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Recap of Operating Systems

• The following OS concepts are required to understand virtualization
• The concept of a process

• Virtual memory, paging, (segmentation)

• User mode and kernel mode of a process

• Interrupt/trap processing in kernel mode

• I/O handling



The concept of a process
• A process is a running program

• User writes a program, compiles it to generate an executable

• Executable contains machine/CPU instructions
• Every CPU architecture (e.g., x86) defines a certain set of instructions
• Compiler translates high level language code to instructions the CPU can run

• To create a process, OS allocates memory in RAM for the memory image of 
the process, containing
• Code and static/global data from the executable
• Heap memory for dynamic memory allocations (e.g., malloc)
• Stack to store arguments/return address/local variables during function calls

• All instructions and variables in the memory image are assigned memory 
addresses
• Starting at 0, up to some max value (4GB in 32-bit systems)
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Process execution
• When a process is run, CPU executes the code in the memory image

• When a process runs on the CPU, the CPU registers hold values 
related to the process execution
• The program counter (PC, or EIP in x86) has address of current instruction

• The CPU fetches the current instruction, decodes it, and executes it

• Any variables needed for operations are loaded from process memory into 
general purpose CPU registers (EAX, EBX, ECX, EDX etc in x86)

• After instruction completes, values are stored from registers into memory

• The stack pointer (SP, or ESP in x86) has address of top of stack (current stack 
frame holds arguments/variables of the current function that is running)

• The set of values of all CPU registers pertaining to a process execution 
is called its CPU context
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Concurrent execution, context switching

• To run a process, OS allocates memory, loads CPU context
• EIP points to instructions, ESP points to stack of process, registers have process data
• CPU now begins to run the process

• OS runs multiple process concurrently by multiplexing on the same CPU

• Context switch: After running a process for some time, OS switches from 
one process to another

• How does context switch happen? OS saves the CPU context of the old 
process and loads the context of new process
• When EIP points to instruction of new process, new process starts to run

• Where is the context saved? 
• OS has a data structure called Process Control Block (PCB) for each process
• PCB (specifically, a PCB field called kernel stack) temporarily stores context of a 

process when it is not running
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Virtual memory
• Addresses assigned in memory image, that are used by CPU to load 

and store are virtual/logical addresses
• These virtual addresses are not actual addresses occupied by 

instructions/data of process, but assigned from 0 for convenience

• Actual addresses where instructions/data bytes of process are stored 
are called physical addresses
• RAM hardware needs physical addresses to fetch bytes

• CPU requests code/data at virtual addresses
• Translated to physical address so that RAM can fetch it

• Memory is allocated at granularity of pages (usually 4KB)
• Logical pages of a process are stored in physical frames in memory

• Logical page numbers translated to physical frame numbers



Virtual and physical address spaces
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Address translation with paging 

• On every memory access, a piece of hardware called MMU (memory 
management unit) translates virtual addresses to physical addresses

• Page table of a process stores the mapping of logical page number 
physical frame number
• OS builds the page table when allocation memory
• MMU uses this page table to translate addresses

• MMU looks up CR3 register of CPU (x86) which stores location of 
page table of current process
• Looks up page number in page table to translate address
• CR3 reset on every context switch

• Recent address translations cached in TLB (Translation Lookaside 
Buffer) located within MMU
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Hierarchical page tables

• Modern operating systems use hierarchical page tables

• 32-bit virtual address space (4GB), 2^12 byte (4KB) pages
• Each process can have up to 2^32/2^12 = 2^20 pages 

• Each page has a page table entry (PTE), so 2^20 PTEs per process

• Assuming each PTE is 4 bytes, all page table entries occupy 4*2^20 = 4MB

• Cannot store a large page table contiguously in memory, so page table 
of a process is stored in memory in page sized chunks
• Each 4KB page stores 2^10 PTEs, so 2^20/2^10 = 2^10 pages to store all PTEs

• Pointers to these “inner” pages stored in an outer page directory

• In 32-bit architectures, one outer page can store physical frame numbers of 
all 2^10 inner page table pages, so 2-level page table

• More levels in page table for 64-bit architectures
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Demand Paging
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User mode and kernel mode

• Two kinds of CPU instructions
• Unprivileged instructions (regular program code) – part of user code

• Privileged instructions (access to hardware etc.) – part of OS code

• Modern CPUs have multiple privilege levels (rings)
• Privileged instructions are executed only when CPU is at high privilege level

• User code runs at low privilege level / user mode (CPU set to ring 3 in x86)
• If user runs privileged instructions, error is thrown

• OS code runs at high privilege level / kernel mode (CPU set to ring 0 in x86)
• Allowed to run privileged instructions

• Privilege level checked by CPU and MMU (every page has privilege bit)

• When user process needs to perform privileged action, must jump to 
privileged OS code, set CPU to high privilege, and then perform the action
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Kernel mode execution

• When does a process go from user mode to kernel mode?
• System call: user requests some privileged action from OS (e.g., read syscall)

• Program fault: hardware raises a fault when user does some invalid action 
(e.g., privileged instruction in user mode, page fault)

• Interrupt: I/O devices request attention (e.g., packet has arrived on NIC)

• All these are called traps in general

• How is a trap handled?
• Change CPU privilege level to high privilege/kernel mode

• Jump to OS code that handles trap and run it

• Return to user code after handling trap

• Can choose to return to user code of another process too (if context switch)



What happens upon a trap?
• Trap handling begins by running a CPU instruction (int n in x86)

• Invoked by system call code or triggered by hardware event

• What happens during execution of int n?
• Change CPU privilege level
• Lookup Interrupt Descriptor Table (IDT) with index “n” to get address of kernel code 

that handles this trap  set EIP to this value
• Use kernel stack of process (in PCB) as the main stack  set ESP to this value
• Start saving user context onto the (kernel) stack

• Next, kernel code to handle the trap runs
• Save more user context, beyond what is saved by hardware instruction
• System call processing, interrupt handling etc.

• Finally, kernel invokes iret (x86) instruction to return back to user mode
• Reverses changes of int n
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Interrupt Descriptor Table (IDT)

• Every interrupt has a number (IRQ)
• E.g., different hardware devices get different numbers, system call gets a 

different number

• IDT has an entry for every interrupt number (IRQ)
• IDT entry specifies values of EIP and a few such CPU registers

• CPU uses this EIP to locate kernel interrupt handling code

• Pointer to IDT is stored in CPU register
• Setting IDT pointer in CPU is a privileged operation, done by OS

• Much like how setting CR3 to page table is a privileged operation



Segmentation: An alternate to paging
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Use of segmentation today

• What do operating systems use today? Segmentation or Paging?
• Hardware is built to do segmentation+paging, but only paging in practice

• Modern OSes use “flat” segments: Base = 0, Limit = MAX (4GB)

• Virtual address remains same after segmentation-based translation

• Paging is used to manage virtual memory in reality
• After dummy translation with segmentation, paging does actual translation

• After adding segment base (0), linear address is translated using page table

• Segmentation is used to check permissions (along with paging)
• Modern OSes have different flat segments for different privilege levels

• CS has two different values in user and kernel mode (base=0, limit=MAX, only 
privilege level is different)

• CS has high privilege level when executing privileged instructions



I/O subsystem: system calls, interrupts
• Processes use system calls to access I/O devices

• Process P1 makes system call, goes into kernel mode
• OS device driver initiates I/O request to device (e.g., disk, network card)
• If the system call is blocking (i.e., cannot be completed right away), OS 

performs context switch to another process P2
• When request completes, I/O device raises interrupt
• P2 goes into kernel mode, handles interrupt, marks P1 as ready to run
• P1 runs at a later time when scheduled by OS scheduler

• DMA: I/O devices perform Direct Memory Access to store I/O data in 
memory
• When initiating I/O request, device driver provides (physical) address of 

memory buffer in which to store I/O data (e.g., disk block)
• Device first stores data in DMA buffer before raising interrupt
• Interrupt handler need not copy data from device memory to RAM



Summary of OS concepts

• The concept of a process, memory image, CPU context
• CPU context is saved in PCB/kernel stack during user/kernel mode transitions of a 

process, as well as during context switch between processes

• Virtual memory, paging, address translation by MMU using page table
• OS is mapped into the virtual address space of every process
• Modern OSes use flat segments + paging

• User mode and kernel mode of a process, privileged instructions, CPU 
privilege levels
• Privileged instructions in OS code run at highest CPU privilege level (ring 0)

• Interrupt/trap processing in kernel mode
• Change privilege level, save user context, jump to kernel code, handle trap

• I/O handling


