CS 695: Virtualization and Cloud
Computing

Lecture 9: VM Live Migration

Mythili Vutukuru
IIT Bombay
Spring 2021

VM Live Migration - M

target PM

* Migrate an entire VM from one physical host to another
* All user processes and kernel state
e Without having to shut down the machine

* Why migrate VMs?
 Distribute VM load efficiently across servers in a cloud
* System maintenance

 Easier than migrating processes
* VM has a much narrower interface than a process

* Two main techniques: pre-copy and post-copy

“Live Migration of Virtual Machines”, Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,

Christian Limpach, lan Pratt, Andrew Warfield

“Post-Copy Based Live Virtual Machine Migration Using Adaptive Pre-Paging and Dynamic Self-Ballooning”,
Michael R. Hines and Kartik Gopalan

What is migrated? source PV

target PM

* CPU context of VM, contents of main memory
* Narrow interface, easier than process migration

 Disk: assume NAS (network attached storage) that is accessible from

both hosts, or local disk is mirrored
* We do not consider migrating disk data

 Network: assume both hosts on same LAN

* Migrate IP address, advertise new MAC address to IP mapping via ARP reply

* Migrate MAC address, let switches learn new MAC location

* Network packets redirected to new location (with transient losses)

* |/O devices are provisioned at target

* Virtual I/O devices easier to migrate, direct device assignment of physical

devices to VMs (device passthrough) makes migration harder

Steps to migrate a VM

* Broad steps in any migration technique: Suppose we are migrating a
VM from host A to host B
1. Setup target host B, reserve resources for the VM
2. Push phase: push some memory of VM from Ato B
3. Stop-and-copy: stop the VM at A, copy CPU context, and some memory
4. Pull phase: Start VM at host B, pull any further memory required from A
5. Clean up state from host A, migration complete

e Total migration time: time for steps 2,3,4
* Service downtime: time for step 3

* Other metrics: impact on application performance, network
bandwidth consumed, total pages transferred

Flavors of migration technigues

* Pure stop-and-copy: VM stopped, all state transferred to target, VM
restarts

* Too much downtime to be classified as “live” migration

* Pre-copy: most state is transferred in the push phase, followed by a
brief stop-and-copy phase

* Post-copy: VM stopped, bare minimum state required to run the VM
is transferred to the target host. Remaining state is pulled on demand
while the VM is running at the new location.

* Hybrid: a mix of pre-copy and post-copy. Some pushing of state
followed by stop-and-copy, followed by pulling of state on demand.

Pre-copy based live migration

+ Iterative pre-copy + stop-and-copy [{ueer [Fee e
for remailni ng memory Alternate 'physic'al host may be preselected fo.r mi.gration
Block devices mirrored and free resources maintained
* First push round copies all pages — . y
tage 1: Reservation
° Every rou nd COpieS pages dlrtled in | Initialize a container on theltarget host
. .Overhead due to copying c o B
pI‘EVIOUS rou nd Stage 2: lterat;:; P{'e copy
’ A page maybe copied mU|t|p|e times Egzzlzii?;ic;geﬁﬁ]:Eccessive rounds ®
. : : : e N —------- y - .-
Writable Worlgmg Set (WWS): pages Dounime TS e R
commonly written to (VM Out of Service) Suspend VM on host A
. . . . Generate ARP to redirect traffic to Host B
* WWS will be C0p|ed mU|t|p|e times Synchronize all remaining VM state to Host B
* Finally transferred in stop-and-co
y P Py Stage 4: Commitment *
* How many rounds? Stop whenrateof | | VMstateonHostAisreleased [
dirtying > rate of transfer VM runing nomally on e ¥
* Diminishing returns with more than few L starts on ot >
onnects to local devices
rounds _ Resumes normal operation

Impact of iterative pre-copy

Effect of Bandwidth and Pre—-Copy lterations on Migration Downtime
(Based on a page trace of OLTP Database Benchmark)

_Migration throughput: 128 Mbit/sec

4
. . i
= 35 - Page dirtying rate (WWS) Downtime after successive roundsy
b | i
(73] i] |
S 3 —] I l' LTa | |
E I o A 'III' ||I /'I ' .I ﬁ 'I ' ;
= 25 4 | fi/1 || [[| / I
g |I I| I| 'I' | | .I || | './'I |I| " | I|
2 1 | | — v I '
'g \ [SN M !]I - vlﬂlr N - II' [
}E 1.5 b ;, I '| A q |H AR f} A ﬁ
O b A \ JA / \ J
_ i | |) VL ﬂ \qfvw N vx/\ | ||,.I]
3 1 I"ﬁ““\,,- IBAN RN, /f. M. »\ﬂ-\j h\fv\, e A /-J V‘s/ ik “*-“ “"V//I WASEIAYA \!I ’ \| I
L)Ij 05 - L \'\,__,--'\.--J\------w-.__,-..-"ﬁ‘-" T o W b e ik | |
- 1 |I-
|
0 200 400 600 800 1000 1200

Elapsed time (sec)

* |If stop-and-copy, 512MB VM, 128 Mbps network, downtime = 32 sec

* With one pre-copy round, downtime goes to 2-3 sec
e ~1 second for 2 or more rounds

8000
7000
6000
5000
4000
3000
2000
1000

Rate of page dirtying (pages/sec)

Guest page table
Tracking dirty pages .

* Xen-based implementation Shadow page table in Xen

e Page tables in Xen maintained by guest ——
* Move to shadow page tables for migration
* Migration managed by control software in domainO

* Shadow page table constructed on demand for every round
* Dirty bitmap maintained for every round
* Any page access by guest = page fault to Xen, shadow page table updated
PTE marked as read-only by default in shadow
If valid write access, shadow PTE marked writeable, page marked dirty in bitmap
At end of round, dirty pages are marked for transfer in control software
Shadow page table and dirty bitmap reinitialized after every round
Last set of dirty pages copied in stop-and-copy

* Guest page table in target host changed based on new physical addresses

Some optimizations

* Avoid transferring page multiple times
* Before transmitting page, peek into the current round's dirty bitmap
» Skip transmission if page is already dirtied in ongoing round
* Move non-interactive processes generating dirty pages to wait queue

* Execution paused until migration completes

* Free up page cache and other unnecessary pages
* Reduce memory footprint
* Much like ballooning

Pre-copy performance

 Downtime: ~100 millisec, total migration time of few tens of seconds
* Worse for memory-intensive applications, better for interactive apps

Throughput (Mbit/sec)

1000

800

600

400

200

Effect of Migration on Web Server Transmission Rate

1st precopy, 62 secs further iterations.

870 Mbit/sec '
512Kb files
100 concurrent clients
| | |
10 20 30

" 9.8 secs
765 Mbit/sec %))
-:- x . .I ._‘ ‘="§- ;. !‘T: :1 !; .. ~|: My -_. _ A 'j-_ __?r ki, ! ‘:3!‘; !
694 Mbit/sec |
i
—{ — 165ms total downtime
Sample over 100ms
. Sample over 500ms
| | | | | | T | |
40 50 60 70 80 90 100 110 120

Elapsed time (secs)

|
130

Post-copy based live migration

. . P tion (I R Ti
* Avoid multiple transfers of repara on (live) setme ﬂe
same page as happens in pre- Downtime_
e [T

* Prepare target, stop VM, copy Round: 1 "N (Dirty Memory)
CPU context and minimum (a) Pre—Copy Timeline
memory to target .
 Start VM at target, pull memory Time
from source via demand paging Preparation (live) Resume Time (live)
¢ Memory access at target causes V/Downtlme

page fault, page fetched from Post-Copy Prepaging
source ——

(Non pageable
Memory)

(a) Post-Copy Timeline

Optimizations

* Active pushing: source proactively pushes important pages, in
addition to pulling pages via page faults

* Pre-paging: a “bubble” of pages around faulted page and proactively
pushed, in anticipation of future accesses

* Dynamic self-ballooning: VM periodically frees up unnecessary
memory and gives it back to hypervisor
* Reduces memory footprint, speeds up page transfer
* Performed carefully without hurting application performance
* Can be used to optimize pre-copy migration as well

* Hybrid: one pre-copy round, followed by post copy

Implementation details (Xen)

SOURCE VM

| Non-Pageable Memory W

DOMAIN 0 (at source)

Pageable Memory 7/

= Exchange

Migration Daemon (XenD)

)

J

MFN

Pseudo-Paged Memory

™

/

{ Memory-Mapped Pages
.

y - N

\

TARGET VM

RLLELEELELE L L L Ly v,
nd *

: Restore Memory Reservation *

4

New Page-Frames ‘

Page-Fault

N

Traffic

[

(mmu_update()

Source Hypervisor

Pre-Paging _

)

Traffic

* How are pages pulled at target? “Pseudo-paging”

* Page to a pseudo, in-memory, swap device (part of domain0). No memory copy, just transfer pages
across domains. Guest page table updated suitably.

* Only non-pageable memory transferred during stop-and-copy
 When guest resumes at target, fetch memory from pseudo-paging device via page fault mechanism

» Special swap device driver fetches from source over the network

* Alternative: use shadow page tables
* If page fault to non-existent page at target, trap to hypervisor, fetch from source and update

Target Hypervisor

What about failures?

* What if target machine fails during migration?

* Pre-copy can simply abort the migration, restart with another target
* With pre-copy, latest state is on source only, so can recover

* With post copy, source has stale memory, target has updated memory

* If target crashes during post copy, cannot recover application data (unless
some replication is performed)

Bandwidth (Mb/s)

Post copy performance

* Longer downtime as compared to pre-copy, but lower total migration
time, fewer page transfers, lesser disruption to application

Bandwidth and Downtime Effects

N at hieh eranulari Bandwidth and Downtime Effects
etperf results at high granularity

Netperf results at high granularity

100() } I | I 1 T T T T T T T T T T T T
B e S A W M KPR 11 A
900 K -l 900 l J‘ T m($ Il tredmidreaginny I \a
800 \ - 2001 \ _'
700+ = — 700l |
- 1. Normal 1 -:g 700 i 5. Migration |
600 Operation 5. Migration — S 600 1.Normal Complete |
L 3.CPU + Complete - = - Operation T
500 non-paged m = 500 m
| memory 1 g~ . i
400 = 2 400 / L .
i | = | 2.DSB @? i]
300 | R 300 Invocation] \ 4. CPU-state _|
i \ . - | Transfer _
200 | | % Post-Copy 4. Resume] 200 - [— Pre-Copy | 3
100+ 2.DSB * Pre-paging | 1001 3. Iterative \]
L Invocation | i Memory Copies |
| | | | | | | | | 1 | 1 1 | 1 | 1 1 | | | | 1
070 75 80 060 65 70 75
Time (seconds) Time (seconds)

Figure 9. Impact of post-copy on NetPerf bandwidth. Figure 10. Impact of pre-copy on NetPerf bandwidth.

Pages Transferred

Total Migration Time

200000 12
£180000 [Post-Copy [Post-Copy
$160000 B Pre-Copy ,‘310‘ B Pre-Copy
9140000 O g-
@
120000+)
~=100000- o 91
& 80000+ £,
S 60000+ =
Q. 40000 - 27
X 20000+
- 0
H* 0 o Coma NetPort Kernel Compile NetPerf
ernel L.ompiie etrer SpecWeb2005 BitTorrent
SpecWeb2005 BitTorrent P
Downtime
2000
1800 - [Post-Copy
~ 1600+ M Pre-Copy
S 1400
2 12001
= 1000 -
£ 800
© 600-
.E 400 - I
200 |
: -~ EN]
Kernel Compile NetPerf
SpecWeb2005 BitTorrent

Summary

* VM live migration techniques
* |terative pre-copy vs post-copy via demand paging
* Implementation details on Xen
* Performance comparison

e Which is better?

* Pre-copy suited for interactive application
* Post copy is better for memory-intensive applications with large WWS
* Hybrid techniques are also used

