-level
operating system mechanism that loads the context of a process, the world switch is
the low-level VMM mechanism that loads and executes a virtual machine context,
as well as the reverse mechanism that restores the host operating system context.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:18 E. Bugnion et al.

Fig. 3. Virtual and linear address spaces during a world switch.

Although subtle in a number of ways, the implementation was quite efficient and very
robust. It relied on two basic observations: first, any change of the linear-to-physical
address mapping via an assignment to %cr3 required that at least one page—the one
containing the current instruction stream—had the same content in both the outgoing
and incoming address spaces. Otherwise, the instruction immediately following the
assignment of %cr3 would be left undetermined. The second observation is that certain
system-level resources could be undefined as long as the processor did not access
them, for example, the interrupt descriptor table (as long as interrupts are disabled)
and the segment descriptor tables (as long as there are no segment assignments).
By undefined, we mean that their respective registers (%idtr and %gdtr) could point
temporarily to a linear address that contains random bits, or even an invalid page.
These two observations allowed us to develop a carefully crafted instruction sequence
that saved the outgoing context and restored an independent one.

Figure 3 illustrates how the world switch routine transitioned from the host operat-
ing system context to the VMM context, and subsequently back to the starting point.
We observe that the VMM ran in the very high portion of the address space—the top
4MB actually—for reasons that we will explain later. The cross page was a single page
of memory, used in a very specific manner that is central to the world switch. The
cross page was allocated by the kernel-resident driver into the host operating system’s
kernel address space. Since the driver used standard APIs for the allocation, the host
operating system determined the address of the cross page. Immediately before and
after each world switch, the cross page was also mapped in the VMM address space.
The cross page contained both the code and the data structures for the world switch.
In an early version of VMware Workstation, the cross page instruction sequence con-
sisted of only 45 instructions that executed symmetrically in both directions, and with
interrupts disabled, to:

(1) first, save the old processor state: general-purpose registers, privileged registers,
and segment registers;

(2) then, restore the new address space by assigning %cr3. All page table mappings
immediately change, except the one of the cross page.

(3) Restore the global segment descriptor table register (%gdtr).
(4) With the %gdtr now pointing to the new descriptor table, restore %ds. From that

point on, all data references to the cross page must use a different virtual address

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:19

to access the same data structure. However, because %cs is unchanged, instruction
addresses remain the same.

(5) Restore the other segment registers, %idtr, and the general-purpose registers.
(6) Finally, restore %cs and %eip through a longjump instruction.

The world switch code was wrapped to appear like a standard function call to its call
site in each context. In each context, the caller additionally saved, and later restored,
additional state on its stack not handled by the world switch, for example, the local
descriptor table registers (%ldtr), the segments that might rely on that table such as
%fs, as well as debug registers.

Both host operating systems (Linux and Windows) configured the processor to use
the flat memory model, where all segments span the entire linear address space. How-
ever, there were some complications because the cross page was actually not part of
any of the VMM segments, which only spanned the top 4MB of the address space.4 To
address this, we additionally mapped the cross page in a second location within the
VMM address space.

Despite the subtleties of the design and a near total inability to debug the code se-
quence, the world switch provided an extremely robust foundation for the architecture.
The world switch code was also quite efficient: the latency of execution, measured on
an end-to-end basis that included additional software logic, was measured to be 4.45 µs
on a now-vintage 733-Mhz Pentium III CPU [Sugerman et al. 2001]. In our observa-
tion, the overall overhead of the hosted architecture was manageable as long as the
world-switch frequency did not exceed a few hundred times per second. To achieve the
goal, we ended up emulating portion of the networking and SVGA devices within the
VMM itself, and made remote procedure calls to the VMX only when some backend
interaction with the host operating system was required. As a further optimization,
both devices also relied on batching techniques to reduce the number of transitions.

6.1.4. Managing Host-Physical Memory. The VMX process played a critical role in the
overall architecture as the entity that represented the virtual machine on the host
operating system. In particular, it played a critical role in the allocation, locking, and
the eventual release of all memory resources. The VMX managed the virtual machine’s
physical memory as a file mapped into its address space, for example, using mmap on
Linux. Selected pages were kept pinned into memory in the host operating system
while in use by the VMM. This provided a convenient and efficient environment to
emulate DMA by virtual I/O devices. A DMA operation became a simple bcopy, read,
or write by the VMX into the appropriate portion of that mapped file.

The VMX and the kernel-resident driver together also provided the VMM with
the host-physical addresses for pages of the virtual machine’s guest-physical memory.
The kernel-resident driver locked pages on behalf of the VMX-VMM pair and provided
the host-physical address of these locked pages. Page locking was implemented using
the mechanisms of the host operating system. For example, in the early version of the
Linux host products, the driver just incremented the use count of the physical page.

As a result, the VMM only inserted into its own address space pages that had been
locked in the host operating system context. Furthermore, the VMM unlocked memory
according to some configurable policy. In the unlock operation, the driver first ensured
that the host operating system treated the page as dirty for purposes of swapping, and
only then decremented the use count. In effect, each VMM cooperatively regulated

4We opted to not run the VMM in the flat memory model to protect the virtual machine from corruption by
bugs in the VMM. This choice also simplified the virtualization of 16-bit code by allowing us to place certain
key structures in the first 64KB of the VMM address space.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:20 E. Bugnion et al.

its use of locked memory, so that the host operating system could apply its own policy
decisions and if necessary swap out portions of the guest-physical memory to disk.

Our design also ensured that all memory would be released upon the termination of
a virtual machine, including in cases of normal exit (VM poweroff), but also if the VMX
process terminated abnormally (e.g., kill -9) or if the VMM panicked (e.g., by issuing
a specific RPC to the VMX). To avoid any functional or data structure dependency on
either the VMM or the VMX, the kernel-resident driver kept a corresponding list of
all locked pages for each virtual machine. When the host operating system closed the
device file descriptor corresponding to the virtual machine, either explicitly because
of a close system call issued by the VMX, or implicitly as part of the cleanup phase
of process termination, the kernel-resident driver simply unlocked all memory pages.
This design had a significant software engineering benefit: we could develop the VMM
without having to worry about deallocating resources upon exit, very much like the
programming model offered by operating systems to user-space programs.

6.2. The Virtual Machine Monitor
The main function of the VMM was to virtualize the CPU and the main memory. At
its core, the VMware VMM combined a direct execution subsystem with a dynamic
binary translator, as first disclosed in Devine et al. [1998]. In simple terms, direct
execution was used to run the guest applications and the dynamic binary translator
was used to run the guest operating systems. The dynamic binary translator managed
a large buffer, the translation cache, which contained safe, executable translations
of virtual machine instruction sequences. So instead of executing virtual machine
instructions directly, the processor executed the corresponding sequence within the
translation cache.

This section describes the design and implementation of the VMM, which was specif-
ically designed to virtualize the x86 architecture before the introduction of 64-bit exten-
sions or hardware support for virtualization (VT-x and AMD-v). VMware’s currently
shipping VMMs are noticeably different from this original design [Agesen et al. 2010].

We first describe the overall organization and protection model of the VMM in Sec-
tion 6.2.1. We then describe two essential building blocks of the VMM that virtualize
and trace memory (Section 6.2.2) and virtualize segmentation (Section 6.2.3). With
those building blocks in place, we then describe how the direct execution engine and
the binary translator together virtualize the CPU in Section 6.2.4.

6.2.1. Protecting the VMM. The proper configuration of the underlying hardware was
essential to ensure both correctness and performance. The challenge was to ensure
that the VMM could share an address space with the virtual machine without being
visible to it, and to do this with minimal performance overheads. Given that the x86
architecture supported both segmentation-based and paging-based protection mecha-
nisms, a solution might have used either one or both mechanisms. For example, oper-
ating systems that use the flat memory model only use paging to protect themselves
from applications.

In our original solution, the VMM used segmentation, and segmentation only, for
protection. The linear address space was statically divided into two regions, one for
the virtual machine and one for the VMM. Virtual machine segments were truncated
by the VMM to ensure that they did not overlap with the VMM itself.

Figure 4 illustrates this, using the example of a guest operating system that uses
the flat memory model. Applications running at %cpl=3 ran with truncated segments,
and were additionally restricted by their own operating systems from accessing the
guest operating system region using page protection.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:21

Fig. 4. Using segment truncation to protect the VMM. In this example, the virtual machine’s operating
system is designed for the flat memory model. Applications run under direct execution at user-level (cpl=3).
The guest operating system kernel runs under binary translation, out of the translation cache (TC), at cpl=1.

When running guest kernel code via binary translation, the hardware CPU was at
%cpl=1. Binary translation introduced a new and specific challenge since translated
code contained a mix of instructions that needed to access the VMM area (to access
supporting VMM data structures) and of original virtual machine instructions. The
solution was to reserve one segment register, %gs, to always point to the VMM area:
instructions generated by the translator used the <gs> prefix to access the VMM area,
and the binary translator guaranteed (at translation time) that no virtual machine
instructions would ever use the <gs> prefix directly. Instead, translated code used %fs
for virtual machine instructions that originally had either an <fs> or <gs> prefix. The
three remaining segments (%ss, %ds, %es) were available for direct use (in their trun-
cated version) by virtual machine instructions. This solution provided secure access
to VMM internal data structures from within the translation cache without requiring
any additional run-time checks.

Figure 4 also illustrates the role of page-based protection (pte.us). Although not
used to protect the VMM from the virtual machine, it is used to protect the guest
operating system from its applications. The solution is straightforward: the pte.us
flag in the actual page tables was the same as the one in the original guest page table.
Guest application code, running at %cpl=3, were restricted by the hardware to access
only pages with pte.us=1. Guest kernel code, running under binary translation at
%cpl=1, did not have the restriction.

Of course, virtual machine instructions may have had a legitimate, and even fre-
quent, reason to use addresses that fell outside of the truncated segment range. As
a baseline solution, segment truncation triggered a general protection fault for every
outside reference that was appropriately handled by the VMM. In Section 6.3.4, we
will discuss an important optimization that addresses these cases.

Segment truncation had a single, but potentially major limitation: since it reduces
segment limits but does not modify the base, the VMM had to be in the topmost portion
of the address space.5 The only design variable was the size of the VMM itself.

In our implementation, we set the size of the VMM to 4MB. This sizing was based
on explicit tradeoffs for the primary supported guest operating systems, in particular

5Alternatively, segment truncation could be used to put the VMM in the bottom-most portion of the address
space. It was ruled out as many guest operating systems use that region extensively for legacy reasons.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:22 E. Bugnion et al.

Fig. 5. Virtualizing memory. This shows mappings between virtual, linear, guest-physical, and host-
physical memory, as seen and managed by the virtual machine, the host operating system, and the VMM.

Windows NT/2000. 4MB was sufficient for a practical VMM with a translation cache
and other data structures large enough to fit the working set of the virtual machine,
and yet small enough to minimize (but not eliminate) interference with these guest
operating systems. In retrospect, there was a bit of fortuitousness in this choice, as a
slightly different memory layout by a popular guest operating system would have had
potentially severe consequences. Indeed, a guest operating system that made extensive
use of the address space that overlapped the VMM would have been very expensive or
even impractical to virtualize using segmentation-based protection.

We did evaluate alternatives that relied on paging rather than segmentation. The
appeal was that one could then pick one or more portions of the linear address space
that were unused by the guest, put the VMM in those locations, and conceivably even
hop between locations. Unfortunately, the design alternatives all had two major down-
sides: first, the x86 architecture defined only one single protection bit at the page level
(pte.us). Since we require three levels of protection (VMM, guest kernel, guest ap-
plications), the VMM would need to maintain two distinct page tables: one for guest
applications and VMM, the other for guest kernel (running at %cpl=3!) and VMM. Sec-
ond, and probably most critically, binary translators always need a low-overhead and
secure mechanism to access their own supporting data structures from within trans-
lated code. Without hardware segment limit checking, we would lose the opportunity
to use hardware-based segmentation and instead would have had to build a software
fault isolation framework [Wahbe et al. 1993].

6.2.2. Virtualizing and Tracing Memory. This section describes how the VMM virtualized
the linear address space that it shares with the virtual machine, and how the VMM
virtualized guest-physical memory and implemented the memory tracing mechanism.

Figure 5 describes the key concepts in play within the respective contexts of the vir-
tual machine, the host operating system, and the VMM. Within the virtual machine,
the guest operating system itself controlled the mapping from virtual memory to lin-
ear memory (segmentation — subject to truncation by the VMM), and then from linear
address space onto the guest-physical address space (paging — through a page table
structure rooted at the virtual machine’s %cr3 register). As described in Section 6.1.4,
guest-physical memory was managed as a mapped file by the host operating system,

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:23

and the kernel-resident driver provided a mechanism to lock selected pages into mem-
ory, and provided the corresponding host-physical address of locked pages.

As shown on the right side of Figure 5, the VMM was responsible for creating and
managing the page table structure, which was rooted at the hardware %cr3 register
while executing in the VMM context. The challenge was in managing the hardware
page table structure to reflect the composition of the page table mappings controlled
by the guest operating system (linear to guest-physical) with the mappings controlled
by the host operating system (guest-physical to host-physical) so that each resulting
valid pte always pointed to a page previously locked in memory by the driver. This
was a critical invariant to maintain at all times to ensure the stability and correctness
of the overall system. In addition, the VMM managed its own 4MB address space.

The pmap. Figure 5 shows the pmap as a central data structure of the VMM; nearly
all operations to virtualize the MMU accessed it. The pmap table contained one en-
try per guest-physical page of memory, and cached the host-physical address of locked
pages. As the VMM needed to tear down all pte mappings corresponding to a partic-
ular page before the host operating system could unlock it, the pmap also provided a
backmap mechanism similar to that of Disco [Bugnion et al. 1997] that could enumer-
ate the list of pte mappings for a particular physical page.

Memory tracing. Memory tracing provided a generic mechanism that allowed any
subsystem of the VMM to register a trace on any particular page in guest physical
memory, and be notified of all subsequent accesses to that page. The mechanism was
used by VMM subsystems to virtualize the MMU and the segment descriptor tables,
to guarantee translation cache coherency, to protect the BIOS ROM of the virtual ma-
chine, and to emulate memory-mapped I/O devices. The pmap structure also stored the
information necessary to accomplish this. When composing a pte, the VMM respected
the trace settings as follows: pages with a write-only trace were always inserted as
read-only mappings in the hardware page table. Pages with a read/write trace were
inserted as invalid mappings. Since a trace could be requested at any point in time,
the system used the backmap mechanism to downgrade existing mappings when a new
trace was installed.

As a result of the downgrade of privileges, a subsequent access by any instruction
to a traced page would trigger a page fault. The VMM emulated that instruction and
then notified the requesting module with the specific details of the access, such as the
offset within the page and the old and new values.

Unfortunately, handling a page fault in software took close to 2000 cycles on the
processors of the time, making this mechanism very expensive. Fortunately, nearly
all traces were triggered by guest kernel code. Furthermore, we noticed an extreme
degree of instruction locality in memory traces: for example, only a handful of instruc-
tions of a kernel modified page table entries and triggered memory traces. For exam-
ple, Windows 95 has only 22 such instruction locations. We used that observation and
the level of indirection afforded by the binary translator to adapt certain instructions
sequences into a more efficient alternative that avoided the page fault altogether (see
Section 6.3.4 for details).

Shadow page tables. The first application of the memory tracing mechanism was ac-
tually the MMU virtualization module itself, responsible for creating and maintaining
the page table structures (pde, pte) used by the hardware.

Like other architectures, the x86 architecture explicitly calls out the absence of any
coherency guarantees between the processor’s hardware TLB and the page table tree.
Rather, certain privileged instructions flush the TLB (e.g.,invlpg, mov %cr3). A naive

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:24 E. Bugnion et al.

Fig. 6. Using shadow page tables to virtualize memory. The VMM individually shadows pages of the virtual
machine and constructs the actual linear address space used by the hardware. The topmost region is always
reserved for the VMM itself.

virtual MMU implementation would discard the entire page table on a TLB flush, and
lazily enter mappings as pages are accessed by the virtual machine. Unfortunately,
this generates many more hardware page faults, which are orders of magnitude more
expensive to service than a TLB miss.

So instead, the VMM maintained a large cache of shadow copies of the guest oper-
ating system’s pde/pte pages, as shown in Figure 6. By putting a memory trace on the
corresponding original pages (in guest-physical memory), the VMM was able to ensure
the coherency between a very large number of guest pde/pte pages and their counter-
part in the VMM. This use of shadow page tables dramatically increased the number
of valid page table mappings available to the virtual machine at all times, even im-
mediately after a context switch. In turn, this correspondingly reduced the number
of spurious page faults caused by out-of-date page mappings. This category of page
faults is generally referred to as hidden page faults since they are handle by the VMM
and not visible to the guest operating system. The VMM could also decide to remove
a memory trace (and of course the corresponding shadow page), for example, when a
heuristic determined that the page was likely no longer used by the guest operating
system as part of any page table.

Figure 6 shows that shadowing is done on a page-by-page basis, rather than on an
address space by address space basis: the same pte pages can be used in multiple
address spaces by an operating system, as is the case with the kernel address space.
When such sharing occurred in the operating system, the corresponding shadow page
was also potentially shared in the shadow page table structures. The VMM shadowed
multiple pde pages, each potentially the root of a virtual machine address space. So
even though the x86 architecture does not have a concept of address-space identifiers,
the virtualization layer emulated it.

The figure also illustrates the special case of the top 4MB of the address space,
which is always defined by a distinct pte page, managed separately, which defines the
address space of the VMM itself.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:25

Fig. 7. Using shadow and cached segment descriptors to virtualize segmentation. Shadow and cached
descriptors are always truncated by the VMM for protection.

6.2.3. Virtualizing Segment Descriptors. Segmentation played a significant role in the
x86 architecture. It also played a crucial role in the design of the VMware VMM as
the only isolation mechanism between the VMM and the virtual machine. Therefore,
in virtualizing segments, the VMM needed to also ensure that all virtual machine
segments would always be truncated, and that no virtual machine instruction se-
quence could ever directly load a segment used by the VMM itself. In addition, vir-
tualizing segments was particularly challenging because of the need to correctly han-
dle nonreversible situations (see Section 5.4) as well as real and system management
modes.

Figure 7 illustrates the relationship between the VM and the VMM’s descriptor
tables. The VMM’s global descriptor table was partitioned statically into three groups
of entries: (i) shadow descriptors, which correspond to entries in a virtual machine
segment descriptor table, (ii) cached descriptors, which model the six loaded segments
of the virtual CPU, and (iii) descriptors used by the VMM itself.

Shadow descriptors formed the lower portion of the VMM’s global descriptor table,
and the entirety of the local descriptor table. Similar to shadow page tables, a memory
trace kept shadow descriptors in correspondence with the current values in the virtual
machine descriptor tables. Shadow descriptors differed from the original in two ways:
first, code and data segment descriptors were truncated so that the range of linear
address space never overlapped with the portion reserved for the VMM. Second, the
descriptor privilege level of guest kernel segments was adjusted (from 0 to 1) so that
the VMM’s binary translator could use them (translated code ran at %cpl=1).

Unlike shadow descriptors, the six cached descriptors did not correspond to an in-
memory descriptor, but rather each corresponded to a segment register in the virtual
CPU. Cached segments were used to emulate, in software, the content of the hidden
portion of the virtual CPU. Like shadow descriptors, cached descriptors were also trun-
cated and privilege adjusted.

The combination of shadow descriptors and cached descriptors provided the VMM
with the flexibility to support nonreversible situations as well as legacy modes. As
long as the segment was reversible, shadow descriptors were used. This was a pre-
condition to direct execution, but also led to a more efficient implementation in binary
translation. The cached descriptor corresponding to a particular segment was used as
soon as the segment became nonreversible. By keeping a dedicated copy in memory,
the VMM effectively ensured that the hardware segment was at all times reversible.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:26 E. Bugnion et al.

Fig. 8. State machine representation of the use of shadow and cached segments.

The decision of whether to use the shadow or cached descriptor was made indepen-
dently for each segment register according to the state machine of Figure 8:

— When a segment became nonreversible following a trace write to the descriptor loca-
tion in memory defining one or more CPU segments. The VMM copied the previous
content of the descriptor (prior to the trace write) to the cached location(s). The
cached descriptors are used from there on.

— When a segment register was assigned (e.g., mov <sel>, %ds) while in real mode
or in system management mode. The segment becomes cached. The visible portion
and the base of the cached descriptor take on the new value from the assignment.
The rest comes from the descriptor used by the segment register immediately prior
to the assignment (i.e., shadowed or cached), subject to truncation according to the
new base.

— When a segment register was assigned while in protected mode. The VMM used the
shadow segment once again.

In addition, cached segments were also used in protected mode when a particular
descriptor did not have a shadow. This could occur only when the virtual machine’s
global descriptor table was larger than the space allocated statically for shadow seg-
ments. In practice, we mostly avoided this situation by sizing the VMM’s GDT to be
larger than the one used by the supported guest operating systems. Our implementa-
tion allocated 2028 shadow GDT entries, and could easily have grown larger.

This state machine had a very significant implication. Direct execution could only
be used if all of the six segments registers were in a shadow state. This was neces-
sary since the visible portion of each register is accessible by user-level instructions,
and user-level software can furthermore assign any segment to a new value without
causing a trap. Of course, binary translation offered a level of indirection that allowed
the VMM to use the cached entries instead of the shadow based on the state machine
of each segment. Although the state machine was required for correctness and added
implementation complexity, the impact on overall performance was marginal. Indeed,
all of the supported 32-bit guest operating systems generally ran user-level code with
all segments in a shadowed state (thus allowing direct execution).

As discussed in the context of segment truncation, segmentation played a crit-
ical role in protecting the VMM by ensuring that shadowed and cached segments
never overlap with the VMM address space (see Section 6.2.1). Equally important,
one needed to ensure that the virtual machine could never (even maliciously) load
a VMM segment for its own use. This was not a concern in direct execution as all
VMM segments had a dpl≤1, and direct execution was limited to %cpl=3. However,
in binary translation, the hardware protection could not be used for VMM descrip-
tors with dpl=1. Therefore, the binary translator inserted checks before all segment
assignment instructions to ensure that only shadow entries would be loaded into
the CPU.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:27

ALGORITHM 1: x86 Virtualization Engine Selection Algorithm
Input: Current state of the virtual CPU
Output: True if the direct execution subsystem may be used;False if binary translation must

be used instead
if !cr0.pe then

return false
if eflags.v8086 then

return true
if (eflags.iopl ≥ cpl)||(!ef lags.if) then

return false;
foreach seg ← (cs, ds, ss, es, f s, gs) do

if “seg is not shadowed” then
return false;

end
return true

6.2.4. Virtualizing the CPU. As mentioned at the beginning of Section 6.2, a primary
technical contribution of the VMware VMM is the combination of direct execution with
a dynamic binary translator. Specifically, one key aspect of the solution was a simple
and efficient algorithm to determine (in constant time) whether direct execution could
be used at any point of the execution of the virtual machine. If the test failed, the dy-
namic binary translator needed to be used instead. Importantly, this algorithm did not
depend on any instruction sequence analysis, or make any assumptions whatsoever
about the instruction stream. Instead, the test depended only on the state of the vir-
tual CPU and the reversibility of its segments. As a result, it needed only to run when
at least one of its input parameters might have changed. In our implementation, the
test was done immediately before returning from an exception and within the dispatch
loop of the dynamic binary translator.

Algorithm 1 was designed to identify all situations where virtualization using direct
execution would be challenging because of issues due to ring aliasing, interrupt flag
virtualization, nonreversible segments, or non-native modes.

— Real mode and system management mode were never virtualized through direct
execution.

— Since v8086 mode (which is a subset of protected mode) met Popek and Goldberg’s
requirements for strict virtualization, we used that mode to virtualize itself.

— In protected mode, direct execution could only be used in situations where neither
ring aliasing nor interrupt flag virtualization was an issue.

— In addition, direct execution was only possible when all segments were in the
shadow state according to Figure 8.

Algorithm 1 merely imposed a set of conditions where direct execution could be
used. An implementation could freely decide to rely on binary translation in additional
situations. For example, one could obviously build an x86 virtualization solution that
relied exclusively on binary translation.

The two execution subsystems shared a number of common data structures and
rely on the same building blocks, for example, the tracing mechanism. However, they
used the CPU in very different ways: Table III provides a summary view of how the
hardware CPU resources were configured when the system was (i) executing virtual
machine instructions directly, (ii) executing translated instructions, or (iii) executing
instructions in the VMM itself. We note that the unprivileged state varied significantly
with the the mode of operation, but that the privileged state (%gdtr, %cr3,...) did not

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:28 E. Bugnion et al.

Table III. Configuration and Usage of the Hardware CPU When Executing (i) in
Direct Execution, (ii) Out of the Translation Cache and (iii) VMM Code

VM indicates that hardware register has the same value as the virtual ma-
chine register. VMM indicates that the hardware register is defined by the
VMM.

Resource Direct Execution Translation Cache VMM
U

np
ri

vi
le

ge
d

%cpl 3 1 0 or 1
%eflags.iopl <%cpl ≥%cpl ≥%cpl
%eflags.if 1 1 0 or 1
%eflags.v8086 0/1 0 0
%ds, %ss, %es shadow shadow or cached VMM
%fs shadow VM %fs or %gs VMM
%gs shadow VMM (top 4MB) VMM
%cs shadow VMM (top 4MB) VMM
%eip VM VMM (in TC) VMM
Registers (%eax,...) VM VM VMM
%eflags.cc VM VM VMM

P
ri

v.

%cr0.pe 1: Always in protected mode
%cr3 shadow page table
%gdtr VMM GDT with shadow/cached/VMM entries
%idtr VMM interrupt handlers

depend on the mode of execution. Indeed, some privileged registers such as %gdtr and
%idtr were re-assigned only during the world switch. Others such as %cr3 were re-
assigned only when the VM issued the corresponding instruction.

Direct Execution Subsystem. When direct execution was possible, the unprivileged
state of the processor was identical to the virtual state. This included all segment
registers (inc. the %cpl), all %eflags condition codes, as well as all %eflags control
codes (%eflags.iopl, %eflags.v8086, %eflags.if). However, no ring compression,
or interrupt virtualization complications could arise because Algorithm 1 is satisfied.
For the same reason, all segments registers were reversible and shadowed.

The implementation of the direct execution subsystem was relatively straightfor-
ward. The VMware VMM kept a data structure in memory, the vcpu, that acted much
like a traditional process table entry in an operating system. The structure contained
the virtual CPU state, both unprivileged (general-purpose registers, segment descrip-
tors, condition flags, instruction pointer, segment registers) and privileged (control
registers, %idtr, %gdtr, %ldtr, interrupt control flags, ...). When resuming direct ex-
ecution, the unprivileged state was loaded onto the real CPU. When a trap occurred,
the VMM first saved the unprivileged virtual CPU state before loading its own.

Binary Translation Subsystem. The binary translator shared the same vcpu data
structure with the direct execution subsystem. This simplified implementation and
reduced the cost of transitioning between the two subsystems.

Table III shows that the binary translator had (unlike the direct execution subsys-
tem) more flexibility in the mapping of the virtual CPU state onto the hardware. In-
deed, it loaded a carefully designed subset of the virtual CPU state into the hardware.
Specifically, that subset included three segment registers (%ds, %es, %ss), all general-
purpose registers (%eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %ebp) as well as the
condition codes within the %eflags register (but not the control codes of that regis-
ter). Although segment registers could point to a shadow or a cached entry, the un-
derlying descriptor always led to the expected (although possibly truncated) virtual
address space defined by the guest operating system. The implication was that any
instruction that operated only on these three segments, the general-purpose registers,

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:29

or any of the condition codes could execute identically on the hardware without any
overheads. This observation was actually a central design point of VMware’s dynamic
binary translator, as the majority of instructions actually met the criteria.

There were obviously expected differences between the virtual CPU state and the
hardware state. As with all dynamic binary translators, the hardware instruction
pointer %eip was an address within the translation cache and not the virtual CPU’s
%eip. The code segment %cs was a VMM-defined segment that spanned the full top
4MB of the address space in 32-bit mode, or a subset of it in 16-bit mode.

The binary translator treated %fs and %gs differently. According to the x86 archi-
tecture, both were used only by instructions that have an explicit segment override
prefix. %fs was used by the binary translator as a scratch segment register to emulate
instructions that have either a <fs> or <gs> prefix: the corresponding sequence first
loaded <fs> and then used it as the prefix of the virtual machine instruction. This pat-
tern freed up <gs> to be available at all times to securely access the VMM portion of
the address space. This provided the binary translator the flexibility to generate in-
struction sequences where the protection of the VMM was enforced in hardware for all
virtual machine references (by ensuring that no <%gs> prefixes were passed through
the translator unmodified), and at the same time have a low-overhead mechanism to
access supporting data structures or the virtual machine state.

6.3. The Binary Translator
Emulation is the big hammer of virtualization: one system can be emulated by an-
other to provide 100% compatibility. Obviously, the price in terms of efficiency can
be extremely high, for example if one uses simple interpretation techniques. More
advanced forms of emulation using binary translation [Sites et al. 1993] have been
proposed to provide fast machine simulation [Rosenblum et al. 1997].

A binary translator converts an input executable instruction sequence into a second
binary instruction sequence that can execute natively on the target system. A dynamic
binary translator performs the translation at run-time by storing the target sequences
into a buffer called the translation cache.

At least when running on conventional processors, these fast simulators based on
dynamic binary translation tend to have an intrinsic performance impact in that the
translated sequence runs at a fraction of the speed of the original code. These over-
heads are typically due to memory accesses that require either some form of address
relocation in software [Witchel and Rosenblum 1996] or the need to perform some
form of software fault isolation or sandboxing. With Embra, for example, the workload
slowdown was nearly an order of magnitude [Witchel and Rosenblum 1996] – very fast
for a complete machine simulator, but way too slow to be the foundation for a virtual
machine monitor.

VMware’s dynamic binary translator had a different design point, with the explicit
goal to run translated sequences with minimal slowdown or overhead. Specifically, the
goal was to run instruction sequences consisting of memory movement instructions,
stack operations, ALU operations, and branches (conditional and unconditional) at
native or very near to native speeds.

The binary translator’s essential function was to allow any virtual machine instruc-
tion sequence, executed in any mode and system configuration of the virtual machine,
to be correctly emulated. The VMM used it as its big hammer, but used it only when
necessary. Whenever possible, the VMM used the direct execution subsystem instead.

The philosophy behind VMware’s binary translator was grounded in a few simple
goals and requirements.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:30 E. Bugnion et al.

— In all cases, translate the instruction sequence to faithfully emulate the semantics
of the x86 architecture.

— Remain invisible to the guest (other than possibly through changes in timing).
— Don’t assume anything about the input sequence. In particular, don’t assume any of

the conventions that are applicable when an executable is generated by a compiler:
for example, calls and returns are not always paired together, the stack is not always
valid, jumps can point to the middle of an instruction. Instead, assume that the code
could be malicious and buggy.

— Assume that code will change, either because the memory is reused, the code is
patched, or (and this does happen) the code sequence modifies itself.

— Design and optimize for system-level code: the code will contain privileged instruc-
tions, manipulate segments, establish critical regions, trigger exceptions, initiate
I/O, or reconfigure memory (virtual or linear).

— Design and optimize to run at system level rather than conventional simulators,
which run as unprivileged processes: rely on hardware for protection of the VMM,
and in particular the truncated segments; design the binary translator to work in
conjunction with the VMM’s interrupt and exception handlers.

— Keep it simple. Don’t try to optimize the generated code sequence. Build a basic
x86-to-x86 translator, not an optimizing compiler.

6.3.1. Overview. The binary translator was inspired by SimOS’s Embra run-time
[Witchel and Rosenblum 1996], which itself was influenced by Shade [Cmelik and
Keppel 1994]. Like Embra, its components included a decoder, code generator, dis-
patcher, chaining logic, supporting callouts, the translation cache coherency logic,
and the mechanism to synchronize state on exceptions and interrupts. When VMware
Workstation first shipped, the binary translator consisted of approximately 27 thou-
sand lines of C source code according to SLOCCount [Wheeler 2001], or approximately
45% of the total VMM line count.

The dispatch function looked up the location in the translation cache corresponding
to the current state of the virtual CPU. If none was found, it invoked the translator,
which first decoded a short instruction sequence (no longer than a basic block) start-
ing at the current virtual CPU instruction pointer, generated a corresponding (but
translated) instruction sequence and stored it in the translation cache. The dispatch
function then transferred control to the location in the translation cache. The trans-
lated code consisted of native x86 instructions within the translation cache, and could
encode calls to support routines. These callouts typically invoked the dispatcher again,
to close the loop.

Two main data structures complemented the translation cache: a lookup table pro-
vided a mechanism to identify existing translations by their entry point, thereby allow-
ing for reuse; and a tc backmap table provided a way to associate metadata to ranges
of translated code at a fine granularity. This was used, for example, to synchronize
state when the code sequence is interrupted.

The translator did not attempt to improve on the original code; we assumed that the
OS developers took care in optimizing it. Rather, the goal was to minimize manipula-
tion and disruption of the source sequence. Case in point, we translated instructions
one-by-one and always maintained those guest instruction boundaries in the trans-
lated code. As described previously in Table III, translated code directly used the hard-
ware for three segments (%ds, %es, %ss), all general-purpose registers and all condition
code (of the %eflags register). Since the VMM also used the hardware to configure
the virtual machine’s linear address space (through shadow page tables) and enforced
the isolation boundaries in hardware (through segment truncation), instructions that

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:31

Fig. 9. Example of binary translation for a simple basic block.

relied only on these segments, registers and flags could be copied identically in the
translated code, where they executed at native speed.

Figure 9 provides a simple example of binary translation for a basic block of three
instructions. In this example, the first two instructions are identically translated since
they depend only on %ss, %ebp, %ds and %eax, which are all mapped onto hardware. The
basic block ends with a memory-indirect call, wich manipulates %eip and therefore
cannot be identically translated. The translated sequence temporarily uses %eax as a
scratch register, pushes the return address on the stack, stores the call target address
in memory (in <gs>:vcpu.eip), and finally jumps to a shared subroutine. Within that
sequence, the push instruction operates on virtual machine operands by putting the
return address (#t4) on its stack. The other instructions manipulate VMM operands,
and in particular rely on the <gs> prefix to access VMM structures.

This translation of a memory-indirect call is typical of all instructions with unpre-
dictable control transfer, which were handled in a similar manner. In these sequences,
the fastDispatch subroutine used a specialized table indexed only by the virtual ad-
dress to lookup a possible destination address within the translation cache, and called
out to C code only if none was found.

Branches (conditional or unconditional) offer predictable, %eip-relative control flow
transfers. Although branches could not be translated identically, the use of a technique
called chaining [Cmelik and Keppel 1994] nearly eliminated their run-time overheads.
Chaining converts an unconditional branch into another branch, and a conditional
branch into at most two branches.

6.3.2. Using Partial Evaluation. As a baseline implementation, the translator could gen-
erate a general-purpose callout for all sensitive instructions that require some form of
run-time emulation, such as privileged instructions, interrupt-sensitive instructions
(pushf, popf, cli, sti), and segment assignment instructions. As callouts were very
expensive (often around 1000 cycles on certain processors), it was necessary to handle
as many common cases inline, that is, within the translation cache.

Unfortunately, many sensitive instructions also have very complex semantics that
routinely are described through multiple pages of pseudocode in the architectural
manuals [Intel Corporation 2010]. Handling all situations through inlining would be
impractical. Take for example, the cli instruction, which clears the interrupt flag.
The Intel manual specifies 8 different outcomes based on the state of CPU, and in
particular based on the values of %cr0.pe, %cpl, %eflags.iopl and %eflags.v8086.
However, when the virtual machine’s guest operating system is running in protected
mode at %cpl=0, the semantics are reduced to simply always clearing the %eflags.if
bit of the virtual CPU.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:32 E. Bugnion et al.

To inline these sensitive instructions, the binary translator applied the partial eval-
uation [Jones 1996] of the virtual CPU context at translation time. This effectively
shifted the complexity of emulating a sensitive instruction from run-time to transla-
tion time. The binary translator acted as a program specializer that generated dif-
ferent translation sequences by using specific states of the virtual CPU as static
input variables (context) to the compiler. Specifically, the input context consisted
of (i) the code size - 16bit or 32bit, (ii) %cr0.pe (protected mode or real/system
management mode), (iii) %eflags.v8086, (iv) %cpl (the current privilege level), (v)
%cpl<=%eflags.iopl (i.e., whether the virtual CPU can control the interrupt flag),
and (vi) whether the guest is in the flat memory model.6

Partial evaluation assumes that the context at execution time matches the context
used at translation time. As a result, the context was part of the key to the translation
cache lookup function. As the lookup function was used by the dispatch and the chain-
ing logic, this ensured the consistency between translation-time and run-time state
when entering the translation cache, as well as throughout the execution within the
translation cache. As a consequence, the same code sequence may be translated mul-
tiple times for different contexts. But in practice, this situation happened very rarely
since software is normally written explicitly for only one context. Note also that the
lookup key included the translation unit’s virtual and physical address, because the
translator emulated a complete system with multiple overlapping address spaces, and
the same virtual address could actually refer to different instruction sequences.

6.3.3. Operating at System-Level. The translated code ran in an execution environment
specifically optimized for it, in particular the hardware context set up by the VMM for
memory virtualization and isolation. In addition:

— The translated code ran at %cpl=1 as this (i) ensured that any trap or interrupt
would trigger a stack switch and (ii) allowed access to the guest kernel address
space, that is, pages with pte.us=0.

— In addition, the translated code ran at %eflags.iopl=1, which allowed it to control
the interrupt flag (cli, sti, popf) and establish critical regions.

— While generated code always ran at %cpl=1, the VMM’s static code used both %cpl=0
and %cpl=1. The VMM switched between privilege levels lazily, as needed, and with-
out switching stacks. Therefore, functions could be called at one level and return at
another. For example, callouts from the translation cache always started at %cpl=1.
However, if in handling a callout a function must execute a privileged instruction,
it dropped to %cpl=0. The VMM always returned to %cpl=1 before reentering the
translation cache.

— The binary translator reserved a few distinct exception vectors for its own exclusive
use. This is used to generate very compact callouts, using only two bytes of code
(int <vector>) from the translation cache to the VMM. One of the interesting char-
acteristics of such calls is that they lead to a stack switch and write the calling %eip
onto the VMM stack. This was the preferred method for space-efficient callouts such
as the ones terminating a basic block. To chain one block to another, the interrupt
instruction was overwritten with a branch.

— The translated code could rely on the truncated segments setup by the VMM to
deliver a hardware-based protection model. This eliminated the need to perform
bounds-checks in software. This was discussed in Section 6.2.4.

6Some of the these contexts (e.g., %eflags.v8086) would actually indicate that direct execution is possible.
The binary translator nevertheless supported them for a debugging mode that ran entirely without the
direct execution engine.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:33

Fig. 10. Steps involved in software relocation.

6.3.4. Adaptive Binary Translation. As previously described, the binary translator relied
on the system-level execution environment set up specifically for it by the VMM. We
now describe another aspect of the two-way relationship between the binary translator
and the VMM, where the binary translator becomes an extremely powerful tool to
help avoid the cost of hardware-based protection mechanisms, and in particular the
high cost of handling general protection and page faults. Adams and Agesen [2006]
measured the minimal cost of handling such faults to be more than 2000 processor
cycles on an Intel Pentium 4.

Adaptive binary translation refers to situations where a particular event or condi-
tion leads to the binary translator purposefully generating a new and distinct transla-
tion, optimized for this event. It was used in three situations described in more detail
here:

Adaptive Translation of Memory Tracing Instructions. The first situation consisted
of instructions that almost always generated page faults (such as those that modified
page table entries). To avoid the high overheads for page fault handling, the adapted
translation generated a callout that emulates the memory reference without causing
a page fault.

As we described in Section 6.2.2, memory tracing was a central mechanism of the
VMM. The page fault handler decoded the instruction, computed the effective address,
and then emulated the memory access without directly using the original virtual or
linear address (as this would create another page fault), instead by performing all of
the memory translation steps in software. Figure 10 illustrates those steps: the first
step converted the instruction’s virtual address (segment and effective address) into a
linear address by adding the segment base and checking the limit. The correspond-
ing linear page number provided the index into a set-associative software TLB that
mapped to guest-physical page numbers. The pmap module kept track of the guest-
physical (gPPN) to host-physical (hPPN) mappings as well as the trace information.
Finally, the VMM dedicated some pages of its address space (32 pages in the first im-
plementation, or 3% of the total available address space) to an overlay window used for
the temporary mappings of host pages. When the page was mapped into the overlay
window, this provided an alternative de-referenceable address to the same location in
memory to perform the memory access.

The implementation was optimized, with the information from the pmap and the
overlay window cached directly in the software TLB structure. As a result, the cost
of handling such a memory trace was dominated by the page fault itself. When code
running in direct execution accessed such a page, there was little room for further
optimization. Binary translation, on the other hand, offered many alternatives, and in
particular the option to translate the offending instruction differently so that it would

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:34 E. Bugnion et al.

proactively call out rather than cause a page fault. We called this form of adaptive
binary translation the trace simulation callout.

This technique leveraged the tremendous locality of trace accesses: the few instruc-
tions that caused memory traces, for example, the routines manipulating the pte en-
tries, mostly always triggered memory traces. In such situations, the adapted transla-
tor dynamically generated a sequence that computed the effective address and called
out to a memory reference emulation routine. This replaced a page fault with a callout
(saving 800 cycles on a Pentium 4) and furthermore eliminated the cost of decoding
the instruction and computing the effective address.

This form of adaptive binary translation was refined with subsequent versions of
the VMware VMM. Adams and Agesen [2006] studied the cost of memory tracing un-
der either adaptive binary translation (as described here) or a virtualization approach
relying exclusively on direct execution (when enabled by hardware support): as long as
memory traces remained frequent, the performance benefits of adaptive binary trans-
lation more than made up for the overhead of relying on binary translation.

Instructions that Access High Memory. Segment truncation (see Section 6.2.1) re-
duced the size of the virtual address spaces, and attempts to reference a virtual ad-
dress outside of the truncated range caused a general protection fault. The general
protection fault handler had to validate that the address was within the virtual ma-
chine’s original range, and emulate the access accordingly.

Here as well, adaptive binary translation provided additional opportunities for opti-
mization, in particular for handling the operation entirely within the translated code.
Rather than logically going through the steps of Figure 10 in C code, we generated
instruction sequences that performed the equivalent task within the context of the
translation cache.

The approach combined two classic software engineering techniques: partial evalua-
tion and caching. Partial evaluation ensured that the virtual CPU is in protected mode
at %cpl=0 with the flat memory model. As for caching, the implementation collapsed
the various steps of Figure 10 into a direct-mapped cache that only contained already-
mapped pages. This simplified the logic so that the inlined code simply (i) computed
the effective address, (ii) detected the possible corner case where the memory reference
would straddle two pages, (iii) performed a hash lookup in the direct mapped cache,
(iv) added the page offset, (v) restored the flags, and (vi) issued the instruction with a
<gs> prefix.

Maintaining Translation Cache Coherency. Finally, adaptive binary translation was
also key for optimizations of the mechanism that ensures the coherency of the trans-
lation cache.

The basic design of any dynamic binary translator must ensure that the instruction
sequences in the translation cache stay in sync with the source instruction sequences,
in our case within the virtual machine. To maintain the coherency of the translation
cache, the system needed to (i) detect changes, and (ii) appropriately reflect the change
in the cache.

For system-level simulators, the generic solution is to leverage the memory reloca-
tion mechanisms, whether those are implemented in a hardware TLB [Dehnert et al.
2003; Ebcioglu and Altman 1997] or in a software MMU [Witchel and Rosenblum
1996]. In our system, we simply used the generic memory tracing mechanism for this
purpose. Unfortunately, this baseline solution alone did not perform well when run-
ning some guest operating systems, in particular MS-DOS and Windows 95/98. Three
important patterns emerged.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:35

— Pages that Contain Both Code and Data. This is a form of false sharing at the
page level that causes unnecessary traces, not a coherency violation. Although
less common with 32-bit, compiled applications, legacy applications and drivers
compiled or assembled as 16-bit code did intermix code and data on the same page.

— Call-Site Patching. This is a well-known technique that allows for distinct modules,
compiled as position-independent code, to directly call each other. For example,
Windows 95 used the int <0x20> instruction, followed by literals, to encode a
cross-VxD call [King 1995]. The exception handler then patched the call site and
replaced it with a regular call instruction once both VxD modules were in memory.

— Self-Modifying Code. Although generally frowned upon, this technique was
nonetheless found in practice in a number of areas, including games and graphics
drivers hand-written in assembly code.

The binary translator addressed each of these three patterns distinctly [Bugnion
1998]. It kept track of the exact set of addresses used as input to the translator, at the
byte level, so that a memory trace implied an actual coherency problem only when the
modification range overlaps with the input bytes.

When a true coherency violation did occur, the binary translator had to ensure that
that translation would never be used again. Embra [Witchel and Rosenblum 1996]
solved this in a brute force way by simply flushing the entire translation cache. In-
spired by Embra, the first versions of the VMware binary translator took the same
approach. Support for selective invalidation was introduced in a subsequent version,
three years after the first shipment [Agesen et al. 2010].

In some cases, handling memory traces caused by false sharing resulted in signif-
icant performance costs. To minimize these overheads on selected pages, we removed
the trace and instead relied on adaptive binary translation to ensure coherency.
Specifically, the translator generated a prelude for each basic block from those pages
that verified at run-time that the current version of the code was identical to the
translation-time version. The prelude consisted of a series of comparisons between
the translation-time instruction byte stream (encoded in operands) and the current
instruction byte stream in the memory of the virtual machine. A policy framework,
driven on a page-by-page basis via some history counters, helped optimize between
the two lesser evils: to use the memory trace method when the code was frequently
executed, and the adaptive binary translation when writes to that page dominated
the performance profile. In practice, early implementations of the policy framework
mainly avoided pathological decisions to ensure a stable system.

Call-site patching occurred frequently in Windows 95/98 operating systems where
an int <0x20> instruction was replaced with a call instruction about 2000 times dur-
ing boot. As a workload-specific optimization, we chose to simply never cache instruc-
tion sequences that included an int <0x20> instruction.

True self-modifying code was another matter. During the development, we identified
patterns where the code that constituted the inner loop of an algorithm is repeatedly
updated by the outer loop. Specifically, the outer loop only modified the immediate or
displacement operands of some instructions, that is, the outer loop updated constants
of instructions of the inner loop. We adapted the prelude technique to (i) update
the constant values (immediate and displacement) of these modified instructions
in the translation cache, and (ii) verify that all other bytes in the basic block were
unmodified.

6.3.5. Precise Exception Handling. The full-system nature of the VMware binary trans-
lator had a number of additional implications on the core design, in particular around
exception handling. For example, the instruction pointer %eip found in an exception

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:36 E. Bugnion et al.

frame (i.e., on the VMM’s stack) can point to an address within the translation cache.
But to emulate an exception, the VMM needs to reconstruct the virtual machine’s %eip.
Similarly, a translated instruction sequence may temporarily use general-purpose reg-
isters as scratch registers.

We will use the example of Figure 9, introduced earlier, to illustrate how the binary
translation system handles synchronous and asynchronous exceptions. Synchronous
exceptions, for example, page faults, general-protection faults, division-by-zero, can
only occur on instructions that manipulate virtual machine operands. In this example,
only instructions (1), (2), (4), or (5) are in the category; the other instructions only
manipulate VMM operands, and are guaranteed to never fault. On the other hand,
the code always runs with interrupts enabled, so an asynchronous exception can occur
anywhere in the sequence.

The binary translator handled both the synchronous and the asynchronous case.
The first, but very important, insight is that these two types of exceptions can be han-
dled totally differently. For synchronous exceptions, the x86 architecture mandated
that no partial side effects remain from the faulting instruction. The state needed to
be rolled back to the start of the virtual instruction, as if each instruction executed
as an atomic transaction. For asynchronous exceptions, the solution merely guaran-
teed that any side effects from the asynchronous exception would be applied to the
virtual machine state immediately after the completion of the current virtual machine
instruction.

Figure 9 illustrates the role of the TC backmap to handle synchronous exceptions:
The TC backmap structure was a table, filled at translation time, and used by the
exception handlers to efficiently map any location in the translation cache to (i) its
corresponding virtual machine %eip, (ii) which template (distinct code pattern gener-
ated by the translator) was used to generate the code, and (iii) the offset within that
template. Each distinct translation template had its own custom callback, which was
responsible for reconstructing the state. For example, the ident template was used
for all instructions that were merely copied (without any transformation) from the
virtual machine to the translation cache. Its corresponding callback was a nop, since
the processor guaranteed atomicity in the case of exceptions. In contrast, the callback
for register indirect calls (call regind) had to (i) assert that the fault occurred at off-
set (4) or (5) only, and (ii) restore %eax from its scratch location in memory. The first
shipping VMware binary translator had 26 distinct templates and 26 corresponding
custom handlers, leaving the complexity of handling state rollback to the developer of
each template.

Luckily, asynchronous exceptions, that is, external I/O interrupts, provided much
more flexibility. Their first and immediate consequence is a world switch back to the
host operating system context (see Section 6.1.2). But as a common and important
side effect, the VMM could raise the virtual CPU’s interrupt line. The dynamic binary
translator provided precise guarantees that any side effects of an asynchronous ex-
ception would be applied no later than the next virtual machine instruction boundary.
Each custom callback could either rollback the state (when possible) or identify all pos-
sible exit points of the translated code sequence. These exit points were temporarily
replaced with a callout instruction, so that execution could resume for a few cycles un-
til the next virtual machine instruction boundary. The software interrupt instructions
were inserted idempotently, so the system also safely handled multiple (asynchronous)
interrupts that fired within the same virtual instruction.

7. EVALUATION
We evaluate the VMware virtual machine monitor in four main areas: the compat-
ibility of the virtual machine (Section 7.1), the isolation properties of the virtual

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:37

Table IV. Handling Sensitive Instructions in Direct Execution (DE) and Binary Translation (BT)

Instruction Description DE BT Comments
sgdt, sidt,
sldt

Copy %gdtr, %idtr, %ldtr
into a register

x
√

According to Intel: available (but not use-
ful) to applications

smsw legacy pre-386 instruction that
returns parts of %cr0

x
√

Legacy instruction only

pushf, popf Save/restore condition code and
certain control flags

√ √
Interrupt virtualiztion problem - avoided
by design by using BT in all sensitive sit-
uations

lar, verr,
verw

Load Access Rights, Verify a
segment for reading/writing

√ √
Level sensitive instruction comparing
%cpl with the segment’s dpl. However,
DE only occurs at %cpl=3 and the dpl ad-
justment is only from 0 to 1, so userspace
instructions will execute correctly, and
system code is always in binary transla-
tion.

x
√

If the VM defines a GDT large enough
to hold non-shadowed descriptors, the
instruction will behave incorrectly and
clear zf. However, this never happens
with any of the supported guest operat-
ing systems.

lsl Load Segment Limit x
√

Incorrect limit is returned on truncated
segments

pop <seg>,
push <seg>,
mov <seg>

Manipulate segment registers
√ √

Ring aliasing problem - avoided by de-
sign by using BT in all sensitive situa-
tions (ring aliasing or non-reversibility)

fcall,
longjmp,
retfar, str

Far call, long jump or far re-
turns to a different privilege
level (via a call gate)

√ √
Use BT to avoid ring aliasing problem;
don’t allow call gates in hardware de-
scriptor tables

int <n> Call to interrupt procedure
√ √

In DE, always triggers an interrupt or a
fault, as expected

machine (Section 7.2), the classification of VMware Workstation according to the
classic literature on virtualization (Section 7.3), and finally on the performance of the
system (Section 7.4).

7.1. Compatibility
Robin and Irvine [2000] published a widely quoted, detailed analysis of the Intel Pen-
tium’s ability to support a secure virtual machine monitor. In particular, they identi-
fied sensitive, yet unprivileged instructions that made the processor non-virtualizable,
at least using exclusively a trap-and-emulate approach. Table IV lists these instruc-
tions and discusses how our solution addresses the issues raised by the authors. Our
approach fell short in only two minor cases.

(1) Instructions that access privileged state at user-level without causing faults.
These instructions were sidt, sgdt, sldt, and smsw. They were sensitive in
direct execution since they return information configured by the VMM, not the
guest operating system. Fortunately, Intel’s own architecture manual described
these instructions as “useful only by operating-system software” [Intel Corpora-
tion 2010]. The sgdt instruction was used by a few applications to explicitly test
whether the software was running in a virtual machine.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:38 E. Bugnion et al.

(2) The lsl (load segment limit) instruction reported the incorrect limit because of
segment truncation. To our knowledge, this limitation was never identified as the
root cause of a field defect.

Both of these gaps only appeared during direct execution. The binary translator
could handle these instructions correctly, but the performance impact of abandoning
direct execution would have been unacceptable. Fortunately, neither limitation had a
practical consequence.

In presenting Intel’s Virtualization Technology (VT-x), Uhlig et al. [2005] also
described a number of limitations to software-only virtualization in the absence of
architectural support. In their analysis, these limitations would include issues such
as ring aliasing, address space compression, interrupt virtualization, access to priv-
ileged state, hidden segment registers, and non-native modes. VMware Workstation
addressed all of these issues, with the exception of the two minor caveats listed
previously.

7.2. Isolation and Security
Robin and Irvine [2000] also raised some credibility issues around VMware’s claims,
in particular in the areas of security and isolation. Their paper was written soon after
the release of the first VMware products, at a time when no disclosures on its internals
were publicly available.

The isolation of each virtual machine is strong by design, having access only to virtu-
alized resources, and never to the underlying physical names. The design of the VMM
furthermore enforced the boundary between the virtual machine and the VMM by us-
ing hardware segmentation. The routines that manipulate the hardware descriptor
tables are well isolated in a module that is easy to reason about. VMware performed
independent reviews of these properties, and VMware Workstation has been used for
security-sensitive applications such as the NSA’s NetTop [Meushaw and Simard 2000].

7.3. Formal Classification of Virtualization Systems
The classic literature on virtualization provides a theoretical framework that can
classify a VMM according to two orthogonal considerations: whether the architec-
ture is virtualizable, and how that VMM manages resources. First, Popek and Gold-
berg [1974] provided the theoretical framework for virtualizability, and also de-
scribed the concept of a hybrid virtual machine monitor and of a hybrid virtualization
criterion.

THEOREM. A hybrid virtual machine (HVM) monitor may be constructed
for any conventional third generation machine in which the set of user sen-
sitive instructions are a subset of privileged instructions.
In order to argue the validity of the theorem, it is first necessary to char-
acterize the HVM monitor. The difference between a HVM monitor and a
VMM is that, in the HVM monitor, all instructions in virtual supervisor
mode will be interpreted. Otherwise, the HVM can be the same as the VM
monitor [...].

The VMM nearly met the requirements of an HVM as defined in that theorem, if
one substitutes virtual supervisor mode with Algorithm 1, substitutes the interpreter
with the dynamic binary translator, and allows the caveats of Section 7.1.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:39

Second, in this thesis, Goldberg [1972] proposed the following classification for
VMMs.

— Type I. the VMM runs on a bare machine
— Type II. the VMM runs on an extended host, under the host operating

system
[...] In both Type I and Type II VCS, the VMM creates the VCS computing
environment. However in a Type I VCS, the VMM on a bare machine must
perform the system’s scheduling and (real) resource allocation. Thus, the
Type I VMM may include such code not specifically needed for a VCS. In
a Type II VCS, the resource allocation and environment creation functions
for VM are more clearly split. The operating system does the normal system
resource allocation and provides a standard extended machine.

Here as well, the definition must be adapted to the more modern environment. The
concept of a standard extended machine does not exist in modern operating systems,
and was replaced with the world switch mechanism. Nevertheless, VMware Worksta-
tion is clearly a type II VMM, in that the host operating system is responsible for all
resource management decisions.

7.4. Performance
A number of papers have been published that describe various aspect of the end-to-
end performance of VMware’s products. Sugerman et al. [2001] published the first
academic paper on VMware Workstation, focusing on the performance characteristics
of network I/O, and using Workstation 2.0 as the baseline for their study. They quantify
the cost of a world switch operation to 4.45 µs on a now vintage 733 MHz Pentium III
desktop. Their study shows that significant performance optimizations can be achieved
by reducing the frequency of world switches. This can be done by handling certain
device emulation logic within the VMM (and in some cases within the translation cache
itself), and by batching RPCs to the VMX to initiate I/O.

In their paper that studies the evolution of VMware’s x86 virtual machine monitor,
Agesen et al. [2010] quantify some of the key characteristics of VMware’s approach.
First, the cost of running the binary translator, that is, the logic that generates exe-
cutable code inside the translation cache, is negligible. A near worst-case workload is
one that boots and immediately shuts down a guest operating system, since it offers
little reuse opportunities and runs a lot of kernel initialization routines that only ex-
ecute once. Their analysis shows that the translator itself takes less than 5% of the
overall execution time and generates a total of 28,000 16-bit basic blocks and 933,000
32-bit basic blocks, for an average cost of 3 µs per translation.

In their study comparing software VMM and hardware-assisted VMMs, Adams and
Agesen [2006] quantify the overheads of the VMware VMM (without hardware sup-
port) to be no more than 4% when running the CPU-intensive SPECint 2000 and
SPECjbb2005 benchmarks, but substantially higher—in the 25%+ range—for system-
intensive benchmarks such as compilation and web serving workloads. Such slow-
downs are explained by a combination of factors, such as the cost of synchronizing
shadow page tables, and the overheads of going through the host operating system for
all I/O access.

Despite these positive results, the performance of guest operating systems was at
times limited by a variety of idiosyncratic interactions that stressed overheads in our
VMM, for example, the use of self-modifying code and the false sharing of traced ex-
ecutable code with unrelated data or the frequent use of the top 4MB portion, both
discussed in Section 6.3.4. Other examples included the extensive use of 16-bit code
under binary translation, false sharing of segment descriptor tables with unrelated

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:40 E. Bugnion et al.

data, the emulation of I/O devices that polled certain I/O ports heavily, etc. As we en-
countered these situations, we made significant engineering investments to mitigate
them, but by no means were we able to fully eliminate all of our performance cliffs.

8. LESSONS LEARNED
The first shipping VMware product was the result of an intense 15-month development
effort. Some of the decisions made during that initial phase had a long-term impact
on the quality, performance, stability, and evolution of the product. In this section, we
highlight some of the key lessons learned.

8.1. Benefits of the Hosted Architecture
There is a well-known development productivity gap between user-space software and
kernel software: user-space processes start quickly, support a broad range of debugging
tools, generally execute deterministically, and fail in predictable ways, for example by
dumping core, at which point all resources are automatically reclaimed by the operat-
ing system. In contrast, developing a kernel or kernel module often leads to long boot
sequences, subtle concurrency bugs, resource leaks after failures, and sometimes the
overall corruption of the system.

So, in developing the infrastructure for the VMM, we created an environment that
could provide developers with productivity comparable to user-space development. The
kernel-resident device driver took care of automatically reclaiming all resources, even
in the case of a corrupted VMM. As a result, developers could debug, crash, and restart
virtual machines nearly as if they were dealing with regular processes. We also added
to the VMM a flexible logging environment, automatic VMM core dumps on panics,
and built-in VMM profiling capabilities.

Still, we voluntarily kept as much code outside of the VMM as was possible. All
of the CPU and memory virtualization logic was within the VMM, but most of the
device models (front-end and back-end) ran as part of the VMX process in user-space.
Only the performance-sensitive portions of the front-ends would eventually be moved
into the VMM. Although this partitioning of functionality was required because of the
severe address space limitations of the VMM, it also turned out to be beneficial by
limiting the complexity of VMM.

8.2. The VMM - More than the Sum of Its Parts
We began building the VMM according to standard software engineering practices of
modularity and abstraction: each major component—the binary translator, the MMU
handling, segment truncation logic, the trap-and-emulate subsystem, etc.—was origi-
nally implemented as an independent module with a well-defined boundary and inter-
face. However, we quickly realized that these modules were not so easy to decouple.
Rather, they interacted with each other in subtle ways that were critical for perfor-
mance. One basic example: we introduced caches that crossed multiple abstraction
boundaries, for example, to emulate instructions that accessed high memory as shown
in Figure 10. More fundamentally, we realized that the modules all significantly in-
formed each others’ behavior, impacting the overall design. For example, the page
fault handler could directly signal the binary translator to adaptively retranslate a
block of instructions in order to avoid further page faults. Similarly, segmentation
management was simultaneously responsible for enabling very low overhead execution
of binary translated code, maximizing circumstances where direct (trap-and-emulate)
execution was possible, and protecting the isolation of the VMM. The consequence of
this was some lack of modularity and independence in solving problems and making
seemingly local implementation decisions.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:41

Our view of the binary translator shifted in response to this recognition, too. At
first, we were primarily concerned of the cost of running translated code. We quickly
realized, however, that it also was a source of performance benefits: the adaptive trans-
lation process it enabled became the key optimization mechanism in the VMM.

8.3. Guest-Specific Optimizations
One of the most important principles of systems design is to deal effectively with
common-case situations, without paying too high of a penalty when the uncommon
case hits. Like any system, many parts of the VMM exhibited a significant amount of
spatial and/or temporal locality. For example, the use of 16-bit translation caches had
tremendous temporal locality: all workloads use it during bootstrap, but many work-
loads totally stop accessing it after a while. We leveraged that temporal observation
to free up all of the space allocated to 16-bit caches when they became unused, which
allowed us to grow the 32-bit translation cache. Such optimizations were oblivious to
the precise nature of the guest operating system.

A VMM is only as useful as the operating system that it runs. In a universe where
operating systems are designed to be architecturally friendly to virtualization, a bal-
anced design would include adjustments to the operating system to help its own exe-
cution in a virtual machine. This was the case in mainframe systems [Creasy 1981], in
Disco, and more recently in the context of paravirtualization [Barham et al. 2003]. At
VMware however, we explicitly focused on supporting unmodified operating systems,
including both current and older versions of these operating systems. As a result, the
product contained a number of optimizations that are very guest-specific: we chose
pragmatically to deliver a VMM that met the efficiency criteria for a selected number
of supported guest operating systems. Here are some examples.

— 4MB ended up being the “lucky number” for the size of the VMM. 4MB is large
enough to hold the working set of all data structures mapped in memory (and in
particular the translation cache), but small enough to only marginally interfere with
guest operating systems. It turns out that certain guests, for example, the Windows
2000 family, access the next lower 4MB of memory much more frequently.

— Specifically, the top 4 MB of memory is used to store certain data structures in
Windows 2000 (and 32-bit successors), and in particular the Windows Kernel
Processor Control Region (KPCR), which is part of the Windows Hardware Abstrac-
tion Layer, and hardcoded in two pages at 0xffdff000 and 0xffe00000 [Solomon
and Russinovich 2000].7 Although the inline relocation algorithms described in
Section 6.3.4 provided relief from a first-order performance overhead, we chose
to further optimize the handling of these very specific instructions that accessed
the KPCR. We dedicated two pages of the VMM’s address space to permanently
map these two KPCR pages — clearly an extremely ad-hoc approach. This enabled
further optimizations of the translated code. For example, instructions with a fixed
effective address could be emulated as a single instruction.

— Contemporary versions of Linux used int <0x80> to make system calls. In a generic
solution, that is, trap-and-emulate, all int instructions from %cpl=3 trigger a gen-
eral protection fault. As an optimization, the VMM configured the corresponding
entry 0x80 in the interrupt table to directly transfer control to an optimized routine
already running at %cpl=1 to quickly transition into binary translation mode.

7We learned only in the preparation of this article of the precise nature of the KPCR data structure that was
located in high memory. During the development phase, that piece of information was irrelevant; instead,
we only observed that a significant fraction of the VMM time was spent emulating accesses to these two
pages in memory.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:42 E. Bugnion et al.

— We special-cased the int <0x20> instructions in the translator, and never cached
them in the translation cache (see Section 6.3.4). This eliminated the subsequent
coherency conflict resulting from the cross-VxD call-site patching by Windows 95/98.

— We had to special-case a single 4MB range of Windows 95/98’s linear address
space located at 0xc1380000 as the guest operating system made an incorrect
architectural assumption with respect to TLB coherency. Specifically, Windows
95/98 appears to modify pte mappings and then use the mappings without flushing
the TLB (or at least that entry in the TLB), effectively assuming that they were
not present in the TLB. This assumption was no longer acceptable in a virtualized
setting with shadow page tables having much larger capacity than an actual TLB.
We resorted to disabling certain MMU tracing optimizations for that memory range
when Windows 95/98 was the selected guest operating system.

We see from these examples that we sometimes had to apply guest-specific tech-
niques to achieve our goal of providing hardware-level virtualization. With time, the
engineering team added additional guest-specific optimizations, driven primarily by
the need to adapt to innovations released in newer operating systems, for example, to
support the Linux vsyscall page efficiently. At the same time, the ongoing innovations
and re-factoring of the code base had at times the positive side-effect of eliminating
certain guest-specific optimizations, for example, the Windows 95/98 int <0x20> spe-
cial case was removed once the binary translator could efficiently invalidate selected
translations.

8.4. Dealing with Architectural Ambiguity
In theory, matching hardware’s behavior is merely a matter of reading the appropriate
manual or datasheet and applying the specified semantics. In practice, particularly
with an architecture as rich as x86—both in history and diversity—many significant
details end up undocumented or under-documented. And, of course, guest operating
systems often end up relying upon particular implementations of these quirks.

There are numerous cases of this in the instruction set architecture itself. For ex-
ample, how to deal with the don’t care bit of particular instructions (e.g., lar) or the
rep prefixes of instructions that don’t expect them, such as nop. Websites such as
www.sandpile.org [Ludloff 1996] proved extremely useful. As a last resort, we wrote
specific unit tests to reverse-engineer the actual implementation of certain instruc-
tion sequences on real hardware. We compiled these test vectors into a bootable floppy
image that ran both on a real computer and in a virtual machine.

Most of the other corner cases manifested in the “chipset”, or virtual motherboard,
which covered both the memory controller and the core I/O controller (including
all the oldest, most legacy functionality). One well-known historical example is the
handling of unaligned accesses in real mode at address 0xf000:0xffff, which was so
important to legacy MS-DOS software that it led to the introduction of a feature in all
x86 platforms in which the 20th address line in physical memory could be selectively
controlled by software. Entire book chapters have been devoted to this unusual A20
line [Chappell 1994], which helped us quite a bit as we tried to understand its seman-
tics. In general, we employed an assortment of tactics to narrow down the appropriate
behavior: trying to read between the lines in datasheets; combing books and online
articles about PCs; reading and debugging the BIOS source we had licensed; and dis-
assembling and tracing the execution of guest operating system drivers. In a handful of
cases, we wrote little boot loaders and MS-DOS programs to verify very specific details.

Beyond the documentation ambiguities, we also ran into actual CPU-specific imple-
mentation issues during our development. In one example, we identified a situation
where segment truncation caused a specific instruction (rep cmps) to take a general

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:43

protection fault, with the CPU reporting the fault on the wrong instruction (the lo-
cation following the one that took the fault). In another instance, the behavior of a
specific instruction (sidt, in 16-bit protected mode) proved to be different from that
described in every version of the processor manual we could find.

8.5. The Importance of Soundness
As previously described, with our guest-driven implementation strategy, we were able
to build a successful system while leaving some architectural features unimplemented.
We were consistently less successful when we tried to make simplifications or take
shortcuts in features we did implement. If a guest operating system used a feature
of the architecture, it generally exercised it comprehensively enough that failing to
handle corner cases would either panic the VMM or crash the guest. We experienced
two cases of this with our early handling of I/O devices: overlapping I/O port reg-
istration and level triggered interrupt lines. The VMM initially panicked if multiple
handlers claimed the same I/O port ranges. Sloppy operating system code, however,
sometimes very briefly violated that assumption during initialization and we had to
support the possibility (it never accessed overlapping ports though, which would likely
have unpredictable results on real hardware). Similarly, the architecture allows hard-
ware interrupts that are edge-triggered (one-time) or level-triggered (repeated until
the device driver clears them). Our implementation was edge-only at first, but a guest
can program PCI devices to share interrupt lines, which relies upon level-triggering.
Before we understood this, we were mystified by the intermittent flakiness that only
happened with certain combinations of devices and guests, for example, Windows 2000
with both networking and USB support.

We also attempted—and similarly regretted—taking shortcuts in the dynamic bi-
nary translator. For example, early versions of the system sometimes ignored the di-
rection flag that should control string instructions (%eflags.df). This worked in nearly
all cases, as software traditionally sets the flag immediately before using it. Neverthe-
less, until we handled it correctly, the system suffered from rare silent misbehaviors.
Also, the early binary translator used an incomplete instruction interpreter to emulate
memory traces; this caused a steady stream of bugs until we introduced a comprehen-
sive interpreter.

9. THE EVOLUTION OF VMWARE WORKSTATION
The technology landscape has obviously changed dramatically in the decade following
the development of the original VMware Virtual Machine Monitor.

In Section 6, we described the design and implementation of the original VMware
Workstation—from inception up to version 2.0 of the product. Following that release,
significant portions of the system were rewritten to improve performance and robust-
ness, and to adapt to new software and hardware requirements. Over the years, the
VMM has been the subject of constant refinements and improvements, with an invest-
ment of well over a hundred man-years. Agesen et al. [2010] provide a great overview
of the evolution of the system beyond the original design described in this article. The
authors highlight in particular the intrinsic tension between the various paths in-
volved in tuning the MMU, further improvements in the adaptive binary translation
framework, for example, to accelerate APIC TPR register access, and the design and
implementation of the symmetric multiprocessor VMM.

The hosted architecture (Section 6.1) is still used today for state-of-the-art interac-
tive products such as VMware Workstation, VMware Player, and VMware Fusion, the
product aimed at Apple OS X host operating systems. The world switch, and its abil-
ity to separate the host operating system context from the VMM context, remains the

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:44 E. Bugnion et al.

foundational mechanism of VMware’s hosted products today. Although the implemen-
tation of the world switch has evolved with the years, primarily to adjust to new modes
in the processor (64-bit long mode) and with a new class of nonmaskable interrupts,
the fundamental idea of having totally separate address spaces for the host operating
system and the VMM remains valid today.

The original VMM protection design, based exclusively on segment truncation
(Section 6.2.1), is still largely in use today by current VMware products, at least
when their VMM relies on a dynamic binary translator rather than hardware-based
virtualization. Segmentation is still used to enforce protection when running in binary
translation. However, the protection mechanisms were later augmented to addition-
ally rely on a combination of segmentation and paging in direct execution [Agesen
and Sheldon 2004]. This work was motivated by the emergence of the new Linux
NPTL library [Drepper and Molnar 2003], which used negative offsets from a segment
register to access thread-local structures, resulting in general protection faults due to
segmentation even though the linear address is within the virtual machine range.

VMware’s approach to implementing memory virtualization (Section 6.2.2) has
evolved substantially since the original VMware VMM. Although memory virtualiza-
tion consists of a number of mechanisms that are individually relatively easy to under-
stand, the policy heuristics that control and tune them ended up being very complex
and unfortunately somewhat guest- and workload-specific. Over the years, each ver-
sion of VMware’s products has improved the experience across an ever-broadening set
of workloads and requirements (including SMP virtual machines) [Agesen et al. 2010].
Adaptive binary translation played an important role in reducing the cost of memory
tracing, even to the extent of nearly negating the benefits of hardware support for CPU
virtualization in the first generation of processors [Adams and Agesen 2006]. Today,
the challenge of composing address spaces in software has been removed with the rela-
tively recent availability of hardware support for nested paging [Bhargava et al. 2008].

The general organization of the segment virtualization subsystem (Section 6.2.3),
and in particular the static separation between shadow, cached and VMM segments,
is still in use when the VMM relies on dynamic binary translation. The approach de-
scribed here for the original VMM ensured the synchronous update of shadow descrip-
tors (using the tracing mechanism). We augmented it later with a mechanism that
allowed for the deferred update of shadow descriptors [Lim et al. 2000], motivated by
guest operating systems that co-located segment descriptors on the same page as other
data structures, leading to a large amount of false sharing.

Finally, the engineering team largely rewrote the binary translator itself following
VMware Workstation 2. Although the structures and mechanisms described in Sec-
tion 6.3 remained mostly present, the code was largely re-implemented and the new
design formalized the notion of a compiled code fragment, and introduced selective in-
validations of translations to replace the original all-or-none approach [Agesen et al.
2010]. This helped improve the adaptive binary translation policies used throughout
the system substantially. Adaptive binary translation was expanded with new uses,
including emulating the chipset. Return instructions were handled using a novel ap-
proach [Agesen 2006]. Cross-instruction optimizations were introduced to reduce cases
where %eflags had to be spilled into the VMM area. Finally, with the introduction of
64-bit support (a.k.a. long mode), the binary translator took advantage of the larger
register file to use long mode in all situations, even to run 16-bit and 32-bit code [Chen
2009].

Hardware-assisted virtualization such as Intel VT-x and AMD-v were introduced
in two phases. The first phase, starting in 2005, was designed with the explicit pur-
pose of eliminating the need for either paravirtualization or binary translation [Uhlig
et al. 2005]. With this first phase of hardware support, a VMM could be built entirely

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:45

using trap-and-emulate. Unfortunately, that system would still require some form of
memory tracing to shadow page tables. And memory tracing, which normally relies on
the adaptive binary translator for performance, would become much more expensive.
Adams and Agesen [2006] discussed the tradeoffs of the two approaches, and concluded
that the software approach remains superior, at least in the absence of MMU support
for virtualization.

The second phase of hardware support, nested page tables, was introduced by AMD
in 2007 [Bhargava et al. 2008] and similarly by Intel in 2008 (as extended page tables).
Combined with CPU virtualization support, it effectively eliminated the most common
use for memory tracing. Furthermore, nested paging simplifies the implementation
of memory tracing itself. Today, VMware’s VMM mostly uses a hardware-based, trap-
and-emulate approach whenever the processor supports both virtualization and nested
page tables.

The emergence of hardware support for virtualization had a significant impact on
VMware’s guest operating system-centric strategy. In the original VMware Worksta-
tion, the strategy was used to dramatically reduce implementation complexity at the
expense of compatibility with the full architecture. Today, full architectural compati-
bility is expected because of hardware support. The current VMware guest operating
system-centric strategy focuses on performance optimizations for selected guest oper-
ating systems.

Hardware support for virtualization has also helped improve the hardware-
independent encapsulation property of live virtual machines. In particular, the FlexMi-
gration [Intel Corporation 2008] architectural extension allowed a VMM to control the
bits reported by the CPUID instruction, even in direct execution. This allows live mi-
gration of virtual machines across different processor generations by restricting the
reported processor features on both hosts to match.

10. RELATED WORK
This section mirrors Section 6, which describes the design and implementation.

10.1. Hosted Architectures
Connectix Virtual PC (later Microsoft VirtualPC), which first launched in June
2001 [Connectix Corporation 2001], was probably the closest analog to VMware Work-
station. A commercial product, it supported unmodified guest operating systems and
ran as a separate product on top of Windows host operating systems. Today in 2012,
that technology is used to provide Windows XP compatibility in Windows 7 (“Windows
XP mode with Virtual PC”) [Microsoft Corporation 2009]. Another commercial prod-
uct, Parallels [Parallels Corporation 2006] provides the same feature on Apple OS X
host operating systems, similar to VMware Fusion. Little has been published on either
system.

Linux KVM [Kivity 2007] is the most relevant open-source hosted VMM available
today, as it incorporates a number of concepts of system-level co-location directly into
Linux. KVM was designed from the ground up to assume architectural support for
virtualization. This eliminates the need to have a world switch to avoid interference
from the host operating system. As a result, the VMM can be incorporated into the
kernel-resident driver, which itself is part of the Linux kernel. Both VMware Work-
station and KVM have a concept of a user-space proxy, which is responsible for most
device emulation. Both rely on the host operating system to schedule resources.

User-Mode Linux [Dike 2001] and UMLinux [Sieh and Buchacker 2002] each
run a guest Linux operating system kernel directly on the CPU in user space. This
requires adding special signal handling to support virtual interrupts, relinking the

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:46 E. Bugnion et al.

guest kernel into a different range of addresses, and paravirtualizing the interrupt
flag. This scheme is similar to the one used in SimOS’s original direct execution
mode [Rosenblum et al. 1995] on MIPS systems. Using such an approach, the perfor-
mance is often determined by the implementation of certain low-level mechanisms by
the host operating system. King et al. [2003] used UMLinux to study how changes in
the host operating system could further improve performance. In contrast, VMware’s
system-level co-location approach dramatically reduces the frequency of interaction
with the host operating system.

The VMware hosted architecture is still used today for all of VMware’s interactive
products running on x86 desktops and laptops. It has also been ported to the ARM ar-
chitecture to offer virtualization solutions on mobile platforms and smartphones [Barr
et al. 2010].

10.2. ESX Server
In addition to VMware Workstation, VMware developed ESX Server [Waldspurger
2002], a type I bare-metal architecture that effectively eliminates any dependency on
a host operating system for I/O, resource management and scheduling. ESX Server
was architected to separate virtualization from global resource management, allowing
both products to share a nearly unmodified VMM. By controlling all global resources,
ESX Server could provide richer controls and stronger performance isolation guaran-
tees. By handling I/O directly within the hypervisor, ESX Server could reduce the
virtualization overheads of I/O intensive workloads.

Both products exist today, each focused on a different market. ESX Server is used for
datacenter deployments, where I/O performance and fine-grain resource management
are most relevant. The hosted architecture of VMware Workstation, Fusion and Player
is used on desktops and laptops, where co-existence with an existing installation and
peripheral diversity are most relevant.

10.3. Other Hypervisors
A hypervisor is generally defined as a virtualization solution that runs directly on the
hardware without depending on a separately managed host operating system; it is
often used synonymously with Goldberg’s type I VMM architecture.

The ESX Server hypervisor is the combination of the vmkernel and the VMM. The
vmkernel is responsible for global resource management as well as all I/O operations;
in particular, the vmkernel natively runs the performance critical device drivers.

The Xen hypervisor [Barham et al. 2003] has evolved from its root in paravirtual-
ization to offer full virtualization on CPUs with hardware support. Xen differs from
ESX Server in that the hypervisor only virtualizes and manages the CPU and memory
resources, and delegates I/O operations, including the device drivers, to a privileged
Linux virtual machine called dom0. Microsoft Hyper-V [Microsoft Corporation 2008]
shares the same architecture, with a Windows root partition replacing Xen’s dom0.

10.4. VMM Protection and Design
Segmentation, and specifically the use of truncated segments, is commonly used to
provide protection between execution domains. Xen used a similar approach [Barham
et al. 2003]. More recently, Vx32 [Ford and Cox 2008] and the Google Native Client
[Yee et al. 2010] have used segmentation to build lightweight sandboxing solutions.
Both systems are limited to run only 32-bit code in the sandbox as Intel’s x86-64 im-
plementations have removed segmentation support for 64-bit code. The VMware VMM
faced the same issues in supporting 64-bit guest operating systems when using the
binary translator [Agesen et al. 2010].

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:47

The VMware VMM has a general memory tracing mechanism used to maintain the
coherency of the shadow page tables, the segment tables, and the translation cache.
Xen originally relied on explicit registration of MMU pages (which required guest mod-
ifications) to avoid the complexity of shadowing, but subsequently supported shadow
page tables. The need for memory tracing has been removed with the combined intro-
duction of hardware support for virtualization in the CPU (VT-x) and in the MMU (via
Nested Page Tables [Bhargava et al. 2008]).

The VMware VMM relies on the combination of a trap-and-emulate direct execution
subsystem and a binary translator, with very frequent switches driven by the state of
the virtual CPU. Most other virtualization solutions rely exclusively on a single ap-
proach: Xen, KVM, and User Mode Linux use only direct execution, and require guest
changes or hardware support. QEMU [Bellard 2005] uses binary translation exclu-
sively. SimOS included multiple CPU simulation engines, one based on direct execu-
tion, one on binary translation, and one on instruction set simulation. However, unlike
the VMware VMM, the switch between execution engines in SimOS was a heavyweight
operation.

10.5. The Binary Translator
The VMware binary translator was designed to only support x86-to-x86 binary trans-
lation, and to run only as part of a system-level VMM. This led to a compact and simple
design. QEMU [Bellard 2005] is a dynamic binary translation framework capable of
running unmodified operating systems and applications. QEMU offers an extensive
set of cross-architectural capabilities. In contrast, the VMware VMM is simplistic in
that it merely copies without modifications most instructions of a given sequence. Both
systems support chaining and overlapping address spaces. QEMU emulates the MMU
in software, and has a mechanism similar to SimOS’s Embra [Witchel and Rosenblum
1996] to deal with pages that contain both code and data. Like VMware, it supports ex-
ceptions and interrupts, but uses a different mechanism based on code re-translation
(in the synchronous case) and identifying the next chaining point (in the asynchronous
case), rather than the next instruction boundary.

The VMware binary translator, QEMU, and Embra were all designed to run on ex-
isting processors that were never specifically designed to support efficient dynamic
binary translation. Other dynamic binary translators such as DAISY [Ebcioglu and
Altman 1997] and the Transmeta Crusoe [Dehnert et al. 2003] took an opposite ap-
proach and co-designed hardware and software for optimal performance. For example,
both ensure that the architectural state of the VM can be mapped efficiently on the
hardware state, with plenty of additional register resources available to the trans-
lated code, allowing for numerous optimizations. In contrast, the VMware translator
is a 32bit-to-32bit translator with zero free incremental resources. Also, both systems
have hardware support to enable speculative execution and recovery from exceptions.
In contrast, the VMware translator relies on hand-written logic to undo partial side-
effects of a faulting instruction.

The evaluation of Crusoe, which was aimed at running the same x86-based oper-
ating systems as VMware such as Windows, identified many of the guest operating
system specific issues that we encountered in the development of the VMware binary
translator. For example, Crusoe had dedicated hardware to handle pages that share
code and data. That extra logic reduced the number of page faults present during a
Win95/98 boot by more than 50×. In addition, Cruose used a software mechanism to
self-check translation that is similar to VMware’s prelude. Crusoe also handled self-
modifying code by adding a level of indirection in the translated code, whereas the
VMware translator used the prelude to update the translation.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:48 E. Bugnion et al.

11. CONCLUSION
In setting out to introduce the old idea of virtual machines to the commodity x86
platform in 1998, we knew upfront that the processor architecture was of daunting
complexity and considered not to be virtualizable; and that the commodity comput-
ing industry had disaggregated into an ecosystem, with different vendors controlling
the computers, CPUs, peripherals, operating systems, and applications, none of them
asking for virtualization. We chose to build our solution independently of all of these
vendors, effectively inserting our technology between them. This choice had significant
implications:

— To offer a familiar user experience without requiring factory pre-install by a com-
puter vendor, we relied on a hosted architecture, in which VMware Workstation
installed like any regular application, on top of an existing operating system. This
also allowed the virtualization layer to use the host operating system, and its pre-
existing device drivers.

— To allow the virtualization layer to co-exist with the user’s existing host operating
system, we developed a special kernel-resident device driver that interacted in all
respects with the host operating system as a standard device driver. This approach
enabled VMware Workstation to appear to the user like a normal application, and
to run on top of commercial host operating systems, alongside other applications.
At the same time, the primary function of that driver was to implement the world
switch mechanism, which enabled a system-level VMM to run free of the constraints
of the host operating systems.

— To handle the lack of virtualization support in x86, the VMM combined a tradi-
tional trap-and-emulate approach to virtualization with a fast dynamic binary
translator. The VMM selected the appropriate technique dynamically based on
the state of the virtual CPU. The use of segmentation-based protection eliminated
most of the overheads traditionally associated with system-level dynamic binary
translation. The use of partial evaluation and adaptive binary translation further
helped improve performance by reducing the frequency of processor exceptions.
The resulting approach met the compatibility, performance and isolation criteria
for virtual machine monitors.

— To abstract the large diversity of peripherals, we chose to emulate each virtual
device through a split front-end component (visible to the virtual machine) and
back-end component (interacting with the host operating system). This addition-
ally gave VMware virtual machines the key attribute of hardware-independent
encapsulation.

— To handle the daunting complexity of the x86 architecture, we applied a guest oper-
ating system-centric strategy to our development effort, only virtualizing the subset
of possible architectural combinations necessary to run relevant operating systems.

Although hardware and operating systems have changed substantially since 1998,
many of the contributions laid out in this article are still in use today. The hosted
architecture still provides state-of-the-art interactive virtualization products on desk-
tops and laptops, and even in upcoming mobile devices. Although x86 CPUs have
added hardware support for virtualization, binary translation is still used by VMMs
for legacy CPU modes as well as in places where adaptive binary translation can pro-
vide a performance win.

The commercial success of virtualization in general, and of VMware in particular,
has transformed the industry: according to IDC [2009], deployments of virtual ma-
chines have been exceeding in volume those of physical hosts since 2009. Virtualiza-
tion is as popular today as it was on mainframes decades ago.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:49

ACKNOWLEDGMENTS

VMware was started with a simple vision to bring virtualization to the x86 industry. We express our most
sincere gratitude to everyone who helped transform this vision into reality. We also thank Ole Agesen, David
Mazieres, Diego Ongaro, John Ousterhout, and Carl Waldspurger for their careful review of drafts of this
article.

REFERENCES
ADAMS, K. AND AGESEN, O. 2006. A comparison of software and hardware techniques for x86 virtualiza-

tion. In Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XII). 2–13.

AGESEN, O. 2006. Binary translation of returns. In Workshop on Binary Instrumentation and Applications.
7–14.

AGESEN, O. AND SHELDON, J. W. 2004. Restricting memory access to protect data when sharing a common
address space. U.S. Patent 7,277,999.

AGESEN, O., GARTHWAITE, A., SHELDON, J., AND SUBRAHMANYAM, P. 2010. The evolution of an x86
virtual machine monitor. Operating Systems Review 44, 4, 3–18.

AMD CORPORATION. 1998. Network Products: Ethernet Controllers Books 2.
BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T. L., HO, A., NEUGEBAUER, R., PRATT, I.,

AND WARFIELD, A. 2003. Xen and the art of virtualization. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP). 164–177.

BARR, K., BUNGALE, P. P., DEASY, S., GYURIS, V., HUNG, P., NEWELL, C., TUCH, H., AND ZOPPIS, B. 2010.
The VMware mobile virtualization platform: Is that a hypervisor in your pocket? Operating Systems
Review 44, 4, 124–135.

BELLARD, F. 2005. QEMU, a fast and portable dynamic translator. In Proceedings of the USENIX Annual
Technical Conference, FREENIX Track. 41–46.

BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE, S. 2008. Accelerating two-dimensional page walks
for virtualized systems. In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-XIII). 26–35.

BIRRELL, A. AND NELSON, B. J. 1984. Implementing remote procedure calls. ACM Trans. Comput. Syst.
2, 1, 39–59.

BUGNION, E. 1998. Dynamic binary translator with a system and method for updating and maintaining
coherency of a translation cache. U.S. Patent 6,704,925.

BUGNION, E., DEVINE, S., GOVIL, K., AND ROSENBLUM, M. 1997. Disco: Running commodity operating
systems on scalable multiprocessors. ACM Trans. Comput. Syst. 15, 4, 412–447.

BUGNION, E., DEVINE, S. W., AND ROSENBLUM, M. 1998. System and method for virtualizing computer
systems. U.S. Patent 6,496,847.

CHAPPELL, G. 1994. DOS Internals. Addisson-Wesley.
CHEN, Y.-H. 2009. Dynamic binary translation from x86-32 code to x86-64 code for virtualization. M.S.

thesis, Massachusetts Institute of Technology.
CMELIK, R. F. AND KEPPEL, D. 1994. Shade: A fast instruction-set simulator for execution profiling. In

Proceedings of the 1994 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems. 128–137.

COMPAQ, PHOENIX, INTEL. 1996. BIOS Boot Specification, v1.0.1.
http://www.phoenix.com/resources/specs-bbs101.pdf.

CONNECTIX CORPORATION. 2001. Connectix Virtual PC for Windows (Press Release). Retrieved on the
Internet Archive’s Wayback Machine.

CREASY, R. 1981. The origin of the VM/370 Time-sharing system. IBM J. Res. Develop 25, 5, 483–490.
CUSTER, H. 1993. Inside Windows NT. Microsoft Press.
DEHNERT, J. C., GRANT, B., BANNING, J. P., JOHNSON, R., KISTLER, T., KLAIBER, A., AND MATTSON, J.

2003. The Transmeta Code Morphing - Software: Using speculation, recovery, and adaptive retransla-
tion to address real-life challenges. In Proceedings of the 1st IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). 15–24.

DEVINE, S. W., BUGNION, E., AND ROSENBLUM, M. 1998. Virtualization system including a virtual ma-
chine monitor for a computer with a segmented architecture. U.S. Patent 6,397,242.

DIKE, J. 2001. User Mode Linux. In Proceedings of the 5th Annual Ottawa Linux Symposium (OLS).
DREPPER, U. AND MOLNAR, I. 2003. The Native POSIX Thread Library for Linux. RedHat White Paper.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

12:50 E. Bugnion et al.

EBCIOGLU, K. AND ALTMAN, E. R. 1997. DAISY: Dynamic compilation for 100% architectural compatibility.
In Proceedings of the 24th International Symposium on Computer Architecture (ISCA). 26–37.

FORD, B. AND COX, R. 2008. Vx32: Lightweight user-level sandboxing on the x86. In Proceedings of the
USENIX Annual Technical Conference. 293–306.

GELSINGER, P. 1998. Personal Communication (Intel Corp. CTO).
GOLDBERG, R. P. 1972. Architectural principles for virtual computer systems. Ph.D. thesis, Harvard Uni-

versity, Cambridge, MA.
GOLDBERG, R. P. 1974. Survey of virtual machine research. IEEE Computer Magazine 7, 6, 34–45.
IDC. 2009. Server Virtualization Hits Inflection Point as Number of Virtual Machines to Exceed Physical

Systems in 2009 (Press Release).
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUK21840309.

INTEL CORPORATION. 2008. Intel Virtualization Technology FlexMigration Application Note. Tech. rep.
INTEL CORPORATION. 2010. Intel64 and IA-32 Architectures Software Developer’s Manual Volume 2

(2A and 2B).
INTERNATIONAL STANDARDS ORGANIZATION. 1988. Information processing – Volume and file structure of

CD-ROM for information interchange. In ISO 9660-1988.
JONES, N. D. 1996. An introduction to partial evaluation. ACM Comput. Surv. 28, 3, 480–503.
KING, A. 1995. Inside Windows 95. Microsoft Press.
KING, S. T., DUNLAP, G. W., AND CHEN, P. M. 2003. Operating system support for virtual machines. In

USENIX Annual Technical Conference, General Track. 71–84.
KIVITY, A. 2007. KVM: The Linux virtual machine monitor. In Proceedings of the 2007 Ottawa Linux Sym-

posium (OLS). 225–230.
LIM, B.-H., LE, B. C., AND BUGNION, E. 2000. Deferred shadowing of segment descriptors in a virtual

machine monitor for a segmented computer architecture. U.S. Patent 6,785,886.
LUDLOFF, C. 1996. Sandpile: The world’s leading source for technical x86 processor information.

http://www.sandpile.org.
MEUSHAW, R. AND SIMARD, D. 2000. NetTop: Commercial technology in high assurance applications. NSA

Tech Trend Notes 9, 4.
MICROSOFT CORPORATION. 2008. Windows Server 2008R2 Hyper-V.

http://www.microsoft.com/en-us/server-cloud/windows-server/hyper-v.aspx.
MICROSOFT CORPORATION. 2009. Windows XP Mode and Windows Virtual PC.

http://www.microsoft.com/windows/virtual-pc/.
NELSON, M., LIM, B.-H., AND HUTCHINS, G. 2005. Fast transparent migration for virtual machines. In

Proceedings of the USENIX Annual Technical Conference, General Track. 391–394.
PARALLELS CORPORATION. 2006. Parallels Desktop for the Mac.

http://www.parallels.com/products/desktop/.
POPEK, G. J. AND GOLDBERG, R. P. 1974. Formal requirements for virtualizable third generation architec-

tures. Commun. ACM 17, 7, 412–421.
ROBIN, J. S. AND IRVINE, C. E. 2000. Analysis of the Intel Pentium’s ability to support a secure virtual

machine monitor. In Proceedings of the 9th Conference on USENIX Security Symposium, vol. 9.
ROSENBLUM, M., HERROD, S. A., WITCHEL, E., AND GUPTA, A. 1995. Complete computer system simula-

tion: The SimOS approach. IEEE Parall. Distrib. Tech. 3, 34–43.
ROSENBLUM, M., BUGNION, E., DEVINE, S., AND HERROD, S. A. 1997. Using the SimOS machine simula-

tor to study complex computer systems. ACM Trans. Model. Comput. Simul. 7, 1, 78–103.
SIEH, V. AND BUCHACKER, K. 2002. UMLinux – A versatile SWIFI tool. In Proceedings of the 4th European

Dependable Computing Conference (EDCC). 159–171.
SITES, R. L., CHERNOFF, A., KIRK, M. B., MARKS, M. P., AND ROBINSON, S. G. 1993. Binary translation.

Commun. ACM 36, 2, 69–81.
SOLOMON, D. A. AND RUSSINOVICH, M. E. 2000. Inside Microsoft Windows 2000 3rd Ed. Microsoft Press.
SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. 2001. Virtualizing I/O devices on VMware Work-

station’s hosted virtual machine monitor. In Proceedings of the USENIX Annual Technical Conference,
General Track. 1–14.

UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MARTINS, F. C. M., ANDERSON, A. V., BENNETT,
S. M., KÄGI, A., LEUNG, F. H., AND SMITH, L. 2005. Intel virtualization technology. IEEE Comput.
38, 5, 48–56.

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

Bringing Virtualization to the x86 Architecture with the Original VMware Workstation 12:51

WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM, S. L. 1993. Efficient software-based fault isola-
tion. In Proceedings of the 14th ACM Symposium on Operating Systems Principles (SOSP). 203–216.

WALDSPURGER, C. A. 2002. Memory resource management in VMware ESX server. In Proceedings of the
5th Symposium on Operating System Design and Implementation (OSDI).

WALDSPURGER, C. A. AND ROSENBLUM, M. 2012. I/O virtualization. Commun. ACM 55, 1, 66–73.
WHEELER, D. A. 2001. SLOCCount. http://www.dwheeler.com/sloccount/.
WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. 2002. Scale and performance in the Denali isolation kernel.

In Proceedings of the 5th Symposium on Operating System Design and Implementation (OSDI).
WITCHEL, E. AND ROSENBLUM, M. 1996. Embra: Fast and flexible machine simulation. In Proceedings

of the 1996 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems. 68–79.

YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R., ORMANDY, T., OKASAKA, S., NARULA, N., AND
FULLAGAR, N. 2010. Native client: A sandbox for portable, untrusted x86 native code. Commun. ACM
53, 1, 91–99.

Received April 2012; accepted July 2012

ACM Transactions on Computer Systems, Vol. 30, No. 4, Article 12, Publication date: November 2012.

