CS 695: Virtualization and Cloud
Computing

Lecture 5: Full virtualization

Mythili Vutukuru
IIT Bombay
Spring 2021



Full virtualization

* x86 and other hardware lacked virtualization support
* But cloud computing increased demand for virtualization

 VMWare workstation first to solve the problem of virtualization
existing operating systems on x86 (basis for this lecture)

* Type 2 hypervisor based on trap-and-emulate approach

* Key idea: dynamic (on a need basis) binary (not source) translation of
OS instructions

* Problematic OS instructions translated before execution

* Subsequently, hardware support for virtualization (previous lecture)
* Binary translation is higher overhead than hardware-assisted virtualization
* Used when hardware support not available



ring 3

Full virtualization VMM architecture

Host OS context

Guest VM physical memory

VMM userspace process

VMM context

Guest application

3. Guest OS and user
applications run with

4 less privilege
ring 1 L ioctl call Guest OS
6. VMM kernel driver or -loctl call to run VM
ring 0 userspace process handle 4. Privileged actions

exits ¢

VMM kernel driver
(Host OS)

2. Wor

d switch to VMM context

<«
5.VMM s

interrupts

(guest OS traps
here)

witches back to host on
, |/0 requests etc.

(Some tra

ps handled by VMM without world switch)



Host and VMM contexts

* Each context has separate
page tables, CPU registers,
IDTs and so on

* VMM context: VMM
occupies top 4MVIB of
address space

* Memory page containing
code/data of world switch
mapped in both contexts

* Host/VMM context
saved/restored in this
special “cross” page by VMM

Host
user processes

World switch
>

VMM kernel driver

Memory page of
world switch
code/data/context
mapped by both
page tables

code
data
context

Guest
user processes

Guest OS




Understand difference with QEMU/KVM

 Where is context saved?
« Common cross page mapped into both host and guest address spaces

 KVM: Common memory (VMCS) accessible by CPU in both contexts via special
instructions

* Privilege level of guest OS?

* Guest OS runsinring 1 (lower privilege). Instructions that do not run correctly at
lower privilege level are suitably translated to trap to VMM

 KVM: Guest OS runs in VMX ring 0. Some privileged instructions trigger exit to KVM

* How to trap to VMM?

* VMM is located in top 4MB of guest address space , guest OS traps to VMM for
privileged ops. World switch to host if VMM cannot handle trap in guest context

« KVM: VMM is not in guest context, guest traps to VMM in host via VM exit



Binary translation

e Guest OS binary is translated instruction-by-
instruction and stored in translation cache (TC) e
rpr
e Part of VMM memory 1€ p OLESSES
e ring 3
* Most code stays same, unmodified
* OS code modified to work correctly in ring 1
» Sensitive but unprivileged instructions modified to trap Guest OS
* Guest OS code executes from TCinring 1

* Privileged OS code traps to VMM
* E.g., 1/0O, set IDT, set CR3, other privileged ops
 Emulated in VMM context or by switching to host

* VMM sets sensitive data structures like IDT etc.
(maintains shadow copies)




Dynamic binary translation

VMM translator logic (ring 0) translates
guest code one basic block at a time to
produce a compiled code fragment (CCF)

» Basic block = sequence of instructions until a
jump/return

* Once CCF is created, move toring 1 to
run translated guest code

* Once CCF ends, “call out” to VMM logic,
compute next instruction to jump to,
translate, run CCF, and so on

* |f next CCF present in TC already, then
directly jump to it without invoking VMM
translator logic

* Optimization called chaining

Guest user

Basic block

Basic block

CCF

CCF

Guest OS

Translation cachering 1

VMM ring 0




Use of segmentation for protection
y po 4

* Paging protects user code
from kernel code via bit in cs,ds cs,ds
page table entry User (flat) (ring 3)

ages
* Segments are”flat” Pag Host Guest

* Separate flat segments for user processes user processes
user and kernel modes

* Segmentation is used to

protect VMM from guest v
A

* Flat segments truncated to ds
exclude VMM (ring 1)

Kernel
* CS of guest OS (ring 1) pages
points to VMM

* VMM (ring 0) segments Host OS
point to top 4MB

Guest OS

cs, ds
(ring 0)




Special case: GS segment (optional)

* Sometimes, translated guest code (ring 1) needs to access VMM data
structures like saved register values, program counters and so on

* In such cases, memory accesses are rewritten to use the GS segment,
e.g., virtual address “GS:someAddress”

* GSregister points to the 4AMB VMM area inring 1

* Ensures that the translated guest OS code can selectively access VMM data
structures

* Original guest code that uses GS (which is rare) is rewritten to use
another segment like %fs



summary

 VMWare workstation is example of full virtualization, where
unmodified OS is run on x86 hardware via dynamic binary translation

* VMM user process and kernel driver on host trigger world switch from host
OS context to VMM context

* World switch code/data is part of both host and VMM contexts, special cross
page accessible in both modes has saved contexts

* VMM is in top 4MB of address space in VMM context

* Translated guest code runs in ring 1, traps to VMM in ring O for privileged
operations (trap-and-emulate)

* Traps handled by VMM in ring 0, or VMM exits to host OS for emulation
* Segmentation used to protect VMM from guest OS

* “Bringing Virtualization to the x86 Architecture with the Original VMware Workstation”, Edouard Bugnion,
Scott Devine, Mendel Rosenblum, Jeremy Sugerman, Edward Y. Wang.

e “A Comparison of Software and Hardware Techniques for x86 Virtualization”, Keith Adams, Ole Agesen.



