
Post-Copy Based Live Virtual Machine Migration Using
Adaptive Pre-Paging and Dynamic Self-Ballooning

Michael R. Hines and Kartik Gopalan
Computer Science, Binghamton University (State University of New York)

{mhines,kartik}@cs.binghamton.edu

Abstract
We present the design, implementation, and evaluation of post-copy
based live migration for virtual machines (VMs) across a Gigabit
LAN. Live migration is an indispensable feature in today’s virtu-
alization technologies. Post-copy migration defers the transfer of
a VM’s memory contents until after its processor state has been
sent to the target host. This deferral is in contrast to the traditional
pre-copy approach, which first copies the memory state over mul-
tiple iterations followed by a final transfer of the processor state.
The post-copy strategy can provide a “win-win” by reducing total
migration time closer to its equivalent time achieved by non-live
VM migration. This is done while maintaining the liveness bene-
fits of the pre-copy approach. We compare post-copy extensively
against the traditional pre-copy approach on top of the Xen Hyper-
visor. Using a range of VM workloads we show improvements in
several migration metrics including pages transferred, total migra-
tion time and network overhead. We facilitate the use of post-copy
with adaptive pre-paging in order to eliminate all duplicate page
transmissions. Our implementation is able to reduce the number
of network-bound page faults to within 21% of the VM’s work-
ing set for large workloads. Finally, we eliminate the transfer of
free memory pages in both migration schemes through a dynamic
self-ballooning (DSB) mechanism. DSB periodically releases free
pages in a guest VM back to the hypervisor and significantly speeds
up migration with negligible performance degradation.

Categories and Subject Descriptors D.4 [Operating Systems]

General Terms Experimentation, Performance

Keywords Virtual Machines, Operating Systems, Process Mi-
gration, Post-Copy, Xen

1. Introduction
This paper addresses the problem of optimizing the live migration
of system virtual machines (VMs). Live migration is a key sell-
ing point for state-of-the-art virtualization technologies. It allows
administrators to consolidate system load, perform maintenance,
and flexibly reallocate cluster-wide resources on-the-fly. We fo-
cus on VM migration within a cluster environment where physi-
cal nodes are interconnected via a high-speed LAN and also em-
ploy a network-accessible storage system (such as a SAN or NAS).
State-of-the-art live migration techniques (18; 3) use the pre-copy
approach, which works as follows. The bulk of the VM’s mem-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’09, March 11–13, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-375-4/09/03. . . $5.00

ory state is migrated to a target node even as the VM continues
to execute at a source node. If a transmitted page is dirtied, it
is re-sent to the target in the next round. This iterative copying
of dirtied pages continues until either a small, writable working
set (WWS) has been identified, or a preset number of iterations
is reached, whichever comes first. This constitutes the end of the
memory transfer phase and the beginning of service downtime. The
VM is then suspended and its processor state plus any remaining
dirty pages are sent to a target node. Finally, the VM is restarted
and the copy at source is destroyed.

Pre-copy’s overriding goal is to keep downtime small by mini-
mizing the amount of VM state that needs to be transferred during
downtime. Pre-copy will cap the number of copying iterations to
a preset limit since the WWS is not guaranteed to converge across
successive iterations. On the other hand, if the iterations are ter-
minated too early, then the larger WWS will significantly increase
service downtime. This approach minimizes two metrics particu-
larly well – VM downtime and application degradation – when the
VM is executing a largely read-intensive workload. However, even
moderately write-intensive workloads can reduce pre-copy’s effec-
tiveness during migration.

In this paper, we implement and evaluate another strategy for
live VM migration, called post-copy, previously studied only in the
context of process migration. On a high-level, post-copy migration
defers the memory transfer phase until after the VM’s CPU state
has already been transferred to the target and resumed there. Post-
copy first transmits all processor state to the target, starts the VM at
the target, and then actively pushes memory pages from source to
target. Concurrently, any memory pages that are faulted on by the
VM at target, and not yet pushed, are demand-paged over the net-
work from source. Post-copy thus ensures that each memory page
is transferred at most once, thus avoiding the duplicate transmission
overhead of pre-copy.

We also supplement active push with adaptive pre-paging. Pre-
paging is a term from earlier literature (21; 31) on optimizing
memory-constrained disk-based paging systems. It traditionally
refers to a more proactive form of pre-fetching from disk in which
the memory subsystem can try to hide the latency of high-locality
page faults or cache misses by intelligently sequencing the pre-
fetched pages. Modern virtual memory subsystems do not typically
employ pre-paging due increasing DRAM capacities. However,
pre-paging can still play a critical role in post-copy VM migration
by improving the effectiveness of the active push component. Pre-
paging adapts the sequence of actively pushed pages by treating
network page faults (or major faults) as hints to guess the VM’s
page access locality at the target. Pre-paging thus increases the
likelihood that pages in the neighborhood of a major fault will be
available at the target before they are accessed by the VM. We show
that our implementation can reduce major network faults to within
21% of the VM’s working set for large workloads.

Additionally, we identified deficiencies in both migration tech-
niques with regard to the handling of free pages during migration.
To avoid transmitting the free pages, we employ a “dynamic self-

ballooning” (DSB) mechanism. Ballooning is an existing technique
that allows a guest OS to reduce its memory footprint by releasing
its free memory pages back to the hypervisor. DSB automates the
ballooning mechanism so it can trigger frequently (every 5 seconds)
without degrading application performance. Our DSB implementa-
tion responds directly to OS memory allocation requests without
the need for kernel patching. It neither requires external introspec-
tion by a co-located VM nor extra communication through the hy-
pervisor. DSB thus significantly reduces total migration time by
eliminating the transfer of free memory pages.

The original pre-copy algorithm has additional advantages: it
employs a relatively self-contained implementation that allows the
migration daemon to isolate most of the copying complexity to
a single process at each node. Also, pre-copy provides a clean
method of aborting the migration should the target node ever crash
during migration because the VM is still running at the source.
Our current post-copy implementation does not handle these kinds
of failures. However, we discuss a straightforward approach in
Section 3.4 by which post-copy could provide the same level of
reliability as pre-copy.

We designed and implemented a prototype of our approach
in the Xen VM environment. Through extensive evaluations, we
demonstrate situations in which post-copy can significantly im-
prove migration performance in terms of pages transferred and total
migration time. Finally, note that post-copy and pre-copy together
enhance the toolbox of VM migration techniques available to a
cluster administrator. Depending upon the VM workload type and
performance goals of migration, an administrator has the flexibility
to choose either of the techniques. For interactive VMs on which
many users might depend, pre-copy would be the better approach
because processor does not wait for major faults. But for large-
memory or write-intensive server workloads, post-copy would bet-
ter suited. Our contributions are to demonstrate that post-copy is a
practical VM migration technique and to evaluate its relative merits
against pre-copy.

2. Related Work
Process Migration: The post-copy technique has been variously
studied in the context of process migration literature: first imple-
mented as “Freeze Free” using a file-server (25), then evaluated via
simulations (24), and later via actual Linux implementation (19).
There was also a recent implementation of post-copy process mi-
gration under openMosix (11). In contrast, our contributions are to
develop a viable post-copy technique for live migration of virtual
machines. We also evaluate our implementation against an array of
application workloads during live VM migration, which the above
approaches do not. Process migration techniques have been exten-
sively researched and an excellent survey can be found in (16). Sev-
eral distributed computing projects incorporate process migration
(30; 23; 17; 29; 12; 6). However, these systems have not gained
widespread acceptance primarily because of portability and resid-
ual dependency limitations. In contrast, VM migration operates on
whole operating systems and is naturally free of these problems.

Pre-Paging: Pre-paging is a technique for hiding the latency of
page faults (and in general I/O accesses in the critical execution
path) by predicting the future working set (5) and loading the
required pages before they are accessed. Pre-paging is also known
as adaptive prefetching or adaptive remote paging. It has been
studied extensively (21; 32; 33; 31) in the context of disk based
storage systems, since disk I/O accesses in the critical application
execution path can be highly expensive. Traditional pre-paging
algorithms use reactive and history based approaches to predict and
prefetch the working set of the application. Our system employs
pre-paging for the limited duration of live migration to avoid the
latency network page faults from the target to the source node. Our

implementation employs a reactive approach that uses any network
faults as hints about the guest VM’s working set with additional
optimizations described in Section 3.1 and may also be augmented
with history-based approaches.

Live VM Migration. Pre-copy is the predominant approach
for live VM migration. These include hypervisor-based approaches
from VMware (18), Xen (3), and KVM (13), OS-level approaches
that do not use hypervisors from OpenVZ (20), as well as wide-area
migration (2). Furthermore, the self-migration of operating systems
(which has much in common with process migration) was imple-
mented in (9) building upon prior work (8) atop the L4 Linux mi-
crokernel. All of the above systems currently use pre-copy based
migration and can potentially benefit from the approach in this pa-
per. The closest work to our technique is SnowFlock (14). This
work sets up impromptu clusters to support highly parallel compu-
tation tasks across VMs by cloning the source VM on the fly. This
is optimized by actively pushing cloned memory via multicast from
the source VM. They do not target VM migration in particular, nor
present a comprehensive comparison (or optimize upon) the orig-
inal pre-copy approach. Further, we use transparent ballooning to
eliminate free memory transmission whereas SnowFlock requires
kernel modifications to do the same.

Non-Live VM Migration. There are several non-live ap-
proaches to VM migration. Schmidt (28) proposed using capsules,
which are groups of related processes along with their IPC/network
state, as migration units. Similarly, Zap (22) uses process groups
(pods) along with their kernel state as migration units. The De-
nali project (36; 35) addressed migration of checkpointed VMs.
Work in (26) addressed user mobility and system administration by
encapsulating the computing environment as capsules to be trans-
ferred between distinct hosts. Internet suspend/resume (27) focuses
on saving/restoring computing state on anonymous hardware. In all
the above systems, the execution of the VM is suspended, during
which applications do not make progress.

Dynamic Self-Ballooning (DSB): Ballooning refers to artifi-
cially requesting memory within a guest OS and releasing that
memory back to the hypervisor. Ballooning is used widely for
the purpose of VM memory resizing by both VMWare (34) and
Xen (1), and relates to self-paging in Nemesis (7). However, it is not
clear how current ballooning mechanisms interact, if at all, with live
VM migration techniques. For instance, while Xen is capable of
simple one-time ballooning during migration and system boot time,
there is no explicit use of dynamic ballooning to reduce the mem-
ory footprint before live migration. Additionally, self-ballooning
has been recently committed into the Xen source tree (15) by Ora-
cle Corp to enable a guest OS to dynamically return free memory to
the hypervisor without explicit human intervention. VMWare ESX
server (34) includes dynamic ballooning and idle memory tax, but
the focus is not on reducing the VM footprint before migration. Our
DSB mechanism is similar in spirit to the above dynamic balloon-
ing approaches. However, to the best of our knowledge, DSB has
not been exploited systematically to date for improving the perfor-
mance of live migration. Our work uses DSB to improve the migra-
tion performance of both the pre-copy and post-copy approaches
with minimal runtime overhead.

3. Design of Post-Copy Live VM Migration
In this section we present the architectural overview of post-copy
live VM migration. The performance of any live VM migration
strategy could be gauged by the following metrics.

1. Preparation Time: This is the time between initiating migra-
tion and transferring the VM’s processor state to the target node,
during which the VM continues to execute and dirty its mem-

ory. For pre-copy, this time includes the entire iterative memory
copying phase, whereas it is negligible for post-copy.

2. Downtime: This is time during which the migrating VM’s exe-
cution is stopped. At the minimum this includes the transfer of
processor state. For pre-copy, this transfer also includes any re-
maining dirty pages. For post-copy this includes other minimal
execution state, if any, needed by the VM to start at the target.

3. Resume Time: This is the time between resuming the VM’s
execution at the target and the end of migration altogether, at
which point all dependencies on the source must be eliminated.
For pre-copy, one needs only to re-schedule the target VM and
destroy the source copy. On the other hand, majority of our
post-copy approach operates in this period.

4. Pages Transferred: This is the total count of memory pages
transferred, including duplicates, across all of the above time
periods. Pre-copy transfers most of its pages during preparation
time, whereas post-copy transfers most during resume time.

5. Total Migration Time: This is the sum of all the above times
from start to finish. Total time is important because it affects
the release of resources on both participating nodes as well
as within the VMs on both nodes. Until the completion of
migration, we cannot free the source VM’s memory.

6. Application Degradation: This is the extent to which migra-
tion slows down the applications executing within the VM.
Pre-copy must track dirtied pages by trapping write accesses
to each page, which significantly slows down write-intensive
workloads. Similarly, post-copy requires the servicing of major
network faults generated at the target, which also slows down
VM workloads.

3.1 Post-Copy and its Variants

In the basic approach, post-copy first suspends the migrating VM
at the source node, copies minimal processor state to the target
node, resumes the virtual machine, and begins fetching memory
pages over the network from the source. The manner in which
pages are fetched gives rise to different variants of post-copy,
each of which provides incremental improvements. We employ
a combination of four techniques to fetch memory pages from the
source: demand-paging, active push, pre-paging, and dynamic self-
ballooning (DSB). Demand paging ensures that each page is sent
over the network only once, unlike in pre-copy where repeatedly
dirtied pages could be resent multiple times. Similarly, active push
ensures that residual dependencies are removed from the source
host as quickly as possible, compared to the non-deterministic
copying iterations in pre-copy. Pre-paging uses hints from the
VM’s page access patterns to reduce both the number of major
network faults and the duration of the resume phase. DSB reduces
the number of free pages transferred during migration, improving
the performance of both pre-copy and post-copy. Figure 1 provides
a high-level contrast of how different stages of pre-copy and post-
copy relate to each other. Table 1 contrasts the different migration
techniques, each of which is described below in greater detail.

Post-Copy via Demand Paging: The demand paging variant of
post-copy is the simplest and slowest option. Once the VM re-
sumes at the target, its memory accesses result in page faults that
can be serviced by requesting the referenced page over the network
from the source node. However, servicing each fault will signifi-
cantly slow down the VM due to the network’s round trip latency.
Consequently, even though each page is transferred only once, this
approach considerably lengthens the resume time and leaves long-
term residual dependencies in the form of unfetched pages, possi-
bly for an indeterminate duration. Thus, post-copy performance for
this variant by itself would be unacceptable both from the view-
point of total migration time and application degradation.

Time

Preparation (live)

Downtime

Post−Copy Prepaging

Resume Time (live)

Preparation (live)

Pre−Copy Rounds ...

Resume Time

Downtime

(a) Post−Copy Timeline

(a) Pre−Copy Timeline

��������
��������
�������
�������
�������
�������
�������

��������
��������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

(Non−pageable
Memory)

Round: 1 2 3 ... N (Dirty Memory)

Figure 1. The timeline of (a) Pre-copy vs. (b) Post-copy migration.

Preparation Downtime Resume
1. Pre-copy Iterative CPU + dirty Reschedule

Only mem txfer mem txfer VM
2. Demand- Prep time CPU + Net. page

Paging (if any) minimal state faults only
3. Pushing + Prep time CPU + Active push

Demand (if any) minimal state +page faults
4. Pre-paging Prep time CPU + Bubbling +

+ Demand (if any) minimal state page faults
5. Hybrid Single copy CPU + Bubbling +

(all) round minimal state dirty faults

Table 1. Design choices for live VM migration, in order of their
incremental improvements. Method 4 combines methods 2 and 3
with the use of pre-paging. Method 5 combines all of 1 through 4,
in which pre-copy only performs a single primer copy round.

Post-Copy via Active Pushing: One way to reduce the duration of
residual dependencies on the source node is to proactively “push”
the VM’s pages from the source to the target even as the VM
continues executing at the target. Any major faults incurred by the
VM can be serviced concurrently over the network via demand
paging. Active push avoids transferring pages that have already
been faulted in by the target VM. Thus, each page is transferred
only once, either by demand paging or by an active push.

Post-Copy via Pre-paging: The goal of post-copy via pre-paging
is to anticipate the occurrence of major faults in advance and adapt
the page pushing sequence to better reflect the VM’s memory ac-
cess pattern. While it is impossible to predict the VM’s exact fault-
ing behavior, our approach works by using the faulting addresses
as hints to estimate the spatial locality of the VM’s memory ac-
cess pattern. The pre-paging component then shifts the transmis-
sion window of the pages to be pushed such that the current page
fault location falls within the window. This increases the probabil-
ity that the pushed pages would be the ones accessed by the VM
in the near future, reducing the number of major faults. Our pre-
paging strategy is described in greater detail in Section 3.2.

Hybrid Pre and Post Copy: The hybrid approach, first described
in (19), works by doing a single pre-copy round in the preparation
phase of the migration. During this time, the guest VM continues

1. let N := total # of guest VM pages
2. let page[N] := set of all guest VM pages
3. let bitmap[N] := all zeroes
4. let pivot := 0; bubble := 0

5. ActivePush (Guest VM)
6. while bubble < max (pivot, N-pivot) do
7. let left := max(0, pivot - bubble)
8. let right := min(MAX_PAGE_NUM-1, pivot + bubble)
9. if bitmap[left] == 0 then
10. set bitmap[left] := 1
11. queue page[left] for transmission
12. if bitmap[right] == 0 then
13. set bitmap[right] := 1
14. queue page[right] for transmission
15. bubble++

16. PageFault (Guest-page X)
17. if bitmap[X] == 0 then
18. set bitmap[X] := 1
19. transmit page[X] immediately
20. discard pending queue
21. set pivot := X // shift pre-paging pivot
22. set bubble := 1 // new pre-paging window

Figure 2. Pseudo-code for the pre-paging algorithm employed by
post-copy migration. Synchronization and locking code omitted for
clarity of presentation.

running at the source while all its memory pages are copied to
the target host. After one iteration only, the VM is suspended
and its processor state and dirty pages are copied to the target.
Subsequently, the VM is resumed and the post-copy mechanism
described above kicks in immediately, bringing in the remaining
dirty pages from the source. As with pre-copy, this scheme can
perform well for read-intensive workloads. Yet it also provides
deterministic total migration time for write-intensive workloads, as
with post-copy.

In the rest of this paper, we describe the design and implementa-
tion of post-copy via pre-paging. The hybrid approach is currently
being implemented and not covered within the scope of this paper.

3.2 Pre-paging Strategy

Figure 2 lists the pseudo-code for the two components of our pre-
paging algorithm – active push (lines 5–15) and page fault servicing
(lines 16–22) – both of which operate as two concurrent threads
of control in kernel space. The active push component starts from
a pivot page and pushes symmetrically located pages around that
pivot to the target in each iteration. We refer to this algorithm as
“bubbling” since it is akin to a bubble that grows around the pivot
as the center. Whenever a page fault occurs, the fault servicing
component shifts the pivot to the location of the new page fault
and starts the pre-paging bubble from that location. In this manner,
the location of the pivot adapts to the occurrence of new page
faults in order to exploit spatial locality. Furthermore, when a page-
fault needs to be serviced, some pages may have already been
queued for transmission by the pre-paging algorithm. In order to
reduce the latency of servicing the immediate page fault, we purge
the transmission queue and transmit the faulted page immediately.
Next, we shift the pivot to the location of the new page fault. (This
purge is accomplished with a custom in-kernel network protocol
from prior work (10). Our protocol allows us to purge explicitly so
that we may also refill the push window queue with new, spatially
local pages).

3.3 Dynamic Self-Ballooning

Before migration begins, a guest VM will have an arbitrarily large
number of free, unallocated pages. Transferring these pages would

be a waste of network and CPU resources, and would increase the
total migration time regardless of which migration algorithm we
use. Further, if a free page is allocated by the guest VM during a
post-copy migration and subsequently causes a major fault (due to
a copy-on-write by the virtual memory subsystem), fetching that
free page over the network, only to be overwritten immediately,
will result in unnecessary execution delay for the VM at the target.
Thus, it is highly desirable to avoid transmitting these free pages.

Ballooning (34) is a minimally intrusive technique for resizing
the memory allocation of a VM (called a reservation). Typical bal-
looning implementations involve a balloon driver in the guest OS.
The balloon driver can either reclaim pages considered least valu-
able by the OS and return them back to the hypervisor (inflating
the balloon), or request pages from the hypervisor and return them
back to the guest OS (deflating the balloon). As of this writing,
Xen-based ballooning is primarily used during the initialization of
a new VM. If the hypervisor cannot reserve enough memory for
a new VM, it steals unused memory from other VMs by inflating
their balloons to accommodate the new guest. The system admin-
istrator can re-enlarge those diminished reservations at a later time
should more memory become available, such as due to VM destruc-
tion or migration.

We extend Xen’s ballooning mechanism to avoid transmitting
free pages during both pre-copy and post-copy migration. The guest
VM performs ballooning continuously over its execution lifetime
– a technique we call Dynamic Self-Ballooning (DSB). DSB re-
duces the number of free pages without significantly impacting
the normal execution of the VM, so that the VM can be migrated
quickly with a minimal memory footprint. Our DSB design re-
sponds dynamically to VM memory pressure by inflating the bal-
loon under low pressure and deflating under increased pressure. For
DSB to be both effective and minimally intrusive, we must choose
an appropriate interval between consecutive invocations of balloon-
ing such that DSB’s activity does not interfere with the execution
of VM’s applications. Secondly, DSB must ensure that the balloon
can shrink (or altogether pop) when one or more applications be-
comes memory-intensive. We describe the specific implementation
details of DSB in Section 4.2.

3.4 Reliability

Either the source or destination node can fail during migration. In
both pre-copy and post-copy, failure of the source node implies
permanent loss of the VM itself. Failure of the destination node has
different implications in the two cases. For pre-copy, failure of the
destination node does not matter because the source node still holds
an entire up-to-date copy of the VM’s memory and processor state
and the VM can be revived if necessary from this copy. However,
when post-copy is used, the destination node has more up-to-date
copy of the virtual machine and the copy at the source happens
to be stale, except for pages not yet modified at the destination.
Thus, failure of the destination node during post-copy migration
constitutes a critical failure of the VM. Although our current post-
copy implementation does not address this drawback, we plan to
address this problem by developing a mechanism to incrementally
checkpoint the VM state from the destination node back at the
source node. Our approach is as follows: while the active push
of pages is in progress, we also propagate incremental changes to
memory and the VM’s execution state at the destination back to
the source node. We do not need to propagate the changes from
the destination on a continuous basis, but only at discrete points
such as when interacting with a remote client over the network,
or committing an I/O operation to the storage. This mechanism
can provide a consistent backup image at the source node that
one can fall back upon in case the destination node fails in the
middle of post-copy migration. The performance of this mechanism

would depend upon the additional overhead imposed by reverse
network traffic from the target to the source and the frequency
of incremental checkpointing. Recently, in a different context (4),
similar mechanisms have been successfully used to provide high
availability.

4. Implementation-specific Details
We implemented post-copy along with all of the optimizations
described in Section 3 on Xen 3.2.1 and para-virtualized Linux
2.6.18.8. We begin by first discussing the different ways of trapping
page faults at the target within the Xen/Linux architecture and their
trade-offs. Then we will discuss our implementation of dynamic
self-ballooning (DSB).

4.1 Page Fault Detection

There are three different ways by which the demand-paging com-
ponent of post-copy can trap page faults at the target VM.

(1) Shadow Paging: Shadow paging refers to a set of read-
only page tables for each VM maintained by the hypervisor that
maps the VM’s pseudo-physical pages to the physical page frames.
Shadow paging can be used to trap access to non-existent pages at
the target VM. For post-copy, each major fault at the target can be
intercepted via these traps and be redirected to the source.

(2) Page Tracking: The idea here is to mark all of the resident
pages in the VM at the target as not present in their page-table-
entries (PTEs) during downtime. This has the effect of forcing a
page fault exception when the VM accesses a page. After some
third party services the fault, the PTE can be fixed up to reflect
accurate mappings. PTEs in x86 carry a few unused bits to poten-
tially support this, but this approach requires significant changes to
the guest OS kernel.

(3) Pseudo-paging: The idea here is to swap out all pageable
memory in the guest VM to an in-memory pseudo-paging device
within the guest. This is done with minimal overhead and with-
out any disk I/O. Since the source copy of the VM is suspended
at the beginning of post-copy migration, the memory reservation
for the VM’s source copy can be made to appear as a pseudo-
paging device. During resume time, the guest VM then retrieves
its “swapped”-out pages through its normal page fault servicing
mechanism. In order to service those faults, a modified block driver
is inserted to retrieve the pages over the network.

In the end, we chose to implement the pseudo-paging option be-
cause it was the quickest to implement. In fact, we attempted page
tracking first, but switched to pseudo-paging due to implementation
issues. Shadow paging can provide an ideal middle ground, being
faster than pseudo-paging but slower (and cleaner) than page track-
ing. We intend to switch to shadow paging soon. Our prototype
doesn’t change much except to make a hook available for post-copy
to use. Recently, SnowFlock (14) used this method in the context
of parallel cloud computing clusters using Xen.

The pseudo-paging approach is illustrated in Figure 3. Page-
fault detection and servicing is implemented through the use of
two loadable kernel modules, one inside the migrating VM and one
inside Domain 0 at the source node. These modules leverage our
prior work on a system called MemX (10), which provides trans-
parent remote memory access for both Xen VMs and native Linux
systems at the kernel level. As soon as migration is initiated, the
memory pages of the migrating VM at the source are swapped
out to a pseudo-paging device exposed by the MemX module in
the guest VM. This “swap” is performed without copies using a
lightweight MFN exchange mechanism (described below), after
which the pages are mapped to Domain 0 at the source. CPU state
and non-pageable memory are then transferred to the target node
during downtime. Note the pseudo-paging approach implies that a
small amount of non-pageable memory, typically small in-kernel

caches and pinned pages, must be transferred during downtime.
This increases the downtime in our current post-copy implemen-
tation. The non-pageable memory overhead can be significantly re-
duced via the hybrid migration approach discussed earlier.

MFN Exchanges: Swapping the VM’s pages to a pseudo-
paging device can be accomplished in two ways: by either transfer-
ring ownership of the pages to a co-located VM (like Xen’s Domain
0) or by remapping the pseudo-physical address of the pages within
the VM itself with zero copying overhead. We chose the latter be-
cause of its lower overhead (fewer calls into the hypervisor). We
accomplish the remapping by executing an MFN exchange (ma-
chine frame number exchange) within the VM. The VM’s memory
reservation is first doubled and all the running processes in the sys-
tem are suspended. The guest kernel is then instructed to swap out
each pageable frame (through the use of existing software suspend
code in the Linux kernel). Each time a frame is paged, we re-
write both the VM’s PFN (pseudo-physical frame number) to MFN
mapping (called a physmap) as well as the frame’s kernel-level
PTE such that we simulate an exchange between the frame’s MFN
with that of a free page frame. These exchanges are all batched
before invoking the hypervisor. Once the exchanges are over, we
memory-map the exchanged MFNs into Domain 0. The data struc-
ture needed to bootstrap this memory mapping is created within the
guest on-demand as a tree that is almost identical to a page-table,
from which the root is sent to Domain 0 through the Xen Store.

Once the VM resumes at the target, demand paging begins for
missing pages. The MemX “client” module in the VM at the target
activates again to service major faults and perform pre-paging
by coordinating with the MemX “server” module in Domain 0
at the source. The two modules communicate via a customized
and lightweight remote memory access protocol (RMAP) which
directly operates above the network device driver.

4.2 Dynamic Self Ballooning Implementation

The implementation of DSB has three components. (1) Inflate the
balloon: A kernel-level DSB thread in the guest VM first allocates
as much free memory as possible and hands those pages over to the
hypervisor. (2) Detect memory pressure: Memory pressure indi-
cates that some entity needs to access a page frame right away.
In response, the DSB process must partially deflate the balloon de-
pending on the extent of memory pressure. (3) Deflate the balloon:
Deflation is the reverse of Step 1. The DSB process re-populates it’s
memory reservation with free pages from the hypervisor and then
releases the list of free pages back to the guest kernel’s free pool.

Detecting Memory Pressure: Surprisingly enough, the Linux
kernel already provides a transparent mechanism to detect mem-
ory pressure: through the kernel’s filesystem API. Using a func-
tion called “set shrinker()”, one of the function pointers provided
as a parameter to this function acts as a callback to some memory-
hungry portion of the kernel. This indicates to the virtual memory
system that this function can be used to request the deallocation of
a requisite amount of memory that it may have pinned – typically
things like inode and directory entry caches. These callbacks are in-
directly driven by the virtual memory system as a result of copy-on-
write faults, satisfied on behalf of an application that has allocated a
large amount of memory and is accessing it for the first time. DSB
does not register a new filesystem, but rather registers a similar call-
back function for the same purpose. (It is not necessary to register
a new filesystem in order to register this callback). This worked
remarkably well and provides very precise feedback to the DSB
process about memory pressure. Alternatively, one could manually
scan /proc statistics to determine this information, but we found the
filesystem API to be more direct reflection of the decisions that the
virtual memory system is actually making. Each callback contains
a numeric value of exactly how many pages the DSB should re-

Reservation

Double
Memory

Page−Fault
Traffic

Pre−Paging
Traffic

MFN
Exchange

Migration Daemon (XenD)

Memory−Mapped Pages

DOMAIN 0 (at source)

mmu_update()

SOURCE VM

Target Hypervisor

TARGET VM

New Page−Frames

Restore Memory Reservation

Pseudo−Paged Memory

Pageable Memory

Non−Pageable Memory

Source Hypervisor

Figure 3. Pseudo-Paging : Pages are swapped out to a pseudo-paging device within the source VM’s memory by exchanging MFN identifiers.
Domain 0 at the source maps the swapped pages to its memory with the help of the hypervisor. Pre-paging then takes over after downtime.

lease, which typically defaults to 128 pages at a time. When the
callback returns, part of the return value is used to indicate to the
virtual memory system how much “pressure” is still available to be
relieved. Filesystems typically return the sum totals of their caches,
whereas the DSB process will return the size of the balloon itself.

Also, the DSB must periodically reclaim free pages that may
have been released over time. The DSB process performs this
sort of “garbage collection” by periodically waking up and re-
inflating the balloon as much as possible. Currently, we will inflate
to 95% of all of the available free memory. (Inflating to 100%
would trigger the “out-of-memory” killer, hence the 5% buffer). If
memory pressure is detected during this time, the thread preempts
any attempts to do a balloon inflation and will maintain the size of
the balloon for a backoff period of about 10 intervals. As we show
later, an empirical analysis has shown that a ballooning interval size
of about 5 seconds has proven effective.

Lines of Code. Most of the post-copy implementation is about
7000 lines within pluggable kernel modules. 4000 lines of that
are part of the MemX system that is invoked during resume time.
3000 lines contribute to the pre-paging component, the pushing
component, and the DSB component combined. A 200 line patch is
applied to the migration daemon to support ballooning and a 300-
line patch is applied to the guest kernel so as to initiate pseudo-
paging. In the end, the system remains completely transparent to
applications and approaches about 7500 lines. Neither the original
pre-copy algorithm, nor the hypervisor is modified in any manner.

5. Evaluation
In this section, we present a detailed evaluation of our post-copy
implementation and compare it against Xen’s pre-copy migration.
Our test environment consists of two 2.8 GHz dual core Intel
machines connected via a Gigabit Ethernet switch. Each machine
has 4 GB of memory. Both the guest VM in each experiment
and the Domain 0 are configured to use two virtual CPUs. Guest
VM sizes range from 128 MB to 1024 MB. Unless otherwise
specified, the default guest VM size is 512 MB. In addition to the
performance metrics mentioned in Section 3, we evaluate post-copy
against an additional metric. Recall that post-copy is effective only
when a large majority of the pages reach the target before they are
faulted upon by the VM at the target, in which case they become
minor page faults rather than major network page faults. Thus the
fraction of major faults compared to minor page faults is another
indication of the effectiveness of our post-copy approach.

8 MB 16 MB 32 MB 64 MB 128 MB 256 MB 512 MB
Working Set Size (MB)

0

10

20

30

40

50

60

70

80

T
ot

al
 M

ig
ra

tio
n

T
im

e
(S

ec
s) Read Post-Copy DSB

Write Post-Copy DSB
Read Post-Copy w/o DSB
Write Post-Copy w/o DSB
Read Pre-Copy DSB
Write Pre-Copy DSB
Read Pre-Copy w/o DSB
Write Pre-Copy w/o DSB
Stop-and-Copy DSB

Total Migration Time

Figure 4. Comparison of total migration times.

5.1 Stress Testing

We start by first doing a stress test for both migration schemes
with the use of a simple, highly sequential memory-intensive C
program. This program accepts a parameter to change the working
set of memory accesses and a second parameter to control whether
it performs memory reads or writes during the test. The experiment
is performed in a 2048 MB VM with its working set ranging from
8 MB to 512 MB. The rest is simply free memory. We perform the
experiment with different test configurations:

1. Stop-and-copy Migration: This is a non-live migration which
provides a baseline to compare the total migration time and
number of pages transferred by post-copy.

2. Read-intensive Pre-Copy with DSB: This configuration pro-
vides the best-case workload for pre-copy. The performance is
expected to be roughly similar to pure stop-and-copy migration.

3. Write-intensive Pre-Copy with DSB: This configuration pro-
vides the worst-case workload for pre-copy.

4. Read-intensive Pre-Copy without DSB:
5. Write-intensive Pre-Copy without DSB: These two configu-

rations test the default implementation of pre-copy in Xen.
6. Read-intensive Post-Copy with and without DSB:
7. Write-intensive Post-Copy with and without DSB: These

four configurations will stress our pre-paging algorithm. Both
reads and writes are expected to perform almost identically.
DSB is expected to minimize the transmission of free pages.

8 MB 16 MB 32 MB 64 MB 128 MB 256 MB 512 MB
Working Set Size (MB)

10

100

1000

10000

D
ow

nt
im

e
(m

ill
is

ec
)

Read Post-Copy DSB
Write Post-Copy DSB
Read Post-Copy w/o DSB
Write Post-Copy w/o DSB
Read Pre-Copy DSB
Write Pre-Copy DSB
Read Pre-Copy w/o DSB
Write Pre-Copy w/o DSB

Downtime

Figure 5. Comparison of downtimes. (Y-axis in log scale).

8 MB 16 MB 32 MB 64 MB 128 MB 256 MB 512 MB
Working Set Size (MB)

0

100 k

200 k

300 k

400 k

500 k

600 k

700 k

800 k

900 k

1 M

1.1 M

1.2 M

1.3 M

1.4 M

4
K

B
 p

ag
es

 tr
an

sf
er

re
d

(i
n

th
ou

sa
nd

s)

Read Post-Copy DSB
Write Post-Copy DSB
Read Post-Copy w/o DSB
Write Post-Copy w/o DSB
Read Pre-Copy DSB
Write Pre-Copy DSB
Read Pre-Copy w/o DSB
Write Pre-Copy w/o DSB
Stop-and-Copy DSB

Pages Transferred

Figure 6. Comparison of the number of pages transferred during a
single migration.

Total Migration Time: Figure 4 shows the variation of total
migration time with increasing working set size. Notice that both
post-copy plots with DSB are at the bottom, surpassed only by
read-intensive pre-copy with DSB. Both the read and write inten-
sive tests of post-copy perform very similarly. Thus our post-copy
algorithm’s performance is agnostic to the read or write-intensive
nature of the application workload. Furthermore, we observe that
without DSB activated, the total migration times are high for all
migration schemes due to unnecessary transmission of free pages
over the network.

Downtime: Figure 5 compares the metric of downtime as the
working set size increases. As expected, read-intensive pre-copy
gives the lowest downtime, whereas that for write-intensive pre-
copy increases as the size of the writable working set increases.
For post-copy, recall that our choice of pseudo-paging for page
fault detection (in Section 4) increases the downtime since all non-
pageable memory pages are transmitted during downtime. With
DSB, post-copy achieves a downtime that ranges between 600
milliseconds to just over one second. However, without DSB, our
post-copy implementation experiences a large downtime of around
20 seconds because all free pages in the guest kernel are treated
as non-pageable pages and transferred during downtime. Hence the
use of DSB is essential to maintain a low downtime with our current
implementation of post-copy. This limitation can be overcome by
the use of shadow paging to track page-faults.

Working Pre-Paging Pushing
Set Size Net Minor Net Minor

8 MB 2% 98% 15% 85%
16 MB 4% 96% 13% 87%
32 MB 4% 96% 13% 87%
64 MB 3% 97% 10% 90%

128 MB 3% 97% 9% 91%
256 MB 3% 98% 10% 90%

Table 2. Percent of minor and network faults for pushing vs. pre-
paging. Pre-paging greatly reduces the fraction of network faults.

Figure 7. Kernel compile with back-to-back migrations using 5
seconds pauses.

Pages Transferred and Page Faults: Figure 6 and Table 2
illustrate the utility of our pre-paging algorithm in post-copy across
increasingly large working set sizes. Figure 6 plots the total number
of pages transferred. As expected, post-copy transfers far fewer
pages than write-intensive pre-copy. It performs on par with read-
intensive post-copy and stop-and-copy. Without DSB, the number
of pages transferred increase significantly for both pre-copy and
post-copy. Table 13 compares the fraction of network and minor
faults in post-copy. We see that pre-paging reduces the fraction
of network faults from 7% to 13%. To be fair, the stress-test is
highly sequential in nature and consequently, pre-paging predicts
this behavior almost perfectly. We expect the real applications in
the next section to do worse than this ideal case.

5.2 Degradation, Bandwidth, and Ballooning

Next, we quantify the side effects of migration on a couple of sam-
ple applications. We want to answer the following questions: What
kinds of slow-downs do VM workloads experience during pre-copy
versus post-copy migration? What is the impact on network band-
width received by applications? And finally, what kind of balloon
inflation interval should we choose to minimize the impact of DSB
on running applications? For application degradation and the DSB
interval, we use Linux kernel compilation. For bandwidth testing
we use the NetPerf TCP benchmark.

Degradation Time: Figure 7 depicts a repeat of an interesting
experiment from (18). We initiate a kernel compile inside the VM
and then migrate the VM repeatedly between two hosts. We script
the migrations to pause for 5 seconds each time. Although there
is no exact way to quantify degradation time (due to scheduling
and context switching), this experiment provides an approximate
measure. As far as memory is concerned, we observe that kernel
compilation tends not to exhibit too many memory writes. (Once

Figure 8. NetPerf run with back-to-back migrations using 5 sec-
onds pauses.

gcc forks and compiles, the OS page cache will only be used once
more at the end to link the kernel object files together). As a result,
the experiment represents the best case for the original pre-copy
approach when there is not much repeated dirtying of pages. This
experiment is also a good worst-case test for our implementation
of Dynamic Self Ballooning due to the repeated fork-and-exit be-
havior of the kernel compile as each object file is created over time.
(Interestingly enough, this experiment also gave us a headache, be-
cause it exposed the bugs in our code!) We were surprised to see
how many additional seconds were added to the kernel compilation
in Figure 7 just by executing back to back invocations of pre-copy
migration. Nevertheless, we observe that post-copy closely matches
pre-copy in the amount of degradation. This is in line with the
competitive performance of post-copy with read-intensive pre-copy
tests in Figures 4 and 6. We suspect that a shadow-paging based im-
plementation of post-copy would perform much better due to the
significantly reduced downtime it would provide. Figure 8 shows
the same experiment using NetPerf. A sustained, high-bandwidth
stream of network traffic causes slightly more page-dirtying than
the compilation does. The setup involves placing the NetPerf sender
inside the guest VM and the receiver on an external node on the
same switch. Consequently, regardless of VM size, post-copy ac-
tually does perform slightly better and reduce the degradation time
experienced by NetPerf.

Effect on Bandwidth: In their paper (3), the Xen project pro-
posed a solution called “adaptive rate limiting” to control the band-
width overhead due to migration. However, this feature is not en-
abled in the currently released version of Xen. In fact it is compiled
out without any runtime options or any pre-processor directives.
This could likely be because rate-limiting increases the total mi-
gration time, or even because it is difficult, if not impossible, to
predict beforehand the bandwidth requirements of any single guest
VM, on the basis of which to guide adaptive rate limiting. We do
not activate rate limiting for our post-copy implementation either
so as to normalize the comparison of the two migration techniques.
We believe the omission of rate limiting makes sense: If the guest
is hosting, say, a webserver, then the webserver will take whatever
size network pipe in can get its hands on. This suggests that the
migration daemon should just let TCP’s own fairness policies act
normally across all virtual machines.

With that in mind, Figures 9 and 10 show a visual representation
of the reduction in bandwidth experienced by a high-throughput
NetPerf session. We conduct this experiment by invoking VM mi-
gration in the middle of a NetPerf session and measuring bandwidth
values rapidly throughout. The impact of migration can be seen in

Figure 9. Impact of post-copy on NetPerf bandwidth.

Figure 10. Impact of pre-copy on NetPerf bandwidth.

0 200 400 600 800
Balloon Interval (jiffies)

0

10

20

30

40

50

Sl
ow

do
w

n
T

im
e

(s
ec

s)

128 MB Guest
512 MB Guest

Dynamic Ballooning Effects on Completion Time
Kernel Compile, 439 secs

Figure 11. Application degradation is inversely proportional to the
ballooning interval.

both figures by a sudden reduction in the observed bandwidth dur-
ing migration. This reduction is more sustained, and greater, for
pre-copy than for post-copy due to the fact that the total number
of pages transferred in pre-copy is much higher. This is exactly the
bottom line that we were targeting for improvement.

Dynamic Ballooning Interval: Figure 11 shows how we chose
the DSB interval, by which the DSB process wakes up to reclaim

Figure 12. Total pages transferred for both migration schemes.

available free memory. With the kernel compile as a test applica-
tion, we execute the DSB process at intervals from 10ms to 10s.
At every interval, we script the kernel compile to run multiple
times and output the average completion time. The difference in
that number from the base case is the degradation time added to
the application by the DSB process due to its CPU usage. As ex-
pected, the choice of ballooning interval is inversely proportional to
the application degradation. The more often you balloon, the more
it affects the VM workload. The graph indicates that we should
choose an interval between 4 and 10 seconds to balance between
frequently reclaiming free pages and application CPU activity.

5.3 Application Scenarios

The last part of our evaluation is to re-visit the aforementioned
performance metrics across four real applications:

1. SPECWeb 2005: This is our largest application. It is a well-
known webserver benchmark involving at least 2 or more phys-
ical hosts. We place the system under test within the guest VM,
while six separate client nodes bombard the VM with connec-
tions.

2. Bit Torrent Client: Although this is not a typical server ap-
plication, we chose it because it is a simple representative of a
multi-peer distributed application. It is easy to initiate and does
not immediately saturate a Gigabit Ethernet pipe. Instead, it fills
up the network pipe gradually, is slightly CPU intensive, and in-
volves a somewhat more complex mix of page-dirtying and disk
I/O than just a kernel compile.

3. Linux Kernel Compile: We consider this again for consistency.
4. NetPerf: Once more, as in the previous experiments, the Net-

Perf sender is placed inside the guest VM.

Using these applications, we evaluate the same four primary
metrics that we covered in Section 5.1: downtime, total migration
time, pages transferred, and page faults. Each figure for these appli-
cations represents one of the four metrics and contains results for
a constant, 512 MB virtual machine in the form of a bar graph for
both migration schemes across each application. Each data point
is the average of 20 samples. And just as before, the guest VM is
configured to have two virtual CPUs. All of these experiments have
the DSB process activated.

Pages Transferred and Page Faults.. The experiments in Fig-
ures 12 and 13 illustrate these results. For all of the applications
except the SPECWeb, post-copy reduces the total pages transferred
by more than half. The most significant result we’ve seen so far is in
Figure 13 where post-copy’s pre-paging algorithm is able to avoid
79% and 83% of the network page faults (which become minor
faults) for the largest applications (SPECWeb, Bittorrent). For the
smaller applications (Kernel, NetPerf), we still manage to save 41%
and 43% of network page faults. There is a significant amount of

Figure 13. Page-fault comparisons: Pre-paging lowers the network
page faults to 17% and 21%, even for the heaviest applications.

Figure 14. Total migration time for both migration schemes.

Figure 15. Downtime for post-copy vs. pre-copy. Post-copy down-
time can improve with better page-fault detection.

additional prior work in the literature aimed at working-set identi-
fication, and we believe that these improvements can be even better
if we employ both knowledge-based and history-based predictors
in our pre-paging algorithm. But even with a reactive approach,
post-copy appears to be a strong competitor.

Total Time and Downtime. Figure 14 shows that post-copy re-
duces the total migration time for all applications, when compared
to pre-copy, in some cases by more than 50%. However, the down-
time in Figure 15 is currently much higher for post-copy than for
pre-copy. As we explained earlier, the relatively high downtime is
due to our speedy choice of pseudo-paging for page fault detection,
which we plan to reduce through the use of shadow paging. Nev-
ertheless, this tradeoff between total migration time and downtime

may be acceptable in situations where network overhead needs to
be kept low and the entire migration needs to be completed quickly.

6. Conclusions
We have presented the design and implementation of a post-copy
technique for live migration of virtual machines. Post-copy is
a combination of four key components: demand paging, active
pushing, pre-paging, and dynamic self-ballooning. We have imple-
mented and evaluated post-copy on a Xen and Linux based plat-
form and shown that it is able to achieve significant performance
improvements over pre-copy based live migration by reducing the
number of pages transferred over the network and the total mi-
gration time. In future work, we plan to investigate an alternative
to pseudo-paging, namely shadow paging based page fault detec-
tion. We are also developing techniques to handle destination node
failure during post-copy migration, so that post-copy can provide at
least the same level of reliability as pre-copy. Finally, we are imple-
menting a hybrid pre/post copy approach where a single round of
pre-copy precedes the CPU state transfer, followed by a post-copy
of the remaining dirty pages from the source.

7. Acknowledgments
We’d like to thank AT&T Labs Research at Florham Park, New Jer-
sey, for providing the fellowship funding to Michael Hines for this
research. This work is also supported in part by the National Sci-
ence Foundation through grants CNS-0509131 and CCF-0541096.

References
[1] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,

HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and
the art of virtualization. In Proc. of ACM SOSP 2003 (Oct. 2003).

[2] BRADFORD, R., KOTSOVINOS, E., FELDMANN, A., AND

SCHIÖBERG, H. Live wide-area migration of virtual machines
including local persistent state. In Proc. of the International
Conference on Virtual Execution Environments (2007), pp. 169–179.

[3] CLARK, C., FRASER, K., HAND, S., HANSEN, J., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of vir-
tual machines. In Network System Design and Implementation (2005).

[4] CULLY, B., LEFEBVRE, G., AND MEYER, D. Remus: High avail-
ability via asynchronous virtual machine replication. In NSDI ’07:
Networked Systems Design and Implementation (2008).

[5] DENNING, P. J. The working set model for program behavior. Com-
munications of the ACM 11, 5 (1968), 323–333.

[6] DOUGLIS, F. Transparent process migration in the Sprite operating
system. Tech. rep., University of California at Berkeley, Berkeley,
CA, USA, 1990.

[7] HAND, S. M. Self-paging in the nemesis operating system. In
OSDI’99, New Orleans, Louisiana, USA (1999), pp. 73–86.

[8] HANSEN, J., AND HENRIKSEN, A. Nomadic operating systems.
In Master’s thesis, Dept. of Computer Science, University of Copen-
hagen, Denmark (2002).

[9] HANSEN, J., AND JUL, E. Self-migration of operating systems. In
Proc. of ACM SIGOPS Europen Workshop, Leuven, Belgium (2004).

[10] HINES, M., AND GOPALAN, K. MemX: Supporting large mem-
ory applications in Xen virtual machines. In Second International
Workshop on Virtualization Technology in Distributed Computing
(VTDC07), Reno, Nevada (2007).

[11] HO, R. S., WANG, C.-L., AND LAU, F. C. Lightweight process
migration and memory prefetching in OpenMosix. In Proc. of IPDPS
(2008).

[12] KERRIGHED. http://www.kerrighed.org.

[13] KIVITY, A., KAMAY, Y., AND LAOR, D. kvm: the linux virtual
machine monitor. In Proc. of Ottawa Linux Symposium (2007).

[14] LAGAR-CAVILLA, H. A., WHITNEY, J., SCANNEL, A., RUMBLE,
S., BRUDNO, M., DE LARA, E., AND SATYANARAYANAN, M. Im-
promptu clusters for near-interactive cloud-based services. Tech. rep.,
CSRG-578, University of Toronto, June 2008.

[15] MAGENHEIMER, D. Add self-ballooning to balloon driver. Discus-
sion on Xen Development mailing list and personal communication,
April 2008.

[16] MILOJICIC, D., DOUGLIS, F., PAINDAVEINE, Y., WHEELER, R.,
AND ZHOU, S. Process migration survey. ACM Computing Surveys
32(3) (Sep. 2000), 241–299.

[17] MOSIX. http://www.mosix.org.

[18] NELSON, M., LIM, B.-H., AND HUTCHINS, G. Fast transparent
migration for virtual machines. In Usenix, Anaheim, CA (2005),
pp. 25–25.

[19] NOACK, M. Comparative evaluation of process migration algorithms.
Master’s thesis, Dresden University of Technology - Operating Sys-
tems Group, 2003.

[20] OPENVZ. Container-based Virtualization for Linux,
http://www.openvz.com/.

[21] OPPENHEIMER, G., AND WEIZER, N. Resource management for a
medium scale time-sharing operating system. Commun. ACM 11, 5
(1968), 313–322.

[22] OSMAN, S., SUBHRAVETI, D., SU, G., AND NIEH, J. The design
and implementation of Zap: A system for migrating computing envi-
ronments. In Proc. of OSDI (2002), pp. 361–376.

[23] PLANK, J., BECK, M., KINGSLEY, G., AND LI, K. Libckpt: trans-
parent checkpointing under unix. In Proc. of Usenix Annual Technical
Conference, New Orleans, Louisiana (1998).

[24] RICHMOND, M., AND HITCHENS, M. A new process migration
algorithm. SIGOPS Oper. Syst. Rev. 31, 1 (1997), 31–42.

[25] ROUSH, E. T. Fast dynamic process migration. In Intl. Conference on
Distributed Computing Systems (ICDCS) (1996), p. 637.

[26] SAPUNTZAKIS, C., CHANDRA, R., AND PFAFF, B. Optimizing the
migration of virtual computers. In Proc. of OSDI (2002).

[27] SATYANARAYANAN, M., AND GILBERT, B. Pervasive personal com-
puting in an internet suspend/resume system. IEEE Internet Comput-
ing 11, 2 (2007), 16–25.

[28] SCHMIDT, B. K. Supporting Ubiquitous Computing with Stateless
Consoles and Computation Caches. PhD thesis, Computer Science
Dept., Stanford University, 2000.

[29] STELLNER, G. Cocheck: Checkpointing and process migration for
mpi. In IPPS ’1996 (Washington, DC, USA), pp. 526–531.

[30] THAIN, D., TANNENBAUM, T., AND LIVNY, M. Distributed com-
puting in practice: the condor experience. Concurr. Comput. : Pract.
Exper. 17 (2005), 323–356.

[31] TRIVEDI, K. An analysis of prepaging. Journal of Computing 22
(1979), 191–210.

[32] TRIVEDI, K. On the paging performance of array algorithms. IEEE
Transactions on Computers C-26, 10 (Oct. 1977), 938–947.

[33] TRIVEDI, K. Prepaging and applications to array algorithms. IEEE
Transactions on Computers C-25, 9 (Sept. 1976), 915–921.

[34] WALDSPURGER, C. Memory resource management in vmware esx
server. In Operating System Design and Implementation (OSDI 02),
Boston, MA (Dec 2002).

[35] WHITAKER, A., COX, R., AND SHAW, M. Constructing services with
interposable virtual hardware. In NSDI 2004 (2004), pp. 13–13.

[36] WHITAKER, A., SHAW, M., AND GRIBBLE, S. Scale and perfor-
mance in the denali isolation kernel. In OSDI 2002, New York, NY,
USA (2002), pp. 195–209.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

