
CS 695: Virtualization and Cloud 
Computing

Lecture 2: Review of Operating 
Systems Concepts

Mythili Vutukuru

IIT Bombay

Spring 2021



Recap of Operating Systems

• The following OS concepts are required to understand virtualization
• The concept of a process

• Virtual memory, paging, (segmentation)

• User mode and kernel mode of a process

• Interrupt/trap processing in kernel mode

• I/O handling



The concept of a process
• A process is a running program

• User writes a program, compiles it to generate an executable

• Executable contains machine/CPU instructions
• Every CPU architecture (e.g., x86) defines a certain set of instructions
• Compiler translates high level language code to instructions the CPU can run

• To create a process, OS allocates memory in RAM for the memory image of 
the process, containing
• Code and static/global data from the executable
• Heap memory for dynamic memory allocations (e.g., malloc)
• Stack to store arguments/return address/local variables during function calls

• All instructions and variables in the memory image are assigned memory 
addresses
• Starting at 0, up to some max value (4GB in 32-bit systems)



Memory image of a process

Code/data

Heap

Stack

…..

Address = 0

Address = 12KB

Max Address = 4GB

from compiled executable 
(machine instructions, static/global data)

Address of this memory returned by malloc

New stack frame pushed by function call
Contains arguments, local vars, return address etc.
Popped when function returns

Heap and stack grow towards each otherUnused addresses



Process execution
• When a process is run, CPU executes the code in the memory image

• When a process runs on the CPU, the CPU registers hold values 
related to the process execution
• The program counter (PC, or EIP in x86) has address of current instruction

• The CPU fetches the current instruction, decodes it, and executes it

• Any variables needed for operations are loaded from process memory into 
general purpose CPU registers (EAX, EBX, ECX, EDX etc in x86)

• After instruction completes, values are stored from registers into memory

• The stack pointer (SP, or ESP in x86) has address of top of stack (current stack 
frame holds arguments/variables of the current function that is running)

• The set of values of all CPU registers pertaining to a process execution 
is called its CPU context



CPU context during execution

Code/data

Heap

Stack

…..

CPU

EIP (PC)

EAX EDX…..

ESP



Concurrent execution, context switching

• To run a process, OS allocates memory, loads CPU context
• EIP points to instructions, ESP points to stack of process, registers have process data
• CPU now begins to run the process

• OS runs multiple process concurrently by multiplexing on the same CPU

• Context switch: After running a process for some time, OS switches from 
one process to another

• How does context switch happen? OS saves the CPU context of the old 
process and loads the context of new process
• When EIP points to instruction of new process, new process starts to run

• Where is the context saved? 
• OS has a data structure called Process Control Block (PCB) for each process
• PCB (specifically, a PCB field called kernel stack) temporarily stores context of a 

process when it is not running



Context switch

Code/data

Heap

Stack

…..

CPU

EIP (PC)

EAX EDX…..

ESP

Code/data

Heap

Stack

…..

Process control blocks

User memory

Kernel memory

EIP (PC)

EAX EDX…..

ESP

CPU has 
switched 
execution 
from blue 
process to 
green process



Virtual memory
• Addresses assigned in memory image, that are used by CPU to load 

and store are virtual/logical addresses
• These virtual addresses are not actual addresses occupied by 

instructions/data of process, but assigned from 0 for convenience

• Actual addresses where instructions/data bytes of process are stored 
are called physical addresses
• RAM hardware needs physical addresses to fetch bytes

• CPU requests code/data at virtual addresses
• Translated to physical address so that RAM can fetch it

• Memory is allocated at granularity of pages (usually 4KB)
• Logical pages of a process are stored in physical frames in memory

• Logical page numbers translated to physical frame numbers



Virtual and physical address spaces

Code/data

Heap

Stack

…..

Address = 0

Address = 4GB

Virtual address space Physical address space

Address = X

Address = Y

Address = Z

Page (4KB)

CPU
Fetch address 5KB

Fetch address Y+1KB



Address translation with paging 

• On every memory access, a piece of hardware called MMU (memory 
management unit) translates virtual addresses to physical addresses

• Page table of a process stores the mapping of logical page number 
physical frame number
• OS builds the page table when allocation memory
• MMU uses this page table to translate addresses

• MMU looks up CR3 register of CPU (x86) which stores location of 
page table of current process
• Looks up page number in page table to translate address
• CR3 reset on every context switch

• Recent address translations cached in TLB (Translation Lookaside 
Buffer) located within MMU



Page number Offset

Frame number Offset

Virtual address

Physical address

Using page table

Page

CPU
Fetch address 5KB

Fetch address Y+1KB

Virtual address space Physical address space

Address = Y

Address = Z

Address = X

CR3

MMU

Page table 
(page 1 = frame y)



Hierarchical page tables

• Modern operating systems use hierarchical page tables

• 32-bit virtual address space (4GB), 2^12 byte (4KB) pages
• Each process can have up to 2^32/2^12 = 2^20 pages 

• Each page has a page table entry (PTE), so 2^20 PTEs per process

• Assuming each PTE is 4 bytes, all page table entries occupy 4*2^20 = 4MB

• Cannot store a large page table contiguously in memory, so page table 
of a process is stored in memory in page sized chunks
• Each 4KB page stores 2^10 PTEs, so 2^20/2^10 = 2^10 pages to store all PTEs

• Pointers to these “inner” pages stored in an outer page directory

• In 32-bit architectures, one outer page can store physical frame numbers of 
all 2^10 inner page table pages, so 2-level page table

• More levels in page table for 64-bit architectures



Page table lookup (walking the page table)

PTE Page table entry stores 
physical frame number

2^32/2^12 = 2^20 pages
2^20 PTEs in 2^10 pages 

Array of PTEs
Split among multiple pages

Physical frame numbers of 
2^10 inner pages stored in 
outer page directory

CPU’s CR3 has 
physical 

address of 
outermost 

page directory

10 bitsVirtual address
MMU 10 bits 12-bit offset

Frame number OffsetPhysical address

Multiple such levels of page 
tables can exist

Mapping 
cached in TLB



Demand Paging

Code/data

Heap

Stack

…..

Address = 0

Address = 4GB

Virtual address space Physical address space

Address = X

Address = Y

Address = Z

Page

CPU
Fetch address 5KB

Page fault

Another victim page swapped to disk 
Physical frame assigned to page
Page table updated
CPU instruction rerun



User mode and kernel mode

• Two kinds of CPU instructions
• Unprivileged instructions (regular program code) – part of user code

• Privileged instructions (access to hardware etc.) – part of OS code

• Modern CPUs have multiple privilege levels (rings)
• Privileged instructions are executed only when CPU is at high privilege level

• User code runs at low privilege level / user mode (CPU set to ring 3 in x86)
• If user runs privileged instructions, error is thrown

• OS code runs at high privilege level / kernel mode (CPU set to ring 0 in x86)
• Allowed to run privileged instructions

• Privilege level checked by CPU and MMU (every page has privilege bit)

• When user process needs to perform privileged action, must jump to 
privileged OS code, set CPU to high privilege, and then perform the action



Where is OS code located?

• OS is part of high virtual 
address space of every 
process

• Page table of process 
maps these kernel 
addresses to location of 
kernel code in memory

• Only one copy of OS code 
in memory, but mapped 
into virtual address 
space/page table of every 
process

• Process jumps to high 
virtual addresses to run 
OS code

Code/data

Heap

Stack

…..

Address = 0

Address = 3GB

OS
Address = 4GB

Kernel code 
in memory

Virtual address space Physical address space

Page

Address = X



Kernel mode execution

• When does a process go from user mode to kernel mode?
• System call: user requests some privileged action from OS (e.g., read syscall)

• Program fault: hardware raises a fault when user does some invalid action 
(e.g., privileged instruction in user mode, page fault)

• Interrupt: I/O devices request attention (e.g., packet has arrived on NIC)

• All these are called traps in general

• How is a trap handled?
• Change CPU privilege level to high privilege/kernel mode

• Jump to OS code that handles trap and run it

• Return to user code after handling trap

• Can choose to return to user code of another process too (if context switch)



What happens upon a trap?
• Trap handling begins by running a CPU instruction (int n in x86)

• Invoked by system call code or triggered by hardware event

• What happens during execution of int n?
• Change CPU privilege level
• Lookup Interrupt Descriptor Table (IDT) with index “n” to get address of kernel code 

that handles this trap  set EIP to this value
• Use kernel stack of process (in PCB) as the main stack  set ESP to this value
• Start saving user context onto the (kernel) stack

• Next, kernel code to handle the trap runs
• Save more user context, beyond what is saved by hardware instruction
• System call processing, interrupt handling etc.

• Finally, kernel invokes iret (x86) instruction to return back to user mode
• Reverses changes of int n



Trap handling

Code/data

Heap

Stack

…..

CPU

EIP (PC)

EAX EDX…..

ESP

OS

ring 0
Set EIP = IDT[n]

Set ESP = top of kernel stack

int n executed

Kernel stack of 
process (part of 
PCB kernel data 
structure)

User context saved



Interrupt Descriptor Table (IDT)

• Every interrupt has a number (IRQ)
• E.g., different hardware devices get different numbers, system call gets a 

different number

• IDT has an entry for every interrupt number (IRQ)
• IDT entry specifies values of EIP and a few such CPU registers

• CPU uses this EIP to locate kernel interrupt handling code

• Pointer to IDT is stored in CPU register
• Setting IDT pointer in CPU is a privileged operation, done by OS

• Much like how setting CR3 to page table is a privileged operation



Segmentation: An alternate to paging

Code/data

Heap

Stack

…..

Virtual address space Physical address space

Heap 
segment

Code 
segment

Stack 
segment

Base = BHeap
Limit = LHeap

Base = BStack
Limit = LStack

Base = BCode
Limit = LCode

CPU
Fetch address at 1KB
In code segment

Fetch address BCode +1KB

Base = Start address of segment
Limit = End address of segment



Segment

Address

Virtual address

Linear/physical address

Add segment base to offset

CPU
Fetch address at 1KB in code segment

Fetch address BCode+1KB

Virtual address space Physical address space
CS

MMU

Segment descriptor table
(BCode, BLimit, …)

Offset in segment

Code/data

DS SS

Base = BCode
Limit = LCode



Use of segmentation today

• What do operating systems use today? Segmentation or Paging?
• Hardware is built to do segmentation+paging, but only paging in practice

• Modern OSes use “flat” segments: Base = 0, Limit = MAX (4GB)

• Virtual address remains same after segmentation-based translation

• Paging is used to manage virtual memory in reality
• After dummy translation with segmentation, paging does actual translation

• After adding segment base (0), linear address is translated using page table

• Segmentation is used to check permissions (along with paging)
• Modern OSes have different flat segments for different privilege levels

• CS has two different values in user and kernel mode (base=0, limit=MAX, only 
privilege level is different)

• CS has high privilege level when executing privileged instructions



I/O subsystem: system calls, interrupts
• Processes use system calls to access I/O devices

• Process P1 makes system call, goes into kernel mode
• OS device driver initiates I/O request to device (e.g., disk, network card)
• If the system call is blocking (i.e., cannot be completed right away), OS 

performs context switch to another process P2
• When request completes, I/O device raises interrupt
• P2 goes into kernel mode, handles interrupt, marks P1 as ready to run
• P1 runs at a later time when scheduled by OS scheduler

• DMA: I/O devices perform Direct Memory Access to store I/O data in 
memory
• When initiating I/O request, device driver provides (physical) address of 

memory buffer in which to store I/O data (e.g., disk block)
• Device first stores data in DMA buffer before raising interrupt
• Interrupt handler need not copy data from device memory to RAM



Summary of OS concepts

• The concept of a process, memory image, CPU context
• CPU context is saved in PCB/kernel stack during user/kernel mode transitions of a 

process, as well as during context switch between processes

• Virtual memory, paging, address translation by MMU using page table
• OS is mapped into the virtual address space of every process
• Modern OSes use flat segments + paging

• User mode and kernel mode of a process, privileged instructions, CPU 
privilege levels
• Privileged instructions in OS code run at highest CPU privilege level (ring 0)

• Interrupt/trap processing in kernel mode
• Change privilege level, save user context, jump to kernel code, handle trap

• I/O handling


