
CS 744 Autumn 2017

Mid-semester Examination

Name

Roll Number

Question no. Marks obtained Question no. Marks obtained

1 2

3 4

5–6 7–9

10–19 Total

Please read the following instructions carefully before you start.

• The paper has 19 questions, for a total of 40 marks, accounting for 25% of your grade.

• You must write your answers in this question booklet itself and turn it in. You need not turn in any
rough sheets you may use. Please write legibly in the space provided.

• Questions 1–4 carry 5 marks each and questions 5–9 carry 2 marks each. You must explain your
answers clearly in the space provided.

• Questions 10–19 carry 1 mark each. For these questions, there is no need to explain your answers.

• Please avoid asking for clarifications, unless you think there is a mistake in the question itself.



1. Consider the readers and writers problem as discussed in class. We wish to implement lock-
ing/synchronization between reader and writer threads/processes. We wish to give preference to
writers, where no waiting writer should be kept waiting for longer than necessary. For exam-
ple, suppose reader R1 is actively reading. And a writer W1, and then a reader R2, arrive while
R1 is reading. While it might be fine to allow R2 in, this could prolong the waiting time of W1
beyond the absolute minimum of waiting until R1 finishes. Therefore, if we want writer prefer-
ence, R2 should not be allowed before W1. Your goal is to write down pseudocode for read lock,
read unlock, write lock, and write unlock functions that the threads should call, in order to realize
read/write locks with writer preference. You must use only simple locks/mutexes and conditional
variables in your solution. Please pick sensible names for your variables so that your solution is
readable.

(a) Variables for synchronization and their initial values:

(b) ReadLock

(c) ReadUnlock

(d) WriteLock

(e) WriteUnlock



2. Consider an application that is composed of one master process and multiple worker processes
that are forked off the master at the start of application execution. All processes have access to
a pool of shared memory pages, and have permissions to read and write from it. This shared
memory region (also called the request buffer) is used as follows: the master process receives
incoming requests from clients over the network, and writes the requests into the shared request
buffer. The worker processes must read the request from the request buffer, process it, and write
the response back into the same region of the buffer. Once the response has been generated, the
server must reply back to the client. The server and worker processes are single-threaded, and the
server uses event-driven I/O to communicate over the network with the clients (you must not make
these processes multi threaded). You may assume that the request and the response are of the same
size, and multiple such requests or responses can be accommodated in the request buffer. You may
also assume that processing every request takes similar amount of CPU time at the worker threads.

Using this design idea as a starting point, describe the communication and synchronization mech-
anisms that must be used between the server and worker processes, in order to let the server
correctly delegate requests and obtain responses from the worker processes. Your design must
ensure that every request placed in the request buffer is processed by one and only one worker
thread. You must also ensure that the system is efficient (e.g., no request should be kept waiting
if some worker is free) and fair (e.g., all workers share the load almost equally). While you can
use any IPC mechanism of your choice, ensure that your system design is practical enough to be
implementable in a modern multicore system running an OS like Linux. You need not write any
code, and a clear, concise and precise description in English should suffice.



3. Consider a multi-tier server system. The frontend server has several worker threads running on a
single CPU core. Upon receiving a request, the server identifies a free worker thread and assigns
the request to the worker for all further processing. Processing a request requires 0.1 milliseconds
of initial computation in the worker thread, followed by at least 5 milliseconds (may be more if
there is queueing) of wait time to perform blocking I/O operations to a backend database. The
OS scheduler takes care of context switching out the worker thread during its blocking period, so
that CPU cycles are not consumed while waiting for a reply from the backend database. You may
ignore the CPU time taken for all other operations, e.g., reading and writing over the network,
context switching between threads, and so on.

(a) Assume that the server uses a fixed pool of worker threads. What is the minimum number of
worker threads in the pool that will ensure that the frontend server’s CPU is fully utilized?
What is the throughput of the frontend server (in units of requests/second) when it is fully
saturated?

(b) Now assume that the server uses a fixed pool of 10 threads to handle the requests. What is
the maximum possible throughput of the frontend server?

(c) From now on, assume that the server does not use a fixed pool of threads. Instead, it spawns
a new worker thread every time a request arrives, and the thread exits once the request pro-
cessing completes. Assume that requests arrive at the frontend server at the rate of 1000
requests/sec, and the average time to process the request and return a response by frontend
server is measured to be 10 milliseconds. In this scenario, what is the average number of
worker threads in the system at any point of time?

(d) In the previous part, compute the throughput and utilization of the frontend server.

(e) Consider the scenario in part (c) once again. Assume that the database has been upgraded to
reduce the blocking wait time of a request from 5 milliseconds to 1 millisecond. What met-
rics (among throughput, utilization, response time) of the server do you expect will change,
and how?



4. Consider a computer system with a single core CPU, a single level of cache of size 4MB, and
main memory. It takes one CPU cycle to access a memory byte if it is in cache, and 145 cycles
if the memory access incurs a cache miss and must be fetched from main memory. The size of
the cacheline is 64 bytes. Consider two arrays A and B, each of N = 220 integers (assume that
an integer requires 4 bytes of storage). The arrays are stored contiguously in memory, and are
aligned at cacheline boundaries. Each case below shows an access pattern of the arrays A and B,
and the parameters of the cache. For each case, calculate the average time required to access a
single element of array A (averaged over all accesses to A in the specified case). Assume that the
cache is empty at the start of every scenario, and no other process is using the cache. Assume that
the cache does not use any optimizations like prefetching.

(a) A direct mapped cache, and every element of A is read in sequence as follows.

for(i = 0; i < N; i++)
read A[i];

(b) A direct mapped cache, and every element of A and B is read in sequence as follows.

for(i = 0; i < N; i++)
read A[i];
read B[i];

(c) A fully associative cache, and the access pattern is as shown in part (b).

(d) A 2-way set associative cache, and the access pattern is as shown in part (b).

(e) A 2-way set associative cache, and the access pattern is as follows.

for(i = 0; i < N; i++)
read A[i];

for(i = 0; i < N; i++)
read A[i];



5. Consider a system where each process has a virtual address space of 2v bytes. The physical address
space of the system is 2p bytes, and the page size is 2k bytes. The size of each page table entry is
2e bytes. The system uses hierarchical paging with l levels of page tables, where the page table
entries in the last level point to the actual physical pages of the process. Assume l ≥ 2. Let v0
denote the number of (most significant) bits of the virtual address that are used as an index into
the outermost page table during address translation.

(a) Derive an expression for l in terms of v, p, k, and e.

(b) Derive an expression for v0 in terms of l, v, p, k, and e.

6. Consider a server program running in an online market place firm. The program receives buy and
sell orders for one type of commodity from external clients. For every buy or sell request received
by the server, the main process spawns a new buy or sell thread. We require that every buy thread
waits until a sell thread arrives, and vice versa. A matched pair of buy and sell threads will both
return a response to the clients and exit. You may assume that all buy/sell requests are identical
to each other, so that any buy thread can be matched with any sell thread. The code executed
by the buy thread is shown below (the code of the sell thread would be symmetric). You have
to write the synchronization logic that must be run at the start of the execution of the thread to
enable it to wait for a matching sell thread to arrive (if none exists already). Once the threads
are matched, you may assume that the function completeBuy() takes care of the application
logic for exchanging information with the matching thread, communicating with the client, and
finishing the transaction. You may use any synchronization technique of your choice.

//declare any variables here

buy_thread_function:
//start of sync logic

//end of sync logic
completeBuy();



7. Consider a 8MB cache with 64 byte cache lines. The system uses 32 bit memory addresses. How
many bits are required to be store the tag in a cache entry in each case below?

(a) The cache is set associative with 8-way associativity.

(b) The cache is direct mapped.

8. Consider a web server that uses non-blocking event-driven I/O for network communication, but
uses blocking I/O to access the disk. The web server wishes to run as multiple processes, so that
the server can be available even if some subset of the processes block on disk I/O. Further, the web
server wishes to receive web requests only on port 80, and not at different ports in the different
processes. Suggest one mechanism by which the multiple server processes can handle requests
arriving on a single port on the system.

9. Consider a CPU-bound application server running on a single core CPU. The server receives two
types of requests: the harder requests require 10 milliseconds of computation at the server, while
the easier requests require 2 millisecond each. Requests arrive at the server at the rate of 20
requests/sec, with the incoming traffic having an equal mix of easy and hard requests. What is the
utilization of the server?



10. Consider a process with 9 logical pages, out of which 3 pages are mapped to physical frames. The
process accesses one of its 9 pages randomly. What is the probability that the access results in a
TLB hit and a subsequent page fault?

11. Consider a process that uses a user level threading library to spawn 10 user level threads. The
library maps these 10 threads on to 2 kernel threads. The process is executing on a 8-core system.
What is the maximum number of threads of a process that can be executing in parallel?

12. Consider a multicore system where multiple CPU cores have their separate L1 caches, and use
the MESI cache coherence protocol between them. A cache line is in the modified state in the L1
cache of core 0, and a thread on core 1 wishes to read the same cache line. What will be the state
of the cache line in core 0 after this event?

13. Consider the scenario in the previous question with one change: the thread in core 1 now wishes
to write to the same cache line. What will be the state of the cache line in core 0 after this event?

14. A C program is written using the system calls of the POSIX API, and compiled to execute on
a machine based on the Intel x86 architecture running a POSIX-compliant version of Linux. We
wish to execute this program on a different POSIX-compliant OS running on a system architecture
based on a different underlying instruction set. Should the C program have to be rewritten in order
to execute correctly in the new environment? Answer yes/no.

15. In the previous question, should the program binary generated for the old environment have to be
recompiled to execute correctly in the new environment? Answer yes/no.

16. A process P forks a child process C. P then exits while C is still running. Then, process C becomes
a zombie process. Answer true/false.

17. The mmap system call can be used to increase the size of the heap of a process. Answer true/false.

18. Consider an OS using demand paging. The page table entry of a page of a process is created only
when the page is first accessed (read/written). Answer true/false.

19. A program has an array of N integers, which is shared across N kernel threads. The kernel thread
i updates the i-th integer in the array during its execution. This design ensures no sharing of cache
lines between the threads when the threads execute on separate CPU cores. Answer true/false.


