
CS 695: Virtualization and Cloud 
Computing

Lecture 5: Full virtualization
Mythili Vutukuru

IIT Bombay

Spring 2021



Full virtualization

• x86 and other hardware lacked virtualization support
• But cloud computing increased demand for virtualization

• VMWare workstation first to solve the problem of virtualization 
existing operating systems on x86 (basis for this lecture)
• Type 2 hypervisor based on trap-and-emulate approach

• Key idea: dynamic (on a need basis) binary (not source) translation of 
OS instructions
• Problematic OS instructions translated before execution

• Subsequently, hardware support for virtualization (previous lecture)
• Binary translation is higher overhead than hardware-assisted virtualization

• Used when hardware support not available



Full virtualization VMM architecture

VMM userspace process

VMM kernel driver
(Host OS)

Guest VM physical memory

ring 3

ring 0

Host OS context VMM context

VMM
(guest OS traps 

here)

Guest application

1. ioctl call to run VM

2. World switch to VMM context

3. Guest OS and user 
applications run with 
less privilege

5. VMM switches back to host on 
interrupts, I/O requests etc.
(Some traps handled by VMM without world switch)

6. VMM kernel driver or 
userspace process handle 
exits

ring 1 Guest OS

4. Privileged actions 
trap to VMM



Host and VMM contexts
• Each context has separate 

page tables, CPU registers, 
IDTs and so on

• VMM context: VMM 
occupies top 4MB of 
address space 

• Memory page containing 
code/data of world switch 
mapped in both contexts
• Host/VMM context 

saved/restored in this 
special “cross” page by VMM

Host
user processes

Host OS

VMM kernel driver

Guest
user processes

Guest OS

VMM

code
data

context

World switch

Memory page of 
world switch 
code/data/context 
mapped by both 
page tables



Understand difference with QEMU/KVM

• Where is context saved?
• Common cross page mapped into both host and guest address spaces
• KVM: Common memory (VMCS) accessible by CPU in both contexts via special 

instructions 

• Privilege level of guest OS?
• Guest OS runs in ring 1 (lower privilege). Instructions that do not run correctly at 

lower privilege level are suitably translated to trap to VMM
• KVM: Guest OS runs in VMX ring 0. Some privileged instructions trigger exit to KVM

• How to trap to VMM?
• VMM is located in top 4MB of guest address space , guest OS traps to VMM for 

privileged ops. World switch to host if VMM cannot handle trap in guest context
• KVM: VMM is not in guest context, guest traps to VMM in host via VM exit



Binary translation
• Guest OS binary is translated instruction-by-

instruction and stored in translation cache (TC)
• Part of VMM memory

• Most code stays same, unmodified

• OS code modified to work correctly in ring 1

• Sensitive but unprivileged instructions modified to trap

• Guest OS code executes from TC in ring 1

• Privileged OS code traps to VMM
• E.g., I/O, set IDT, set CR3, other privileged ops

• Emulated in VMM context or by switching to host

• VMM sets sensitive data structures like IDT etc. 
(maintains shadow copies)

Guest
user processes

ring 3

Guest OS

VMM
ring 0

Translation 
cache (TC)

ring 1



Dynamic binary translation
• VMM translator logic (ring 0) translates 

guest code one basic block at a time to 
produce a compiled code fragment (CCF)
• Basic block = sequence of instructions until a 

jump/return

• Once CCF is created, move to ring 1 to 
run translated guest code

• Once CCF ends, “call out” to VMM logic, 
compute next instruction to jump to, 
translate, run CCF, and so on

• If next CCF present in TC already, then 
directly jump to it without invoking VMM 
translator logic
• Optimization called chaining

Guest user

Guest OS

VMM ring 0

Translation cache ring 1

Basic block

CCF

Basic block

CCF



Use of segmentation for protection

• Paging protects user code 
from kernel code via bit in 
page table entry
• Segments are”flat”

• Separate flat segments for 
user and kernel modes

• Segmentation is used to 
protect VMM from guest
• Flat segments truncated to 

exclude VMM

• CS of guest OS (ring 1) 
points to VMM

• VMM (ring 0) segments 
point to top 4MB

Host
user processes

Host OS

Guest
user processes

Guest OS

VMM

TC

User 
pages

Kernel
pages

cs,ds
(ring 3)

cs, ds 
(ring 0)

cs
(ring 1)

ds 
(ring 1)

cs,ds
(flat)



Special case: GS segment (optional)

• Sometimes, translated guest code (ring 1) needs to access VMM data 
structures like saved register values, program counters and so on

• In such cases, memory accesses are rewritten to use the GS segment, 
e.g., virtual address “GS:someAddress” 

• GS register points to the 4MB VMM area in ring 1
• Ensures that the translated guest OS code can selectively access VMM data 

structures

• Original guest code that uses GS (which is rare) is rewritten to use 
another segment like %fs



Summary
• VMWare workstation is example of full virtualization, where 

unmodified OS is run on x86 hardware via dynamic binary translation
• VMM user process and kernel driver on host trigger world switch from host 

OS context to VMM context

• World switch code/data is part of both host and VMM contexts, special cross 
page accessible in both modes has saved contexts

• VMM is in top 4MB of address space in VMM context

• Translated guest code runs in ring 1, traps to VMM in ring 0 for privileged 
operations (trap-and-emulate)

• Traps handled by VMM in ring 0, or VMM exits to host OS for emulation

• Segmentation used to protect VMM from guest OS

• “Bringing Virtualization to the x86 Architecture with the Original VMware Workstation”, Edouard Bugnion, 
Scott Devine, Mendel Rosenblum, Jeremy Sugerman, Edward Y. Wang. 

• “A Comparison of Software and Hardware Techniques for x86 Virtualization”, Keith Adams, Ole Agesen.


