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Abstract Table 1 surveys the system models in a variety of

Workload generators may be classified as based on web related workload generators used by systems re-
closed system model, where new job arrivals are onlysearchers today. The table is by no means complete;
triggered by job completions (followed by think time), however it illustrates the wide range of workload gen-
or an open system model, where new jobs arrive indeerators and benchmarks available. Most of these gen-
pendently of job completions. In general, system designerators/benchmarks assume a closed system model, al-
ers pay little attention to whether a workload generator ighough a reasonable fraction assume an open one. For
closed or open. many of these workload generators, it was quite difficult

Using a combination of implementation and simula-to figure out which system model was being assumed —
tion experiments, we illustrate that there is a vast differ-the builders often do not seem to view this as an impor-
ence in behavior between open and closed modelsin rea]ant factor worth mentioning in the documentation. Thus
world settings. We synthesize these differences into eighihe “choice” of a system model (closed versus open) is
Simp|e gu|d|ng princip|esl which serve three purposes_often not really a researcher’s ChOice, but rather is dic-
First, the princip|es Specify how Schedu”ng po"cies aretated by the avallablllty of the workload generator. Even
impacted by closed and open models, and explain the diftvhen a user makes a conscious choice to use a closed
ferences in user level performance. Second, the prinmodel, it is not always clear how to parameterize the
ciples motivate the use of partly open system modelsclosed system (e.g. how to set the think time and the
whose behavior we show to lie between that of closednultiprogramming level — MPL) and what effect these
and open models. Finally, the principles provide guide-Parameters will have.

lines to system designers for determining which system In this paper, we show that closed and open system

model is most appropriate for a given workload. models yield significantly different resulteven when
_ both models are run with the same load and service de-
1 Introduction mands Not only is the measured response time differ-

Every systems researcher is well aware of the impor€nt under the two system models, but the two systems
tance of setting up one’s experiment so that the systerf@SPond fundamentally differently to varying parameters
being modeled is “accurately represented.” Represen@nd to resource allocation (scheduling) policies.

ing a system accurately involves many things, includ- We obtain our results primarily via real-world imple-
ing accurately representing the bottleneck resource banentations. Although the very simplest models of open
havior, the scheduling of requests at that bottleneck, andnd closed systems can be compared analytically, analy-
workload parameters such as the distribution of servicesis alone is insufficient to capture the effect of many of
request demands, popularity distributions, locality dis-the complexities of modern computer systems, especially
tributions, and correlations between requests. Howevesize based scheduling and realistic job size distributions
one factor that researchers typically pay little attenton Real-world implementations are also needed to capture
is whether the job arrivals obey a closed or an open systhe magnitude of the differences between closed and
tem model. In aclosed system modeiew job arrivals open systems in practice. The case studies we consider
are only triggered by job completions (followed by think are described in Section 4. These include web servers re-
time), as in Figure 1(a). By contrast in apen system ceiving static HTTP requests in both a LAN and a WAN
mode] new jobs arrive independently of job completions, setting; the back-end database in e-commerce applica-
as in Figure 1(b). tions; and an auctioning web site. In performing these
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Figure 1:lllustrations of the closed, open, and partly-open systesdets.

case studies, we needed to develop a flexible suite ahat, again, one must be very careful that one is correctly
workload generators, simulators, and trace analysis toolmodeling the application as closed or open, since the im-
that can be used under closed, open, and other systepact of scheduling turns out to be very different under
models. The details of this suite are also provided in Secepen and closed models. For example, our principles
tion 4. show that favoring short jobs is highly effective in im-
Our simulation and implementation experiments leadproving mean response time in open systems, while this
us to identifyeight principles summarizing the observed is far less true under a closed system model. We find
differences between open and closed system model#hat closed system models only benefit from scheduling
many of which are not obvious. These principles mayunder a narrow range of parameters, when load is mod-
be categorized by their area of impact. erate and the MPL is very high. The message for system
The first set of principles (see Section 5.1) describedesigners is that understanding whether the workload is
the difference in mean response tiniader open and better modeled with an open or closed system is essential
closed system models and hawrious parameters af- in determining the effectiveness of scheduling.
fect these differencesWe find, for example, that for a The third set of principles (see Section 6) deal with
fixed load, the mean response time for an open systerpartly-open systemsWe observe that while workload
model can exceed that for a closed system model by agenerators and benchmarks typically assume either an
order of magnitude or more. Even under a high MPL,open system model or a closed system model, neither
the closed system model still behaves “closed” with re-of these is entirely realistic. Many applications are best
spect to mean response time, and there is still a signifrepresented using an “in-between” system model, which
icant difference between mean response times in closede call the partly-open model. Our principles spec-
and open systems even for an MPL of 1000. With respecify those parameter settings for which the partly-open
to service demands (job sizes), while their variability hasmodel behaves more like a closed model or more like
a huge impact on response times in open systems, it ha open model with respect to response time. We also
much less of an effect in closed models. The impact offind that, counter to intuition, parameters like think time
these principles is that a system designer needs to bewahgive almost no impact on the performance of a partly-
of taking results that were discovered under one systemapen model. The principles describing the behavior of
model (e.g. closed model) and applying them to a seconthe partly-open system model are important because real-
system model (e.g. open model). world applications often fit best into partly-open models,
The second set of principles (see Section 5.2) deal witnd the performance of these models is not well under-
the impact of schedulingn improving system perfor- stood. In particular, the effect of system parameters and
mance. Scheduling is a common mechanism for improvscheduling on performance in the partly open system —
ing mean response time without purchasing additionapoints which our principles address — are not known.
resources. While Processor-Sharing scheduling (PS) arf@ur results motivate the importance of designegsa-
First-Come-First-Served (FCFS) are most commonlytile workload generators that are able to support open,
used in computer systems, many system designs givelosed, and partly open system models. We create such
preference to short jobs (requests with small service deversatile workload generators for several common sys-
mands), applying policies like Non-Preemptive-Shortesttems, including web servers and database systems, and
Job-First (SJF) or Preemptive-Shortest-Job-First (PSJAYse these throughout our studies.
to disk scheduling [51] and web server scheduling [19, The third set of principles also provides system de-
33, 15]. When system designers seek to evaluate a nesigners with guidelines fdrow to choose a system model
scheduling policy, they often try it out using a workload when they are forced to pick a workload generator that
generator and simulation test-bed. Our work will showis either purely closed or purely open, as are almost all



Type of benchmark

| Name

| System model

Model-based web workload generator | Surge [10], WaspClient [31], Geist [22], WebStone [47], Closed
WebBench [49], MS Web Capacity Analysis Tool [27]
SPECWeb96 [43], WAGON [23] Open
Playback mechanisms for HTTP request MS Web Application Stress Tool [28], Webjamma [2],
streams Hammerhead [39], Deluge [38], Siege [17] Closed
httperf [30], Sclient [9] Open
Proxy server benchmarks Wisconsin Proxy Benchmark [5], Web Polygraph [35], Ink- Closed
tomi Climate Lab [18]
Database benchmark for e-commencd@PC-W [46] Closed
workloads
Auction web site benchmark RUBIS[7] Closed
Online bulletin board benchmark RUBBO0SI[7] Closed
Database benchmark for online transacTPC-C [45] Closed
tion processing (OLTP)
Model-based packet level web traffic IPB (Internet Protocol Benchmark) [24], GenSyn [20] Closed
generators WebTraf [16], trafgen [14]
NS traffic generator [52] Open
Mail server benchmark SPECmail2001 [42] Open
Java Client/Server benchmark SPECJ2EE [41] Open
Web authentication and authorization AuthMark [29] Closed
Network file servers NetBench [48] Closed
SFS97R1 (3.0) [40] Open
Streaming media service MediSyn [44] Open

Table 1:A summary table of the system models underlying standardelsted workload generators.

workload generators (see Section 7). We consider tetime that the serveris busy, and is the product of the mean
different workloads and use our principles to determinethroughputX and the mean service demand (processing
for each workload which system model is most appropri-requirement)z[S].
ate for that workload: closed, open, or partly-open. To Figure 1(b) depicts anpen systemconfiguration. In
the best of our knowledge, no such guide exists for sysan open system model there is a stream of arriving users
tems researchers. with average arrival rat&. Each user is assumed to sub-
mit one job to the system, wait to receive the response,
and then leave. The number of users queued or running
2 Closed, open, and partly-open systems at the system at any time may range from zero to infinity.
In this section, we define how requests are generated ur-he differentiating feature of an open system is that-a
der closed, open, and partly-open system models. guest completion does not trigger a new request: a new
Figure 1(a) depicts alosed systentonfiguration. In ~ request is only triggered by a new user arrivais be-
a closed system model, it is assumed that there is sonf@re, response timerl’, is defined as the time from when
fixed number of users, who use the system forever. Thig request is submitted until it is completed. Tezver
number of users is typically called thaultiprogramming  load is defined as the fraction of time that the server is
level (MPL) and denoted byV. Each of theseV users  busy. Here loadp, is the product of the mean arrival rate
repeats these 2 steps, indefinitely: (a) submit a job, (bpf requests), and the mean service demafs].
receive the response and then “think” for some amount Neither the open system model nor the closed system
of time. In a closed systena new request is only trig- model is entirely realistic. Consider for example a web
gered by the completion of a previous request all site. On the one hand, a user is apt to make more than
times there are some number of use¥s,;,x, who are  one request to a web site, and the user will typically wait
thinking, and some number of uset§...n, who are  for the output of the first request before making the next.
either running or queued to run in the system, wherdn these ways a closed system model makes sense. On
Nipink + Nsystem = N. Theresponse timeT, in a  the other hand, the number of users at the site varies over
closed system is defined to be the time from when a retime; there is no sense of a fixed number of ugérshe
quest is submitted until it is received. In the case whergooint is that users visit to the web site, behave as if they
the system is a single server (e.g. a web server), thare in a closed system for a short while, and then leave
server load denoted byp, is defined as the fraction of the system.



Motivated by the example of a web site, we study a In order to fairly compare the open and closed sys-
more realistic alternative to the open and closed systentems, we will hold the system loador the two systems
configurations: thepartly-open systemshown in Fig- equal,and study the effect of open versus closed system
ure 1(c). Under the partly-open model, users arrive acmodels on mean response time. The load in the open sys-
cording to some outside arrival process as in an open sysem is specified by, sincep = AE[S]. Fixing the load
tem. However, every time a user completes a request af a closed system is more complex, since the load is af-
the system, with probability the user stays and makes fected by many parameters including the MPL, the think
a followup request (possibly after some think time), andtime, the service demand variability, and the scheduling
with probability1 — p the user simply leaves the system. policy. The fact that system load is influenced by many
Thus the expected number of requests that a user makesore system parameters in a closed system than in an
to the system in a visit is Geometrically distributed with open system is a surprising difference between the two
meanl/(1 — p). We refer to the collection of requests systems.Throughout, we will achieve a desired system
a user makes during a visit to the system asesasion load by adjusting the think time of the closed system (see
and we define thiengthof a session to be the number of Figure 7(a)) while holding all other parameters fixed.
requests in the session/visit. Teerver loads the frac- The scheduling policies we study in this work span the
tion of time that the server is busy equaling the productrange of behaviors of policies that are used in computer
of the average outside arrival rak¢ the mean number systems today.
of requests per visit/[ R], and the mean service demand FCFS (First-Come-First-Served) Jobs are processed in

E[S]. For a given load, whep is small, the partly-open the same order as they arrive.
model is more similar to an open model. For lapgéhe  pS (Processor-Sharing) The server is shared evenly
partly-open model resembles a closed model. among all jobs in the system.

_ PESJF (Preemptive-Expected-Shortest-Job-First) The
3 Comparison methodology job with the smallest expected duration (size) is

In this section we discuss the relevant parameters and _9'V&Nn preemptive priority. o
metrics for both the open and the closed system modelSRPT (Shortest-Remaining-Processing-Time-First): At
and discuss how we set parameters in order to compare ~ €Very moment the request with the smallest remain-
open and closed system models. ing processing requirement is given priority.
Throughout the paper we choose the service demanfBELJIF (Preemptive-Expected-Longest-Job-First) The

distribution to be the same for the open and the closed ~ J0P with the longest expected size is given preemp-
system. In the case studies the service demand distri- (V€ Priority. PELJF is an example of a policy that
bution is either taken from a trace or determined by the ~ Performs badly and is included to understand the
benchmark used in the experiments. In the model-based ~ full range of possible response times.
simulation experiments later in the paper, we use hy- .
perexponentia?l service demands, in (F)erper to capture t}élé Real-world case studies
highly variable service distributions in web applications In this section, we compare the behavior of four differ-
Throughout, we measure the variability in the service de-ent applications under closed, open, and partly open sys-
mand distribution using the square coefficient of varia-tem models. The applications include (a) a web server
tion, C2. The think time in the closed systei, follows  delivering static content in a LAN environment, (b) the
an exponential distribution, and the arrival process in thedatabase back-end at an e-commerce web site, (c) the
open system is either a Poisson arrival process with avapplication server at an auctioning web site, and (d) a
erage rate\, or is provided by traces. The results for web server delivering static content in a WAN environ-
all simulations and experiments are presented in terms gfent. These applications vary in many respects, includ-
mean response times and the system Joathile we do  ing the bottleneck resource, the workload properties (e.g.
not explicitly report numbers for another important met- job size variability), network effects, and the types of
ric, mean throughput, the interested reader can directlgcheduling policies considered. We study applications
infer those numbers by interpreting load as a simple scal(a), (b), and (d) through full implementation in a real test-
ing of throughput. In an open system, the mean throughbed, while our study of application (c) relies on trace-
put is simply equal to\ = p/E[S], which is the same as based simulation.
throughputin a closed system. As part of the case studies, we develop a set of work-
load generators, simulators, and trace analysis tools that
~ Note that we choose a Poisson arrival process (i.e. expahent facilitate experimentation with all three system mod-
inter-arrival times) and exponential think times in prderal[qw the els: open, closed, and partly-open. For implementation-
open and closed systems to be as parallel as possible. Tiirg sen- . -

based case studies we extend the existing workload gen-

derestimates the differences between the systems when bnosty - s
arrival processes are used. erator (which is based on only one system model) to




enable all three system models. For the case studieBntries to the list are generated during runtime as fol-
based on trace-driven simulation, we implement a versalows: Whenever a request completes, an exponentially
tile simulator that models open, closed, and partly-operdistributed think timeZ is added to the current tinig,,..
systems and takes traces as input. We also develop toodsd the resulf + t.,..- is inserted into the list of arrival
for analyzing web traces (in Common Logfile Format or times.
Squid log format) to extract the data needed to parame- In the case of the partly-open system, each entry in
terize workload generators and simulators. the input file now defines sessionrather than an indi-
Sections 4.1 — 4.4 provide the details of the case studvidual request. An entry in the input file takes the form
ies. The main results are shown in Figures 2 and 4. FoK t;, fi,, ..., fi, > wheret; specifies the arrival time of
each case study we first explain the tools developed fothe session and f;,,..., fi, > is the list of files to be
experimenting in open, closed, and partly-open modelstequested during the session. As before, a list with ar-
We then then describe the relevant scheduling policiesival times is maintained according to which requests are
and their implementation, and finally discuss the resultsmade. The list is initialized with the session arrival times
The discussions at the end of the case studies are meahtfrom the input file. To generate the arrivals within a
only to highlight the key points; we will discuss the dif- session, we use the same method as described for the
ferences between open, closed, and partly-open systempsed system above: after requgst , completes we
and the impact of these differences in much more detairrange the arrival of requeft by adding an entry con-

in Sections 5 and 6. taining the arrival timeZ + t.,,,-- to the list, where,,.,
is the current time and is an exponentially distributed
4.1 Static web content think time.

Our first case study is an Apache web server running on All the input files for the workload generator are cre-

Linux and serving static content, i.e. requests of the forrrated based on a web trace. We modify the Webalizer tool
“Get me a file,” in a LAN environment. Our experimen- [12] to parse a web trace and then extract the information

tal setup involves six machines connected by a 10/10@eeded to create the input files for the open, closed, and
Ethernet switch. Each machine has an Intel Pentium lipartly-open system experiments. In the case of the open
700 MHz processor and 256 MB RAM, and runs Linux. system, we simply output the arrival times together with

One of the machines is designated as the server and rufise names of the requested files. In the case of the closed

Apache. The others generate web requests based onsistem, we only extract the sequence of file names. Cre-
web trace. ating the input file for the partly-open system is slightly

Workload generation: In this case study we generate more involved since it requires identifying the sessions

static web workloads based on a trace. Below we firsf(n a trace. A common approach for identifying sessions

describe our workload generator which generates web re-"?md the one taken by Webah;er) IS to group all succes-
. sive requests by the same client (i.e. same IP address)
guests following an open, closed, or partly-open model:

) . nto one session, unless the time between two requests

We then describe the tool for analyzing web traces tha ) ) )
. ) exceeds some timeout threshold in which case a new ses-
produces input files needed by the workload generator.;, . . .
. . : sion is started. In our experiments, we use the timeout
Finally we briefly describe the actual trace that we are . : .
L parameter to specify the desired average session length.

using in our work.

. . . The trace we use consists of one day from the 1998
Our workload generator is built on top of the Sclient[9] World Soccer Cup, obtained from the )I/nternet Traffic

Wo_rkload generator. The Sclient workload generator USER  hive [21]. Virtually all requests in this trace astatic
a simple open system model, whereby a new request for

file y is made exactly every msec. Sclient is designed Number | Mean Vafiagi“ty Min Max
as a single process that manages all connections using | °fRed. | size () size | size
the sel ect system call. After each call teel ect , 45107 | 5KB 96 41 bytes| 2MB

Sclient checks whether the currenimsec interval has Scheduling: Standard scheduling of static requests in a
passed and if so initiates a new request. We generaliz&eb server is best modeled by processor sharing (PS).
Sclient in several ways. However, recent research suggests favoring requests for
For the open system, we change Sclient to make resmall files can improve mean response times at web
guests based on arrival times and filenames specified iservers [19]. In this section we therefore consider both
an input file. The entries in the input file are of the form PS and SRPT policies.
< t;, fi >, wheret; is a time andf; is a file name. We have modified the Linux kernel and the Apache
For the closed system, the input file only specifies theWeb server to implement SRPT scheduling at the server.
names of the files to be requested. To implement close#or static HTTP requests, the network (access link out of
system arrivals in Sclient, we have Sclient maintain a listthe server) is typically the bottleneck resource. Thus, our
with the times when the next requests are to be madesolution schedules the bandwidth on this access link by
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Figure 2:Results for real-world case studies. Each row shows thdteefar a real-world workload and each column shows the
results for one of the system models. In all experimentstivititlosed system model the MPL is 50. The partly-open system
at fixed loadd.9.

controlling the order in which the server’s socket buffersthe static web implementation under closed, open, and
are drained. Traditionally, the socket buffers are drainegartly open workloads in a LAN environment. Upon first
in Round-Robin fashion (similar to PS); we instead giveglance, it is immediately clear that the closed system re-
priority to sockets corresponding to connections wheresponse times are vastly different from the open response
the remaining data to be transferred is small. Figure 3imes. In fact, the response times in the two systems are
shows the flow of data in Linux after our modifications. orders of magnitude different under PS given a common
There are multiple priority queues and quéueay only  system load. Furthermore, SRPT provides little improve-
ment in the closed system, while providing dramatic im-

Socket 1 1st Priority Queue

T — feed . proveme_nt in the open s_ystem.
Socket 2 o B T F ] e The third column of Flgurg 2(a) shows the results for
T pree T proc. 2nd Priority Queue the partly-open system. Notice that when the mean num-
S e e 7 AT -, ber of requests is small, the partly-open system behaves
proc.  proc. very much like the open system. However, as the mean

number of requests grows, the partly-open system be-
haves more like a closed system. Thus, the impact of
scheduling (e.g. SRPT over PS) is highly dependent on
the number of requests in the partly-open system.

Figure 3: Flow of data in Linux with SRPT-like scheduling
(only 2 priority levels shown).

drain if queued) to i — 1 are empty. The implementa-
tion is enabled by building the Linux kernel with sup- 4 2 E-commerce site

port for the user/kernel Netlink Socket, QOS and Fairg second case study considers the database back-end
Queuing, and the Prio Pseudoscheduler and by using thg,ryer of an e-commerce site, e.g. an online bookstore.

t c[6] user space tool. We also modify Apache to useye yse a PostgreSQL[32] database server running on a
set sockop_t .calls_to update the priority of the socket 5 4_sHz Pentium 4 with 3GB RAM, running Linux 2.4,

as the remaining size of the transfer decreases. For dejiiy 4 puffer pool of 2GB. The machine is equipped with
tails on our implementation see [19]. two 120GB IDE drives, one used for the database log
Synopsis of results:Figure 2(a) shows results from the and the other for the data. The workload is generated by



four client machines having similar specifications to theority process at the standard “SCHEDIHER.” Real-
database server connected via a network switch. time processing in Linux always has absolute, preemp-

Workload generation: The workload for the e- Ve priority over standard processes.

commerce case study is based on the TPC-W [46] benctBynopsis of resultsiFigure 2(b) shows results from the
mark, which aims to model an online bookstore such as-commerce implementation described above. Again,
Amazon.com. We build on the TPC-W kit provided by the difference in response times between the open and
the Pharm project [13]. The kit models a closed systentlosed systems is immediately apparent — the response
(in accordance with TPC-W guidelines) by creating onetimes of the two systems differ by orders of magnitude.
process for each client in the closed system. Interestingly, because the variability of the service de-
We extend the kit to also support an open system wittmands is much smaller in this workload than in the static
Poisson arrivals, and a partly-open system. We do so byweb workload, the impact of scheduling in the open sys-
creating a master process that signals a client whenevéem is much smaller. This also can be observed in the
it is time to make a new request in the open system or tglot for the partly open system: even when the number
start a new session in the partly-open system. The masf requests is small, there is little difference between the
ter process repeats the following steps in a loop: it sleepgesponse times of the different scheduling policies.
for an exponential interarrival time, signals a client, and L .
draws the next inter-arrival time. The clients block wait- 4-3 Auctioning web site o _
ing for a signal from the master process. In the case of th@Ur third case study investigates an auctioning web site.
open system, after receiving the signal, the clients makd his case study uses simulation based on a trace from
one request before they go back to blocking for the nexne of the top-ten U.S. online auction sites.
signal. In the case of the partly-open system, after receiviWorkload generation:For simulation-based case stud-
ing a signal, the clients generate a session by executinigs we implement a simulator that supports open, closed,
the following steps in a loop: (1) make one request; (2)and partly-open arrival processes which are either cre-
flip a coin to decide whether to begin blocking for a sig- ated based on a trace or are generated from probabil-
nal from the master process or to generate an exponentiity distributions. For a trace-based arrival process the
think time and sleep for that time. simulator expects the same input files as the workload
TPC-W consists of 16 different transaction types in-generator described in Section 4.1. If no trace for the
cluding the “ShoppingCart” transaction, the “Payment” arrival process is available the simulator alternativély o
transaction, and others. Statistics of our configuratiorfers (1) open system arrivals following a Poisson process;
are as shown: (2) closed system arrivals with exponential think times;
(3) partly-open arrivals with session arrivals following a
Poisson process and think times within the sessions be-
ing exponentially distributed. The service demands can
either be specified through a trace or one of several prob-
Scheduling: The bottleneck resource in our setup is theability distributions, including hyper-exponential dist
CPU, as observed in [25]. The default scheduling pol-butions and more general distributions.
icy is therefore best described as PS, in accordance with For our case study involving an auctioning web site we
Linux CPU scheduling. Note that in this application, use the simulator and a trace containing the service de-
exact service demands are not known, so SRPT canndfands obtained from one of the top ten online auction-
be implemented. Thus, we experiment with PESJF andnd sites in the US. No data on the request arrival process
PELJF policies where the expected service demand of i available. The characteristics of the service demands
transaction is based on its type. The “Bestseller” transacrecorded in the trace are summarized below:

Database| Mean | Variability | Min | Max
size size (c? size | size
3GB 101 ms 4 2ms| b5s

tion, which makgs up 10% of all requests, has on average Number | Mean | Variability | Min | Max

the largest service demand. Thus, we study 2-priority ofjobs | size ) size | size

PESJF and PELJF policies where the “Bestseller” trans- 300000 | 0.09s 9.19 0.01s| 50s

actions are “expected to be long” and all other transac- _ _ _ _ _

tions are “expected to be short.” Scheduling: The policy used in a web site serving dy-

To implement the priorities needed for achieving namic content, such as an auctioning web site, is best

PESJF and PELJF, we modify our PostgreSQL SerVemoqeled by PS. To §t_udy the _effect of scheduling in this
as follows. We use thsched set schedul er () environment we additionally simulate FCFS and PSJF.
system call to set the scheduling class of a PostSynopsis of resultsFigure 2(c) shows results from the
greSQL process working on a high priority transactionauctioning trace-based case study described above. The
to “SCHED._RR,” which marks a process as a Linux real- plots here illustrate the same properties that we observed
time process. We leave the scheduling class of a low priin the case of the static web implementation. In fact, the



Closed System Open System we use thedd_t i mer () facility to schedule the trans-

gwooﬁ EBDO% ‘ mission of delayed packets. We recompile the kernel
2. I ; with HZ=1000 to get a finer-grained millisecond timer

3 | B resolution. In order to drop packets, we use an indepen-
] >~ S dent, uniform random loss model which can be config-
£ E

ured to a specified probability, as in Dummynet.
Synopsis of results: Figure 4 compares the response
times of the closed and the open systems under (a) rel-
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(@ Static web — Good WAN conditions

.4

g B gw% atively good WAN conditions (50ms RTT and 1% loss
1000 L rate) and under (b) poor WAN conditions (100ms RTT

and 4% loss rate). Note that results for the partly-open
system are not shown due to space constraints; however
8a s . o8 1 82 o5 o 1 the results parallel what is shown in the closed and open
systems.

We find that under WAN conditions the differences be-
Figure 4: Effect of WAN conditions in the static web case tween the open and closed systems are smaller (propor-
study. The top row shows results for good WAN conditions (aviionally) than in a LAN (Figure 2 (a)), however, they are
erage RTT=50ms, loss rate=1%) and the bottom row showsstill significant for high server loads (load 0.8). The
results for poor WAN conditions (average RTT=100ms, lossreason that the differences are smaller in WAN condi-
rate=4%). In both cases the closed system has an MPL otjons is that response times include network overheads
200. Note that, due to network effects, the closed system cayapyork delays and losses) in addition to delays at the
not achieve aload of 1, even when think time is zero. Under thgg, o These overheads affect the response times in the
settings we consider here, the max achievable load (598. . .

open and closed systems in the same way, causing the

difference between the open and closed response timg§oportional differences between open and closed sys-
is extreme, especially under FCFS. As a result therdéms to shrink. For similar reasons, scheduling has less
is more than a factor of ten improvement of PSJF ove©f an effect when WAN effects are strong, even in the

FCFS (forp > 0.7), whereas there is little difference in €ase of an open system. SRPT improves significantly
the closed system. over PS only for high loads, and even then the improve-

This effect can also be observed in the partly-open sysMent is smaller than in a LAN.

tem, where for a small number of requests per session
the response times are comparable to those in the opdn  Open versus closed systems

system and for a large number of requests per sessiojjje have just seen the dramatic impact of the system
the response times are comparable to those in the closqﬁodm in real-world case studies. We will now develop
system. The actual convergence rate depends on the vagrinciples that help explain both the differences between
ability of the service demands’f). In particular, the e-  the open and closed system and the impact of these dif-
commerce case study (|9@’2_) converges quickly, while  ferences with respect to scheduling. In addition to the
the static web and auctioning case studies (higher  case studies that we have already discussed, we will also

Mean Response Time (msec)
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(b) Static web — Poor WAN conditions

converge more slowly. use model-based simulations in order to provide more
control over parameters, such as job size variability, that
4.4 Study of WAN effects are fixed in the case studies.

To study the effect of network conditions, we return to
the case of static web requests (Section 4.1), butthistimg 1 FCFS

we include the emulation of network losses and delays iy, study of the simple case of FCFS scheduling will il-

the experiments. lustrate three principles that we will exploit when study-
Workload generation: The setup and workload genera- ing more complex policies.

tion is identical to the case study of static web requests . | , ) .

(Section 4.1), except that we add functionality for emu-P'inciple (i): For a given load, mean response times are
lating WAN effects as follows. We implement a separates'gn'f'Cantly lower in closed systems than in open sys-
module for the Linux kernel that can drop or delay in- tems.

coming and outgoing TCP packets (similarly to Dum-  Principle (i) is maybe the most noticeable performance
mynet [34] for FreeBSD). More precisely, we changeissue differentiating open and closed systems in our case
thei prcv() and the p_out put () functions inthe studies (Figure 2). We bring further attention to this
Linux TCP-IP stack to intercept in- and out-going pack- principle in Figure 5 due to its importance for the vast
ets to create losses and delays. In order to delay packet&erature on capacity planning, which typically relies
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Figure 5:0pen versus closed under FCFS. Model and trace-based dioui@sults showing mean response time as a function
of load and service demand variability under FCFS schedul{a) and (b) use model based simulation, while (¢) usestlmsed
simulation. In all cases, the solid line represents an opgstesn and the dashed lines represent closed systems vigrenif
MPLs. The load is adjusted via the think time in the closetksysand via the arrival rate in the open system. In the mbdskd
simulations,E[S] = 10. In (a) we fixC? = 8 and in (b) we fixo = 0.9.

on closed models, and hence may underestimate the repen systems, the effect is much smaller in closed sys-
sources needed when an open model is more appropriatems.

For fixed high loads, the response time under the g principle is difficult to see in the case-study fig-
closed system isrders of magnitudewer than those for ;o5 (Figure 2) since each trace has a fixed variability.
the open system. While Schatte_[36, 37] has proven thaﬁ*-lowever, it can be observed by comparing the magni-
under FCFS, the open system will always serve as an Uy, e of disparity between the e-commerce site results

per bound for the response time of the closed systenyy,, \ariapility) and the others (high variability).
the magnitude of the difference in practical settings has Using simulations, we can study this effect directly.

pot previously beer_l studied. Intuitively, this difference Figure 5(b) compares open and closed systems under a
In mean response time b_etween open and closed SyStefiRed loadp = 0.9, as a function of the service demand
is a consequence of the fixed MP, in closed systems, variability C2. For an open system, we see tlizt di-
which limits the queue length seen in closed SySten_B_t(?ectly affects mean response time. This is to be expected
N_even under very high load. By contrast, no such I'm'tsince highC2, under FCF'S service, results in short jobs
exists for an open system. being stuck behind long jobs, increasing mean response
Principle ii): Asthe MPL grows, closed systems becomeime. By contrast, for the closed system with MPL 10,
open, but convergence is slow for practical purposes. (2 has comparatively little effect on mean response time.

Principle (ii) is illustrated by Figure 5. We see that This is counterintuitive, but can be explained by observ-
as the MPL,N, increases from 10 to 100 to 1000, the ing that for lower MPL there aréewershort jobs stuck
curves for the closed system approach the curves for theehind long jobs in a closed system, since the number
open system. Schatte [36, 37] proves formally thatvas ©f jobs in the systemNyscmm) is bounded. As MPL is
grows to infinity, a closed FCFS queue converges to afncreasedC can have more of an effect, sind&szem
open M/GI/1/FCFS queue. What is interesting however¢an be higher.
is how slowly this convergence takes place. When the It is important to point out that by holding the load
service demand has high variabilitg?), a closed sys- constant in Figure 5(b), we are actually performing a
tem with an MPL of 1000 still has much lower responseconservative comparison of open and closed systems. If
times then the corresponding open system. Even whewe didn’t hold the load fixed as we chang€t, increas-
the job service demands are lightly variable, an MPLIng C* would result in a slight drop in the load of the
of 500 is required for the closed system to achieve reclosed system as shown in Figure 7(b). This slight drop
sponse times comparable to the corresponding open sy#? load, would cause a drop in response times for closed
tem. Further, the differences are more dramatic in thesystems, whereas there is no such effect in open systems.
case-study results than in the model-based simulations.

This principle impacts the choice of whether an open5.2 The impact of scheduling
or closed system model is appropriate. One might thinkThe value of scheduling in open systems is understood
that an open system is a reasonable approximation faand cannot be overstated. In open systems, there are or-
a closed system with a high MPL; however, though thisder of magnitude differences between the performance
can be true in some cases, the closed and open systeph scheduling policies because scheduling can prevent
models may still behave significantly differently if the small jobs from queueing behind large jobs. In contrast,
service demands are highly variable. scheduling in closed systems is not well understood.

Principle (iii): While variability has a large effect in Principle (iv): While open systems benefit significantly
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Figure 6:Model-based simulation results illustrating the differeffects of scheduling in closed and open systems. In tkedtlo
system the MPL is 100, and in both systems the service denmtribution has mean 10. For the two figures in (&} was fixed
at 8 and in the two figures in (b) the load was fixed at 0.9.

E i : form equivalently. To see why, note that in a closed sys-
et tem Little’s Law states thalV. = X E[T], whereN is
2 - the constant MPL across policies. We will now explain
Tos) b To4 why X is constant across all work conserving scheduling
________ o3 - LI policies (when think time is 0), and hence it will follow
T N P that E[T] is also constant across scheduling polici&s.
(a) Think time vs. |0};d (b) Var|ab|I|ty vs. load is the long-run average rate of completions. Since a hew

job is only created when a job completes, over a long
Figure 7:Model-based simulation results illustrating how the period of time, all work conserving scheduling policies
service demand variability, the MPL, and the think time ckn a will complete the same set of jobs plus or minus the ini-
fect the system load in a closed system. These plots use FCRfal set/N. As time goes to infinity, the initial se¥ be-
§chedq|ing, however results are parallel under other sahed  comes unimportant; hencé is constant. This argument
ing policies. does not hold for open systems because for open systems
ittle’s Law states thaF'[N] = AE[T], andE[N] is not
onstant across scheduling policies.

Under closed systems with think time, we now allow
Principle (v): Scheduling only significantly improves re- a varying number of jobs in the queue, and thus there is
sponse time in closed systems under very specific parangome difference between scheduling policies. However,
eter settings: moderate load (think times) and high MPL.as think time grows, load becomes small and so schedul-

Figure 2 illustrates the fundamentally different behav-ing has less effect.

ior of mean response time in the open and closed systems A very subtle effect, not yet mentioned, is that in
in realistic settings. In Figure 6, we further study this dif 3 closed system the scheduling policy actually affects
ference as a function of (a) load and (b) variability usingthe throughput, and hence the load. “Good” policies,
simulations. Under the open system, as load increasegike PESJF, increase throughput, and hence load, slightly
the disparity between the response times of the schedultess than 10%). Had we captured this effect (rather than
ing policies grows, eventually differing by orders of mag- holding the load fixed), the scheduling policies in the
nitude. In contrast, at both high and low loads in thecjosed system would have appeared even closer, result-

closed system, the scheduling policies all perform simi-ing in even starker differences between the closed and
larly; only at moderate loads is there a significant differ-gpen systems.

ence between the policies —and even here the differences 1o impact of Principles (iv) and (v) is clear. For

are only a factor of 2.5. Another interesting pointis that, 5jpsed systems, scheduling provides small improvement
whereas for FCFS the mean response time of an opegcross all loads, but can only result in substantial im-
system bounded that in the corresponding closed SySte'iS‘rovement when load (think time) is moderate. In con-

from above, this does not hold for other policies suchyagt scheduling always provides substantial improve-
as PESJF, where the open system can result in lower rnants for open systems.

sponse times than the closed system. o ) ) o o

We can build intuition for the limited effects of Principle (vi): Scheduling can limit the effect of variabil-
scheduling in closed systems by first considering a closellY I Poth open and closed systems.
feedback loop with no think time. In such a system, sur- For both the open and closed systems, better schedul-
prisingly, the scheduling done at the queue is inconseing (PS and PESJF) helps combat the effect of increasing
guential — all work conserving scheduling policies per-variability, as seen in Figure 6. The improvement; how-

from scheduling with respect to response time, cIose(t
systems improve much less.



Response Time vs. Requests per session Response Time vs. Think time

0, 90

PELJF PELJF PELIF - Ps
--- FCFS --- FCFS --- FCFs 80 — SRPT
- 400, 2
8 — PESJF 27
‘o 60|
E B PO R PP L L) -
T T = 50 -~

3

§ 40|
2
____________________________ 2
e B ¢

_______ c
oty o=t R D] I 820
S 100 -7 = e m e ot = <

e
I
o
N

N
o
s

0

[

-
3

--e PS
— PESJF

@

S
o
S

40

©
S

200

of
— 10

N
S

=
&
@
E
2
g
3
e
g
g

@
3
2
s
2
2
L
=
<1

Mean response time (sec)
2
3

N
-]

N
o

10|

o o
5 10 15 20 5 10 15 20 10 10° 10° 10° 10 10°
Mean number of Visits per session Mean number of visits per session Think Time Think Time (sec)

@)p=0.6 (b)p=0.9 (c) Model-based simulation (d) Static web impl.

o
o

10°

Figure 8:Model and implementation-based results for the partlyropgstem. (a) and (b) are model-based simulations showing
mean response time as a function of the expected numberu#segper session. (c) and (d) show the mean response time as a
function of the think time, for a fixed load. In (a)-(&)[S] = 10 andC? = 8. In (c) and (d), we fixo = 0.6 andp = 0.75, which
yields and average of 4 requests per session.

ever, is less dramatic for closed systems due to Principlas a guideline for determining whether a purely open
(iii) in Section 5.1, which tells us that variability has$es or purely closed workload generator is most suitable, or
of an effect on closed systems in general. whether a partly-open generator is necessary.

Principle (viii): In a partly-open system, think time has
6 Partly-open systems little effect on mean response time.

In this section, we discuss a partly-open model that (a)

serves as a more realistic system model for many appl'fhink time in the partly-open system does not affect

cations; and (b) helps illustrate when a “purely” apen %the mean response time or load of the system under

closed system is a good approximation of user behaworany of these policies. This observation holds across all
We focus on the effects of the mean number of request

) S artly-open systems we have investigated (regardless of
per session and the think time because the other param y-op y 9 (reg

. . o . 1e number of requests per session), including the case-
ters, e.g. load and job size variability, have similar efec studi:s describe(?iun Sec?ion4 fon), including
to those_ observgd in Sections 5.1 and 5.2. Throughout Principle (vii) may seem surprising at first, but for
the section, we fix the load of the partly-open system byPS and FCFS scheduling it can be shown formally un-
adjusting the arrival rate). Note that, in contrast to the

L N der product-form workload assumptions. Intuitively, we
closed model, adjusting the think time of the partly-openCan observe that changing the think time in the partly-
model has no impact on the load.

open system has no effect on the load because the same
Principle (vii): A partly-open system behaves similarly amount of work must be processed. To change the load,
to an open system when the expected number of request® must adjust either the number of requests per session
per session is smalk( 5 as a rule-of-thumb) and sim- or the arrival rate. The only effect of think time is to add
ilarly to a closed system when the expected number o§mall correlations into the arrival stream.

requests per session is large (L0 as a rule-of-thumb).

Principle (vii) is illustrated clearly in the case study / Choosing a system model
results shown in Figure 2 and in the simulation resultsThe previous sections brought to light vast differences in
shown in Figure 8(a). When the mean number of re-system performance depending on whether the workload
guests per session is 1 we have a significant separatiggenerator follows an open or closed system model. A
between the response time under the scheduling policieslirect consequence is that the accuracy of performance
as in open systems. However, when the mean number avaluation depends on accurately modeling the underly-
requests per session is large, we have comparatively lithg system as either open, closed, or partly-open.
tle separation between the response times of the schedul- A safe way out would be to choose a partly-open sys-
ing policies; as in closed systems. Figures 2 and 8(a)em model, since it both matches the typical user behav-
are just a few examples of the range of configurationsor in many applications and generalizes the open and
we studied, and across a wide range of parameters, thdosed system models — depending on the parameters it
point where the separation between the performance afan behave more like an open or more like a closed sys-
scheduling policies becomes smallis, as a rule-of-thumbiem. However, as Table 1 illustrates, available workload
around 10 requests per session. Note however that thigenerators often support only either closed or open sys-
point can range anywhere between 5 and 20 requests ptgm models. This motivates a fundamental questions for
session a&? ranges fromi to 49 respectively. We will  workload modeling#Given a particular workload, is a
demonstrate in Section 7 how to use this rule-of-thumbpurely open or purely closed system model more accurate

Figure 8 illustrates Principle (viii)). We find that the



Type of site Date  Total #Req,. - — 1 —

1 Large corporate web site Feb'01 16097p9 i 3 " Sien

2 CMU web server [3] Nov'01 90570 £ O

3 Online department store June’00 891366 ¢ 1\\ g0

4  Science institute (USGS[1]) Nov'02 107078 3 | if : ;

5 Online gaming site [50] May’'04 45778 205 By

6 Financial service provider Aug’00 275786 e 2 5

7  Supercomputing web site [4] May'04 82566 % S0 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

8 Kasparov-DeepBlue match  May'97 580068 e , e

9  Site seeing “slashdot effect’  Feb'99 194968 @ Number of sessions vgb) Number of requests vs
10  Soccer world cup [21] Jul'os 4606052 Timeout length Timeout length

Figure 9:Choosing a system model. Statistics for 3 represen-
tative web traces (sites 3, 6, and 10) illustrating (a) thenter
. f user sessions as a function of the timeout threshold and (b
? -
for the W0r’|)(”|061d. When is a partly-open system mOderhe expected number of requests per session as a functibe of t
necessary: ) ) ) ) timeout threshold. The vertical line on each plot corresgn
In the remainder of this section we illustrate how our g  timeout of 1800s. From these plots we can conclude that

eight principles might be used to answer this question folan open model is appropriate for site 6, a closed model is ap-
various web workloads. Our basic method is as follows.propriate for site 10, and neither an open or a closed is appro
For a given system we follow these steps: priate for site 3.

1. Collect traces from the system.

Table 2: A summary table of the studied web traces.

2. Construct a partly-open model for the system, since> 1800s (30 min) [26]. The second method is to esti-

the partly-open model is the most general and ac_mater from the traces themselves by studying the deriva-

. : tive of how r affects the total number of sessions in the
curate. In particular, obtain the relevant parameter . .
race. We illustrate this latter method for a few represen-
for the partly-open model.

tative traces in Figure 9(a). Notice that as the thresh-
3. For the partly-open model, decide whether an opery|d increases from 1-100s the number of sessions de-
or a closed model is appropriate, or if the partly- creases quickly; whereas from 1000s on, the decrease is
open model is necessary. much smaller. Furthermore, Figure 9(b) shows that with
Table 2 summarizes the traces we collected as part oespect to the number of requests, stabilization is also
Step 1. Our trace collection spans many different typegeached at > 1000s. Hence we adopt = 1800s in
of sites, including busy commercial sites, sites of majorwhat follows.
sporting events, sites of research institutes, and anenlin - The mean number of requests per session when

gaming site. 1800s is summarized below for all traces:
We next model each site as a partly-open system. Ac-

Site 1 2 3 4 5
cording to Principles (vii) and (viii) the most relevantpa- | Requests persessiqn2.4 1.8 54 3.6 129
rameter of a partly-open system model is the number of Site 3 7 ) 5 0
requests |ssged in a user session. Other parameters such Requests persessidnid 6.0 24 1.2 118
as the think time between successive requests in a sessior

are of lesser importance. Determining the average num¥he table indicates that the average number of requests
ber of requests per user session for a web site requirder web sessions varies largely depending on the site,
identifying user sessions in the corresponding web tracgzanging from less than 2 requests per session to almost
While there is no 100% accurate way to do this, we em-13. Interestingly, even for similar types of web sites the
ploy some common estimation techniques [8, 26]. number of requests can vary considerably. For exam-
First, each source IP address in a trace is taken to regple sites 8 and 10 are both web sites of sporting events
resent a different user. Second, session boundaries af@ chess tournament and a soccer tournament), but the
determined by a period of inactivity by the user, i.e. anumber of requests per session is quite low (2.4) in one
period of time during which no requests from the cor-case, while quite high (11.6) in the other. Similarly, sites
responding IP address are received. Typically, this i, 4, and 7 are all web sites of scientific institutes but the
accomplished by ending a session whenever there is aumber of requests per sessions varies from 1.8 to 6.

period of inactivity larger than timeout threshotd In Using the rule of thumb in principle (vii), we can con-
some cases, web sites themselves enforce such a thregfiude that neither the open nor the closed system model
old; however, more typically must be estimated. accurately represents all the sites. For sites 1, 2, 4, 6,

We consider two different ways of estimating The 8, and 9 an open system model is accurate; whereas a
first one is to use a defacto standard valuerfowhich  closed system model is accurate for the sites 5 and 10.



Further, it is not clear whether an open or closed modehklso compare the partly-open model with the open and
is appropriate for sites 3 and 7. closed models. We illustrate the strong effect of the num-
Observe that the web trace of site 10 is the samder of requests per session afi¢tion the behavior of the
dataset used to drive the static web case study in Figure partly-open model, and the surprisingly weak effect of
In Figure 2, we observed a large difference between thé¢hink time.
response times in an open and a closed system model. These principles underscore the importance of choos-
In this section we found that site 10 resembles more ang the appropriate system model. For example, in ca-
closed system than an open system. Based on the resufiacity planning for an open system, choosing a workload
in Figure 2, it is important that one doesn’t assume thagenerator based on a closed model can greatly underes-
the results for the closed model apply to the open modelimate response times and underestimate the benefits of
scheduling.
8 Prior Work All of this is particularly relevant in the context of web

Work explicitly comparing open and closed system mod-applications, where the arrival process at a web site is
els is primarily limited to FCFS queues. Bondi and Whitt Pest modeled by a partly-open system. Yet, most web
[11] study a general network of FCFS queues and conWorkload generators are either strictly open or strictly
clude that the effect of service variability, though domi- closed. Our findings provide guidelines for choosing
nantin open systems, is almost inconsequential in closefn€ther an open or closed model is the better approx-
systems (provided the MPL is not too large). We cor-imationbased on characteristics of the workload. A high
roborate this principle and illustrate the magnitude of itsNUmber of simultaneous users (more than 1000) suggests
impact in real-world systems. Schatte [36, 37] studies N ©Pen model, buta high number of requests per session
single FCFS queue in a closed loop with think time. In(more than 10) suggests a closed model. Both these cut-
this model, Schatte proves that, as the MPL grows to in©ffs are affected by service demand variability: highly
finity, the closed system converges monotonically to anvariable demands requires larger cutoffs. Contrary to
open system. This result provides a fundamental undeopular belief, it turns out that think times are irrelevant
standing of the effect of the MPL parameter; howeverto the choice of an open or closed model since they only
the rate of this convergence, which is important whengaffectthe load. We also find that WAN conditions (losses
choosing between open and closed system models, is néhd delays) in Web settings lessen the differe_znce between
understood. We evaluate the rate of convergence in reaf!0Sed and open models, although these differences are
world systems. still noticeable.

Though these theoretical results provide useful intu- ©Once it has been determined whether a closed or open
ition about the differences between open and closed sydn'0del is a better approximation, that in turn provides
tems theoretical results alone cannot evaluate the effects® guideline for the effectiveness of schedulirignder-
of factors such as trace driven job service demand disStanding the appropriate system model is essential to
tributions, correlations, implementation overheads, andunderstanding the impact of schedulingcheduling is
size-based scheduling policiesience, simulation and Most effective in open systems, but can have moderate
implementation-based studies such as the current pap8PpPact in closed systems when both the load is moderate

are needed. (roughly 0.7-0.85) and’? is high.
In conclusion, while much emphasis has been placed
9 Conclusion in research on accurately representing workload param-

This paper provides eiaht simple princioles that functioneters such as service demand distribution, think time, lo-
paper p 9 b€ p P cality, etc, we have illustrated that similar attentionaeee

to explain the differences in behavior of closed, open . :
. "~ to be placed on accurately representing the system itself
and partly-open systems and validates these principles_ .
: ; . : as either closed, open, or partly-open. We have taken
via trace-based simulation and real-world implementa-

tion. The more intuitive of these principles point out thata first step toward this end by providing guidelines for

response times under closed systems are typically low crhoosing asystem model and by creating tools and work-
PO X Y ypically oweg,, 4 generators versatile enough to support all three sys-
than in the corresponding open system with equal load

and that as MPL increases, closed systems approacg m models. We hope that this work will encourage oth-
X ' - . ers to design workload generators that allow flexibility in

open ones. Less obviously, our principles point out that.the underlying system model

(a) the magnitude of the difference in response times be- '

tween closed and open systems can be very large, even

under moderate load; (b) the convergence of closed td0 Acknowledgments

open as MPL grows is slow, especially when service de-
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